火力发电厂的设备作用和各系统经过流程
火力发电厂工艺流程

火力发电厂工艺流程
火力发电厂的工艺流程一般包括以下步骤:
1. 燃料供应:火力发电厂通常使用煤炭、天然气或油类等燃料进行发电。
首先需要将燃料供应到发电厂,通常通过输送带、输气管道或石油管道等方式进行输送。
2. 燃料燃烧:燃料在燃烧炉中燃烧,产生高温和高压的燃烧产物,通常包括燃烧室、锅炉和燃烧器等设备。
燃烧产生的热能会被吸收并转化为蒸汽。
3. 蒸汽发生:在锅炉中,燃烧所产生的热能会被传输到水中,使水蒸发成为高温高压的蒸汽。
蒸汽通常通过管道进入蒸汽轮机。
4. 蒸汽轮机发电:蒸汽进入蒸汽轮机,使得轮子上的叶片旋转。
蒸汽轮机连接到发电机,通过旋转的运动产生电能。
5. 冷却系统:蒸汽在蒸汽轮机发电后变为低温低压的水蒸气,需要通过冷却系统冷却后进入锅炉再次循环使用。
一般通过冷却塔或冷却水循环系统实现。
6. 废气处理:燃烧炉产生的废气中含有大量污染物,需要通过废气处理系统进行净化,达到排放标准。
7. 发电厂设备运行与维护:发电厂需要对各种设备进行监控、维修和维护工作,确保设备的稳定运行和安全性。
这只是火力发电厂的基本工艺流程,不同的发电厂可能会有一些细微的差别。
另外,一些现代化的火力发电厂还可采用超临界或超超临界锅炉技术,以提高燃烧效率和减少燃料消耗。
火力发电厂设备及生产运行介绍

火力发电厂设备及生产运行介绍1. 简介火力发电厂是利用燃烧燃料产生高温高压蒸汽驱动汽轮机发电的电力生产设施。
火力发电厂通常由多个设备组成,包括锅炉、汽轮机、发电机、冷却塔、输电系统等。
2. 主要设备介绍2.1 锅炉锅炉是火力发电厂最关键的设备之一,主要用于将燃料燃烧产生的热能转化为蒸汽。
蒸汽的压力和温度决定了最终发电机组的出力。
锅炉通常由燃烧器、炉膛、水冷壁、过热器等部件组成,其运行稳定性对整个发电厂的正常运行至关重要。
2.2 汽轮机汽轮机是火力发电厂中的动力机械,其作用是将由锅炉产生的高温高压蒸汽转化为旋转机械能。
汽轮机通常由高压缸、中压缸、低压缸等级联组成,通过蒸汽的膨胀驱动转子旋转,产生机械功。
汽轮机的转速和功率输出对整个发电系统的运行效率有着重要影响。
2.3 发电机发电机是将汽轮机输出的机械功转化为电能的设备,也是火力发电厂中的核心设备之一。
发电机通过感应电流产生磁场,利用磁场与转子的相对运动产生电流,最终将机械功转化为电能。
发电机的额定功率和电压决定了发电厂的发电能力和对外输电能力。
2.4 冷却塔冷却塔主要用于将汽轮机中的蒸汽冷却成水,保证循环使用。
在火力发电厂中,常见的冷却方法包括湖水冷却、江河冷却和湿冷却塔等。
冷却塔的设计和运行对于保证发电厂的热效率和环保要求至关重要。
2.5 输电系统输电系统是将火力发电厂产生的电能输送到用户端的一系列设备和装置。
这包括变电站、变压器、高压输电线路等。
输电系统的稳定性和安全性是保证电能传输质量和可靠性的关键。
3. 生产运行流程火力发电厂的生产运行流程通常包括以下几个主要步骤:1.燃料供给:火力发电厂使用各种不同的燃料,如煤炭、天然气、燃油等。
燃料供给系统将燃料输送到锅炉中进行燃烧。
2.锅炉燃烧:燃料在锅炉中经过燃烧反应,产生高温高压的燃烧气体,同时将水加热转化为蒸汽。
3.汽轮机发电:蒸汽由锅炉送入汽轮机,蒸汽的膨胀驱动汽轮机转动,产生机械功。
汽轮机通过轴将机械功传给发电机。
火力发电厂的工作流程

火力发电厂的工作流程火力发电厂是一种利用燃烧燃料产生高温高压蒸汽驱动汽轮机发电的设施。
它是目前世界上最主要的电力供应方式之一。
下面将详细介绍火力发电厂的工作流程。
一、燃料供给火力发电厂的第一步是将燃料供给到燃烧室。
常用的燃料包括煤炭、石油、天然气等。
燃料一般经过破碎、筛分和干燥等处理后,通过输送系统送入锅炉的燃烧室。
二、燃烧过程燃料在燃烧室内与空气进行充分混合燃烧,产生高温高压的燃烧气体。
燃烧室内的燃烧过程需要保持适当的氧气含量和燃料供给量,以确保燃料能够完全燃烧,并且不产生大量的烟尘和有害气体。
三、锅炉和热交换燃烧产生的高温燃烧气体通过锅炉,使锅炉内的水转化为高温高压蒸汽。
锅炉内的水通过循环系统不断循环,从而保持锅炉内的水位和温度稳定。
四、汽轮机发电高温高压蒸汽通过输送系统进入汽轮机,驱动汽轮机转动。
汽轮机是火力发电厂的核心设备,其运转方式分为凝汽式和过热式两种。
汽轮机的转动驱动发电机发电,将机械能转化为电能。
五、发电系统发电机产生的交流电经过变压器升压后,通过输电线路输送到变电站,再经过变电站的升压、配电等处理,最终供应给用户使用。
六、余热回收火力发电厂在发电过程中会产生大量的余热。
为了提高能源利用效率,火力发电厂通常会安装余热回收装置,将发电过程中的余热用于供热、供蒸汽或其他用途。
七、废气处理火力发电厂的燃烧过程会产生大量的废气,其中包括二氧化硫、氮氧化物等有害气体。
为了保护环境和人类健康,火力发电厂需要进行废气处理,采取脱硫、脱硝等技术手段减少有害气体的排放。
八、水处理火力发电厂在发电过程中需要大量的水,包括锅炉补水、冷却塔补水等。
为了保证水质符合要求,火力发电厂需要进行水处理,包括除盐、软化等工艺。
九、运行维护火力发电厂需要进行日常的运行维护工作,包括设备巡检、设备维修、设备更换等。
这些工作的目的是确保发电设备的正常运行,提高发电效率和可靠性。
总结起来,火力发电厂的工作流程包括燃料供给、燃烧过程、锅炉和热交换、汽轮机发电、发电系统、余热回收、废气处理、水处理以及运行维护等环节。
简述火力发电厂的生产过程

火力发电厂的生产过程
能量转化过程:
锅炉燃烧
汽轮机动叶
发电机
烟气热量通过锅炉受热面传递给工质(蒸汽) 三种方式:辐射、传导、对流
热能
机械能
电能
汽轮机喷嘴
动能
能量交换过程:
工质(汽轮机排汽)的热量通过凝汽器传递给冷源(循环水) 两种方式:传导、对流
化学能
火力发电厂的生产过程
火力发电厂三个主要流程:
空预器
电除尘
送风机
一次风机
整流装置
主变
厂变
启备变
6KV母线
循环泵
化学水箱
220KV开关站
补水泵
引风机
分离器
贮水箱
20KV
火力发电厂中的主要设备
三大主机: 锅炉、汽轮机、发电机
汽轮机润滑油系统
汽轮机EH油系统
循环水系统
凝结水系统
给水回热系统
汽轮机汽封系统
真空系统
旁路系统
汽轮机主要系统
火力发电厂中的主要辅助系统
每个值负责内容:机组的调试操作与验收,机组的启动、停机和试验操作,机组正常运行的监视、检查和操作调整,机组异常及事故情况下的处理和恢复正常运行,分析事故原因,制定防范措施。总之,就是保证机组安全经济稳定运行,完成发电量任务。
发电部管理模式为值建制,设立4个值,每值设置岗位为:值长、机组长、主值、副值和巡检。
火力发电厂的主要损耗:
发电厂的经济运行
发电厂的经济运行
火力发电厂的能量平衡图
锅炉损失
汽轮机及热力循环损失
管道损失
发电机损失
输出热量
输入热量
热耗量
01
热耗率
02
热效率
火力发电工作流程

火力发电厂的工作流程、主要工作原理、热力系统划分火力发电厂是指使用化石燃料(即煤炭、石油和天燃气)通过燃烧放出热能加热工质,再通过热力原动机驱动发电机发电的方式。
火力发电的原动机主要是蒸汽动力机械,即锅炉和汽轮机,其次为外燃燃气动力的燃气轮机,只有很小部份使用内燃机。
简单的说就是把热能转变为机械能再由机械能转变为电能的过程,并为保证正常的运行、提高效率、节约能源和保证安全、改革环保而采取一系烈的辅助系和措施。
一、热力循环:从一个热力状态出发,经过一系列的变化,最后又回到原来的热力状态所完成的封闭的热力过程。
热力循环过程:除氧器→给水泵→高加→省煤器→汽包→水冷壁→低温过热器→屏式过热器→高温过热器→主蒸汽管道→主汽门→高压缸→再热蒸汽冷段→低温再热器→屏式再热器→再热蒸汽热段→中压缸→低压缸→凝汽器→凝结水泵→低加→除氧器。
除氧器:回热系统中能除去给水内溶解气休的混合式加热器。
气体在水中的的溶解度与此气体在气水界面的分压成正比,加热时气水界面上的分压成正比,加热时气水界面上的不蒸气的分压境加,气体的分压降低,容于水中的气体不断析出。
当加热到饱和温度时气水界面上的水蒸气分压接近于液面上的全压,所有的气体的分压接近于零,这时水中的各种气体将全部解析出来。
锅炉:利用燃料燃烧释放的热能或其他热能加热给水或其它工质以生产规定参数和品质的蒸汽、热水或其它工质的机械设备。
用于发电的锅炉称为电站锅炉。
在电站锅炉中,通常将化石燃料(煤、石油、天然气等)燃烧释放的热能,通过受热面的金属壁面传给其中的工质----水,把水加热成为具有一定压力的和温度的蒸汽。
所产生的蒸汽则用来驱动汽轮机,把热能转化为机械能,汽轮机再驱动发电机,再将机械能变为电用供给用户。
锅炉、汽轮机、发电机合称火力发电厂三大主机。
锅炉的工作原理:包括主机及辅机两部份。
本体主要由汽包、水冷壁、过热器以及再热器、省煤器、空气预热器、燃烧器、排渣装置、阀门附件、锅炉构架、与锅炉炉墙等组成。
火力发电厂的基本生产过程

火力发电厂的基本生产过程这里介绍的是汽轮机发电的基本生产过程。
火力发电厂的燃料主要有煤、石油(主要是重油、天然气)。
我国的火电厂以燃煤为主,过去曾建过一批燃油电厂,目前的政策是尽量压缩烧油电厂,新建电厂全部烧煤。
火力发电厂由三大主要设备——锅炉、汽轮机、发电机及相应辅助设备组成,它们通过管道或线路相连构成生产主系统,即燃烧系统、汽水系统和电气系统。
其生产过程简介如下。
1.燃烧系统燃烧系统如图2-l 所示,包括锅炉的燃烧部分和输煤、除灰和烟气排放系统等。
煤由皮带输送到锅炉车间的煤斗,进入磨煤机磨成煤粉,然后与经过预热器预热的空气一起喷入炉内燃烧,将煤的化学能转换成热能,烟气经除尘器清除灰分后,由引风机抽出,经高大的烟囱排入大气。
炉渣和除尘器下部的细灰由灰渣泵排至灰场。
2.汽水系统汽水系统流程如图2-2 所示,包括锅炉、汽轮机、凝汽器及给水泵等组成的汽水循环和水处理系统、冷却水系统等。
水在锅炉中加热后蒸发成蒸汽,经过热器进一步加热,成为具有规定压力和温度的过热蒸汽,然后经过管道送入汽轮机。
在汽轮机中,蒸汽不断膨胀,高速流动,冲击汽轮机的转子,以额定转速(3000r/min)旋转,将热能转换成机械能,带动与汽轮机同轴的发电机发电。
在膨胀过程中,蒸汽的压力和温度不断降低。
蒸汽做功后从汽轮机下部排出。
排出的蒸汽称为乏汽,它排入凝汽器。
在凝汽器中,汽轮机的乏汽被冷却水冷却,凝结成水。
凝汽器下部所凝结的水由凝结水泵升压后进入低压加热器和除氧器,提高水温并除去水中的氧(以防止腐蚀炉管等),再由给水泵进一步升压,然后进入高压加热器,回到锅炉,完成水—蒸汽—水的循环。
给水泵以后的凝结水称为给水。
汽水系统中的蒸汽和凝结水在循环过程中总有一些损失,因此,必须不断向给水系统补充经过化学处理的水。
补给水进入除氧器,同凝结水一块由给水泵打入锅炉。
3.电气系统电气系统包括发电机、励磁系统、厂用电系统和升压变电站等。
发电机的机端电压和电流随其容量不同而变化,其电压一般在10~20kV 之间,电流可达数千安至20kA。
火力发电厂的生产流程

火力发电厂的生产流程火力发电厂是利用化石燃料燃烧产生高温高压蒸汽驱动汽轮机发电的电力生产设施。
以下是火力发电厂的生产流程的详细步骤和流程。
1. 燃料供应和存储火力发电厂的燃料主要是煤炭、石油和天然气。
燃料供应商将燃料送至火力发电厂,并通过输送系统将燃料储存在燃料库。
2. 燃料预处理燃料预处理包括除尘、脱硫、脱氮等工艺。
燃料经过除尘设备去除颗粒物,然后经过脱硫设备去除硫化物,最后经过脱氮设备去除氮化物。
这些工艺能够减少燃料燃烧过程中产生的污染物。
3. 燃烧系统燃料经过预处理后,进入燃烧系统进行燃烧。
燃烧系统由燃烧炉、锅炉和燃烧控制系统组成。
燃烧炉是燃烧过程的核心,燃料在高温下燃烧,产生高温高压蒸汽。
4. 蒸汽发电燃烧产生的高温高压蒸汽驱动汽轮机旋转,汽轮机通过转动的轴带动发电机产生电力。
蒸汽在汽轮机中逐渐降温降压,然后进入凝汽器冷却成水。
5. 冷却系统凝汽器将蒸汽冷却成水,然后水通过泵送回锅炉重新加热成蒸汽,循环使用。
冷却系统还包括冷却塔,用于将冷却后的水进一步降温。
6. 发电系统发电系统包括发电机、变压器和输电系统。
发电机将汽轮机产生的机械能转换为电能,变压器将发电机产生的低电压电能升高为输电系统所需的高电压电能。
7. 废气处理燃烧过程中产生的废气中含有大量的污染物,需要进行处理。
废气处理系统包括烟囱、除尘器、脱硫装置和脱硝装置。
烟囱将废气排放至大气中,除尘器去除废气中的颗粒物,脱硫和脱硝装置去除废气中的硫化物和氮化物。
8. 废水处理火力发电厂产生大量的废水,包括锅炉废水、冷却水和雨水等。
废水处理系统通过沉淀、过滤、调节PH值等工艺将废水处理成达到排放标准的水质,然后排放至水体或进行再利用。
9. 噪声和振动控制火力发电厂会产生噪声和振动,需要采取措施进行控制。
控制措施包括隔声、降噪和减振等技术手段,以减少对周围环境和人群的影响。
10. 安全与环保监测火力发电厂需要进行安全与环保监测,包括燃料和废气中的污染物浓度、废水中的水质、噪声和振动水平等。
火力发电厂完整系统流程图课件

循环水泵与冷却塔
循环水泵
负责将冷却水从冷却塔送至凝汽器,吸收汽轮机排汽热 量后返回冷却塔进行降温。循环水泵通常采用轴流泵或 混流泵,具有流量大、扬程低的特点。为提高冷却效果 ,循环水泵通常采用多台并联运行。
冷却塔
通过自然通风或机械通风方式,将循环水中的热量散发 至大气中,降低循环水温度。冷却塔通常由填料、配水 系统、通风设备等组成。为提高冷却效果,冷却塔需定 期进行清洗和维护。
受体防护
对厂界和敏感点进行噪声监测,确保噪声达 标排放。
08
运行管理与维护保养制 度
运行操作规程和应急预案演练
运行操作规程
严格执行操作规程,确保机组安全稳定运行,包括启动、停机、负荷调整等操作规范。
应急预案演练
定期组织应急演练,提高员工应对突发事件的能力,包括设备故障、安全事故等紧急情况的处理方法。
锅炉
汽轮机
包括燃烧室、水冷壁、过热器、再热器等 ,负责将燃料燃烧产生的热能传递给水, 生成高温高压的蒸汽。
由高压缸、中压缸和低压缸组成,蒸汽在 汽轮机中膨胀做功,驱动汽轮机旋转。
发电机
辅助设备与系统
与汽轮机同轴连接,将汽轮机产生的机械 能转换为电能输出。
包括燃料输送系统、给水系统、冷却水系 统、烟气处理系统等,保障火力发电厂的 稳定运行。
火力发电厂完整系统 流程图课件
目录
• 火力发电厂概述 • 燃料供应系统流程图 • 锅炉系统流程图 • 汽轮机系统流程图 • 发电机及变压器系统流程图 • 辅助设备及控制系统流程图 • 安全环保设施流程图 • 运行管理与维护保养制度
01
火力发电厂概述
定义与分类
定义
火力发电厂是利用化石燃料(如 煤、石油、天然气等)燃烧产生 的热能来发电的工厂。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
火力发电厂的设备作用和各系统流程一、燃烧系统生产流程来自煤场的原煤经皮带机输送到位置较高的原煤仓中,原煤从原煤仓底部流出经给煤机均匀地送入磨煤机研磨成煤粉。
自然界的大气经吸风口由送风机送到布置于锅炉垂直烟道中的空气预热器内,接受烟气的加热,回收烟气余热。
从空气预热器出来约250左右的热风分成两路:一路直接引入锅炉的燃烧器,作为二次风进入炉膛助燃;另一路则引入磨煤机入口,用来干燥、输送煤粉,这部分热风称一次风。
流动性极好的干燥煤粉与一次风组成的气粉混合物,经管路输送到粗粉分离器进行粗粉分离,分离出的粗粉再送回到磨煤机入口重新研磨,而合格的细粉和一次风混合物送入细粉分离器进行粉、气分离,分离出来的细粉送入煤粉仓储存起来,由给粉机根据锅炉热负荷的大小,控制煤粉仓底部放出的煤粉流量,同时从细粉分离器分离出来的一次风作为输送煤粉的动力,经过排粉机加压后与给粉机送出的细粉再次混合成气粉混合物,由燃烧器喷入炉膛燃烧。
二、汽水系统生产流程储存在给水箱中的锅炉给水由给水泵强行打入锅炉的高压管路,并导入省煤器。
锅炉给水在省煤器管内吸收管外烟气和飞灰的热量,水温上升到300左右,但从省煤器出来的水温仍低于该压力下的饱和温度(约330),属高压未饱和水。
水从省煤器出来后沿管路进入布置在锅炉外面顶部的汽泡。
汽包下半部是水,上半部是蒸汽,下半部是水。
高压未饱和水沿汽泡底部的下降管到达锅炉外面底部的下联箱,锅炉底部四周的下联箱上并联安装上了许多水管,这些水管内由下向上流动吸收炉膛中心火焰的辐射传热和高温烟气的对流传热,由于蒸汽的吸热能力远远小于水,所以规定水冷壁内的气化率不得大于40%,否则很容易因为工质来不及吸热发生水冷壁水管熔化爆管事故。
锅炉设备的流程一、锅炉燃烧系统1、作用:使燃料在炉内充分燃烧放热,并将热量尽可能多的传递给工质,并完成对省煤器和水冷壁水管内的水加热,对过热器和再热器管内的干蒸汽加热,对空气预热器管内的空气加热。
2、系统组成:燃烧器,炉膛,空气预热器组成。
二、锅炉的汽水系统1、作用:对水进行预热、气化和蒸汽的过热,并尽可能多地吸收火焰和烟气的热量。
2、系统的组成:水的预热汽化系统,干蒸汽的过热再热系统。
三、燃料输送系统1、作用:完成对原煤的输送、储存、供给。
2、系统组成:皮带机、原煤仓和给煤机四、制粉系统1、作用:生产流量足够、颗粒大小符合要求的煤粉,满足锅炉燃烧需求。
2、组成:磨煤机、粗粉分离器、细粉分离器、煤粉仓、给粉机和排粉机。
五、给水系统1、作用:向锅炉提供压力足够高的高压未饱和水,因为只有高压才能高温,工质在高温高压下能携带更多的热量。
2、组成:给水箱和给水泵六、通风系统1、作用:保证足够的空气进入炉膛并及时排出。
2、组成:送风机、引风机和烟囱七、除尘系统1、作用:对即将进入烟囱高空排放的烟气进行除尘,减少对环境的污染。
2、组成:除尘器汽轮机一、作用:将蒸汽的热能转换成蒸汽的动能二、汽轮机设备流程:1.回热加热系统(1)组成:回热加热器和除氧器(2)作用:抽出汽轮机中做了部分功的蒸汽,对锅炉给水进行加热,这部分蒸汽自身变成凝结水而汽化潜热完全被利用。
2.凝气系统(1)组成:凝汽器和抽气器(2)作用:1。
建立并维持高度真空,降低汽轮机的背压,提高循环热效率2.汽轮机的排气凝结成水,以便重新送入锅炉使用。
3.冷却水供水系统两个冷却水用水大户:(1)机组轴承润滑油冷却水(2)汽轮机乏汽冷却水火电厂计算机监控系统的结构一、结构:三点一线,分散控制系统(DCS),即上位机的操作员站,工程师站,下位机的现地控制单元和用来连接个站点的通信网络。
集计算机技术、数据通信技术、控制技术与CRT显示技术融于一体,采用分散结构和危险结构。
数据采集结构(DAS):对机组运行参数和状态进行采集、处理,用于显示、报警及打印报表。
模拟量调节控制系统(MCS):包括锅炉的燃烧调节控制、汽包给水水位调节控制、主蒸汽温度调节控制等子系统和辅助设备的控制子系统。
开关量顺序控制系统(SCS):对机组和辅助设备进行启停的顺序控制和连锁保护。
锅炉炉膛安全监控系统(FSSS):通过对炉膛的自动吹扫、火焰监测、炉膛压力保护以及喷油、喷煤燃烧器管理,锅炉连锁保护等安全管理,保证了锅炉的安全火电厂输煤系统的任务是卸煤、堆煤、上煤和配煤,以达到按时保质、保量为机组(原煤仓)提供燃煤的目的。
整个输煤系统是火电厂十分重要的支持系统。
它是保证机组稳发满发的重要条件。
输煤系统是火电厂的重要组成部分,其安全可靠运行是保证电厂实现安全、高效不可缺少的环节。
输煤系统的工艺流程随锅炉容量、燃料品种、运输方式的不同而差别较大,并且使用设备多,分布范围广。
作为一种具有本安性且远距离传输能力强的分布式智能总线网络,lonworks总线能将监测点做到彻底的分散(在一个网络内可带32000多个节点),提高了系统的可靠性,可以满足输煤系统监控的要求。
火电厂输煤系统一般都采用顺序控制和报警方式,为相对独立的控制单元系统,系统配备了各种性能可靠的测量变送器。
通过运用Lonworks现场总线技术将各种测量变送器的输出信号接入对应的智能节点组成多个检测单元,然后挂接在Lonworks总线上,再通过Lonworks总线与已有的DCS系统集成,实现了对输煤系统更加有效便捷的监控。
在输煤系统中,常用的测量变送器一般有以下几种:(1)开关量皮带速度变送器(2)皮带跑偏开关(3)煤流开关(4)皮带张力开关(5)煤量信号(6)金属探测器(7)皮带划破探测(8)落煤管堵煤开关(9)煤仓煤位开关。
每一种测量变送器和其相对应节点共同组成智能监测单元,对需要监测的工况参数进行实时的监控。
监测单元通过收发器接入Lonworks总线网络进行通信,可根据监测到的参数进行控制和发出报警信号,系统的结构如图1所示。
3、 Lonworks总线智能节点的一般设计智能节点是总线网络中分布在现场级的基本单元,其设计开发分为两种:一种是基于neuron芯片的设计,即节点中不再包含其它处理器,所有工作均由neuron 芯片完成。
另一种是基于主机的节点设计,即neuron 芯片只完成通信的工作,用户应用程序由其它处理器完成。
前者适合设计相对简单的场合,后者适应于设计相对复杂的场合。
一般情况下,多采用基于芯片的设计。
由于智能节点不外乎输入/输出模拟量和输入/输出开关量四种形式,节点的设计也大同小异,对此本文只给出了节点设计的一般方法。
基于芯片的智能节点的硬件结构包括控制电路、通信电路和其它附加电路组成,其基本结构如图2所示。
图2 智能节点基本结构图Fig 2 Basic Structure Of Node Based On The Neuron Chip控制电路①神经元芯片:采用Toshiba公司生产的3150芯片,主要用于提供对节点的控制,实施与Lon网的通信,支持对现场信息的输入输出等应用服务。
②片外存储器:采用Atmel公司生产的AT29C256(Flash存储器)。
AT29C256共有32KB的地址空间,其中低16KB空间用来存放神经元芯片的固件(包括LonTalk协议等)。
高16KB空间作为节点应用程序的存储区。
采用ISSI公司生产的IS61C256作为神经元芯片的外部RAM。
③I/O接口:是neuron芯片上可编程的11个I/O引脚,可直接与外部接口电路连接,其功能和应用由编程方式决定。
通信电路通信电路的核心收发器是智能节点与Lon网之间的接口。
目前,Echelon公司和其他开发商均提供了用于多种通信介质的收发器模块。
通常采用Echelon公司生产的适用于双绞线传输介质的FTT-10A收发器模块。
附加电路附加电路主要包括晶振电路、复位电路和Service电路等。
①晶振电路:为3150神经元芯片提供工作时钟。
②复位电路:用于在智能节点上电时产生复位操作。
另外,节点还将一个低压中断设备与3150的Reset 引脚相连,构成对神经元芯片的低压保护设计,提高节点的可靠性稳定性。
③Service电路:专为下载应用程序设计。
Service指示灯对诊断神经元芯片固件状态有指示作用节点的软件设计采用Neuron C编程语言设计。
Neuron C是为neuron芯片设计的编程语言,可直接支持neuron芯片的固化,并定义了34种I/O对象类型。
节点开发的软件设计分为以下几步:(1)定义I/O对象:定义何种I/O对象与硬件设计有关。
在定义I/O对象时,还可设置I/O对象的工作参数及对I/O对象进行初始化。
(2)定义定时器对象:在一个应用程序中最多可以定义15个定时器对象(包括秒定时器和毫秒定时器),主要用于周期性执行某种操作情况,或引进必要的延时情况。
(3)定义网络变量和显示报警:既可以采用网络变量又可以采用显示报警形式传输信息,一般情况采用网络变量形式。
(4)定义任务:任务是neuron C实现事件驱动的途径,是对事件的反应,即当某事件发生时,应用程序应执行何种操作。
(5)定义用户自定义的其它函数:可以在neuron C 程序中编写自定义的函数,以完成一些经常性功能,也将一些常用的函数放到头文件中,以供程序调用。
4、基于Lonworks总线的火电厂输煤系统与DCS的网络集成现场总线技术与传统的系统DCS系统实现网络集成并协同工作的情况目前在火电厂中尚为数不多。
进一步推动火电厂数字化和信息化的发展,逐步推行现场总线技术与DCS系统的集成是火电厂工业控制及自动化水平发展的趋势。
就目前来讲,现场总线技术与DCS 集成方式有多种,且组态灵活。
根据现场的实际情况,我们知道不少大型火电厂都已装有DCS系统并稳定运行,而现场总线很少或首次引入系统,因此可采用将现场总线层与DCS系统I/O层连接的集成,该方案结构简便易行,其原理如图3所示。
从图中可以看出现场总线层通过一个接口卡挂在DCS的I/O层上,将现场总线系统中的数据信息映射成与DCS的I/O总线上的数据信息,使得在DCS控制器所看到的从现场总线开来的信息如同来自一个传统的DCS设备卡一样。
这样便实现了在I/O总线上的现场总线技术集成。
火电厂输煤系统无论是在规模上,还是在利用已有生产资源的基础上,采用该方案都是可行的,同时也体现了把火电厂某些相对独立控制系统通过现场总线技术纳入DCS系统的合理性。
由此可见,现阶段现场总线与系统的并存不仅会给生产用户带来大量收益,而且使用户拥有更多的选择,以实现更合理的监测与控制。
燃煤,用输煤皮带从煤场运至煤斗中。
大型火电厂为提高燃煤效率都是燃烧煤粉。
因此,煤斗中的原煤要先送至磨煤机内磨成煤粉。
磨碎的煤粉由热空气携带经排粉风机送入锅炉的炉膛内燃烧。
煤粉燃烧后形成的热烟气沿锅炉的水平烟道和尾部烟道流动,放出热量,最后进入除尘器,将燃烧后的煤灰分离出来。