聚合物共混改性原理

合集下载

2第二章聚合物共混改性基本原理

2第二章聚合物共混改性基本原理

2第二章聚合物共混改性基本原理聚合物共混改性是指将不同种类的聚合物混合在一起,通过相互作用、相互渗透以及相互分散,来改善聚合物材料的性能。

聚合物共混改性的基本原理涉及到相互作用、相容性、相互渗透、相互分散等多个方面。

首先是相互作用。

不同种类的聚合物在混合过程中,由于存在不同的结构和功能团,会产生各种相互作用力,如范德华力、静电作用力、水力作用力等。

这些相互作用力可以在分子层面上改变聚合物链的结构,从而改变聚合物材料的性能。

其次是相容性。

在聚合物共混改性中,相容性是一个重要的问题。

如果两种聚合物具有相似的结构和化学性质,则有可能发生物理和化学上的相容作用,使得共混体系更为稳定。

相反,如果两种聚合物的结构差异较大,则相互之间会出现相容性问题,容易导致相互分相和相互分离。

因此,相容性是影响聚合物共混改性的一个重要因素。

其次是相互渗透。

相互渗透是指在共混体系中,两种聚合物在分子层面上相互渗透的现象。

当两种聚合物具有适当的相互作用力和相容性时,可以实现相互渗透,从而改善材料的性能。

相互渗透可以改变聚合物的链结构和比例,提高聚合物的拉伸、弯曲和抗冲击性能等。

最后是相互分散。

相互分散是指在共混体系中,两种或多种聚合物能够均匀分布在整个材料中。

相互分散的好坏直接影响着材料的性能。

当聚合物分子链之间有较好的相容性和相互作用力时,可以实现较好的相互分散,从而提高材料的强度、硬度和耐热性等。

除了上述基本原理外,还有其他一些影响共混改性的因素,如共混体系的配比、共混过程的温度和压力等。

通过合理的配比和控制共混条件,可以进一步改善共混体系的性能。

总之,聚合物共混改性是通过相互作用、相容性、相互渗透和相互分散等多种机制来改善材料性能的一种方法。

通过合理选择和操控不同种类聚合物的相互作用,可以实现在材料中形成一种新的有机整体,从而提高材料的性能和应用范围。

聚合物共混改性原理与应用2

聚合物共混改性原理与应用2

聚合物共混改性原理与应用2聚合物共混改性原理与应用2相容性是指混合在一起的聚合物之间存在一定的相互吸引力,使它们能够混合均匀而不发生相分离。

聚合物的相容性取决于其化学结构和相似性,通常情况下,具有相近结构和性质的聚合物更容易相容。

相容性的提高可以通过一些物理或化学方法实现,例如对聚合物进行预处理,添加共混剂和控制混合温度等。

互穿网络是指两种或多种聚合物在混合过程中形成网络结构,使聚合物之间形成物理或化学的交联,从而增加材料的力学性能和稳定性。

通过互穿网络,不同聚合物之间形成的交联点可以加强材料的强度和刚度,同时也可以提高材料的抗拉伸性、耐热性和抗溶剂性等。

1.提高聚合物的力学性能:通过将不同类型的聚合物混合在一起,可以有效提高材料的强度、刚度、韧性和耐磨性等力学性能。

例如,将聚丙烯和聚酰胺共混改性,可以提高材料的强度和刚度,使其适用于制造高强度结构件。

2.改善聚合物的热稳定性:由于不同类型的聚合物具有不同的热分解温度和稳定性,通过共混改性可以使材料的热稳定性得到提高。

例如,将聚丙烯和聚苯乙烯共混改性,可以提高材料的热稳定性,使其在高温环境下更加稳定。

3.调控材料的光学性能:通过将具有不同光学性质的聚合物进行共混改性,可以调控材料的透明度、折射率和色散性能等。

这对于制备光学材料和光学器件具有重要意义。

4.改善材料的耐化学性:聚合物共混改性可以提高材料的抗溶剂性和抗腐蚀性,使其能够在恶劣的化学环境中使用。

例如,将聚乙烯和聚丙烯酸共混改性,可以提高材料的耐酸碱性和耐腐蚀性。

5.制备功能性聚合物材料:通过将具有不同功能的聚合物进行共混改性,可以制备出具有特定功能的复合材料,如导电聚合物、生物可降解聚合物和自愈合聚合物等。

这些功能性材料在电子、医疗和航空航天等领域有着广泛的应用前景。

总的来说,聚合物共混改性是一种有效的方法,可以通过将不同类型的聚合物混合在一起,实现材料性能的综合优化。

随着科技的不断发展,聚合物共混改性在材料领域的研究和应用将越来越广泛。

第2章 聚合物共混改性原理

第2章 聚合物共混改性原理

2017/7/5
7
2.1.5 聚合物共混物的分类 2.1.5.1 按共混物形态分类
均相体系和两相体系,其中,两相体系又可分为 “海-岛结构” 两相体系和“海-海结构”两相体系。 “海-岛结构”两相体系在聚合物共混物中是普遍存在 的。工业应用的绝大多数聚合物共混物都属“海-岛结 构”两相体系。 “海-海结构”两相体系,可见诸于聚合物互穿网络 (IPN)之中。此外,机械共混亦可得到具有“海-海 结构”的共混物。
2017/7/5
4
2.1.4 关于相容性的基本概念


2.1.4.1 完全相容,部分相容与不相容
相容性,是指共混物各组分彼此相互容纳,形成宏观 均匀材料的能力。不同聚合物对之间相互容纳的能力, 是有着很悬殊的差别的。某些聚合物对之间,可以具 有极好的相容性;而另一些聚合物对之间则只有有限 的相容性;还有一些聚合物对之间几乎没有相容性。 由此,可按相容的程度划分为完全相容、部分相容和 不相容。相应的聚合物对,可分别称为完全相容体系、 部分相容体系和不相容体系。
2017/7/5
25
2.2.4.4 黏度比、剪切应力及界面张力的综合影响

(1) 黏度比λ与分散相粒径的关系
2017/7/5
26
2.2.4.5 其它因素的影响
如前所述,共混组分的熔体黏度及两相间的黏度 比对共混物的形态有重要影响。而聚合物的熔体黏度 是受到熔融温度的影响的,这就使得共混过程中的加 工温度可以通过影响熔体黏度,进而影响聚合物共混 物的形态。共混物的形态,还与共混组分之间的相容 性密切相关。完全相容的聚合物对,可形成均相共混 体系;部分相容的聚合物对,则可形成两相体系。
2017/7/5
17
2017/7/5

聚合物共混改性原理与应用5

聚合物共混改性原理与应用5

聚合物共混改性原理与应用5聚合物共混改性原理与应用51.化学相容性:聚合物共混改性的成功关键在于所选择的聚合物之间的化学相容性。

如果两种聚合物能够形成相互溶解的体系,即聚合物链能够相互扩散并与对方形成强的相互作用力,就可以达到物理共混,从而改变聚合物材料的性能。

2.相互作用力:共混聚合物中,不同聚合物之间的相互作用力起到了关键作用。

常见的相互作用力包括范德华力、氢键、弱键、离子相互作用等。

通过选择合适的相互作用力和控制共混聚合物中的相互作用力强度,可以实现聚合物材料的性能的调控和优化。

3.共混机理:共混聚合物的形成遵循着一定的共混机理。

常见的共混机理包括相互扩散和混合、溶解组成物实现物理相互作用、交联反应实现化学相互作用等。

在共混改性中,了解和理解聚合物共混机理对于实现想要的改性效果至关重要。

1.提高材料性能:通过将不同的聚合物共混在一起,可以使材料具备更多的优点和特性。

例如,将具有较高强度和刚性的聚合物与具有耐磨性和耐氧化性的聚合物共混,可以使材料具备优良的机械性能和耐用性。

2.改善加工性能:将具有较低熔点的聚合物和具有较高熔点的聚合物共混,可以降低材料的熔点和粘度,提高材料的流动性,从而改善材料的加工性能。

这种方法在塑料加工和合成纤维等领域中得到广泛应用。

3.调控界面性能:聚合物共混改性可以调控界面效应,从而改善材料的界面性能。

例如,在聚合物共混体系中添加亲水性或疏水性添加剂,可以改变材料的表面性质,使其具备阻燃性、防水性或亲油性等特性。

4.实现多功能化:通过将具有不同功能的聚合物共混在一起,可以实现材料的多功能化。

例如,将具有导电性的聚合物与具有光学性能的聚合物共混,可以制备出具有导光、导电和防静电等功能的材料,广泛应用于电子和光电器件中。

总之,聚合物共混改性是一种重要的材料改性方法,通过调控聚合物之间的化学和物理相互作用,可以实现材料性能的调控和优化。

在不同领域和应用中,聚合物共混改性具有广泛的研究和应用价值。

聚合物共混改性原理第二章2-杨其

聚合物共混改性原理第二章2-杨其
H m 为混合焓;
S m 为混合熵;
T 为热力学温度。
第2章 聚合物共混物相容性
S R(n1 lnV1 n2 lnV2 )
* m
式中 n1、n2 ——溶剂与溶质的克分子分数; V1、V2 ——将剂与溶质的体积分数。
第2章 聚合物共混物相容性
弗洛利(Flory)和哈金斯(Huggins)等用一无因次的参数来表征 由溶剂分子和大分子的链段相互作用对聚合物的贡献:
12
——两种聚合物之间豹作用参数。
第2章 聚合物共混物相容性
为了计算 S ,提出了著名的Flory-Huggins晶格模型。Flory认为高分子
m
溶液比低分子化合物的排列方式少得多,因而混合熵 S 远小于后者。后来 m Scott和Tompa将F-H聚合物溶液理论推广到聚合物共混体系,其 S m 最小。F- H理论圆满解释了为什么2个高聚物共混很难得到1个均相共混物。H m与共混物 中新的接触对的形成有关,正比于相互作用参数 。因此 G 中唯一与分于性 m 质有关的参数就是X F-H理论由于其简单性和所需实验参数少的特点广泛用于 研究聚合物共混物的相行为。
2.2 聚合物共混物相容性的热力学理论
2.2.1 聚合物共混物相容性概念 所谓聚合物之间的相容性(Miscibility),从热力学角度而言,是指 在任何比例混合时,都能形成分子分散的、热力学稳定的均相体系,即在 平衡态下聚合物大分子达到分子水平或链段水平的均匀分散。
机械相容性(Compatibility),是指能得到具有良好物理、机械性能
2 Gm 3Gm 0 2 3 n1 n1
这是一个临界点。它可能是上限临界相容温度(UCST)。也可能是下
限临界相容温度(LCST)。

聚合物共混改性原理与应用

聚合物共混改性原理与应用

❖ 填充剂对填充体系性能的影响 ①力学性能 ②结晶性能 ③热学性能 ④熔体流变性能
聚合物共混改性原理与应用
8.3 填充剂的表面改性
❖ 在填充改性聚合物中所使用的填料大部分是天然的或 人工合成的无机填料。这些无机填料无论是盐、氧化 物,还是金属粉体,都属于极性的、亲水性物质,当 它们分散于极性极小的有机高分子树脂中时,因极性 的差别,造成二者相容性不好,从而对填充塑料的加 工性能和制品的使用性能带来不良影响。因此对无机 填料表面进行适当处理,通过化学反应或物理方法使 其表面极性接近所填充的高分子树脂,改善其相容性 是十分必要的。
❖ 应用: 塑料
橡胶
④云母
❖ 成分:硅酸钾铝
❖ 形状:鳞片状
❖ 性能:有玻璃般光泽,良好的电绝缘性,加工
性能好。 ❖ 应用: 塑料
橡胶
聚合物共混改性原理与应用
⑤二氧化硅(白炭黑) ❖ 应用:塑料
橡胶 ⑥硅灰石 ❖ 成分:CaSiO3 ❖ 形状:针状 ❖ 性能:化学稳定性、电绝缘性好,吸油率低,
价格低廉。 ❖ 应用:
聚合物共混改性原理与应用
表面处理剂及作用机理
❖ 填料表面处理的作用机理基本上有两种类型:一是表面物理作用,包括表面涂覆(或称 为包覆)和表面吸附;二是表面化学作用,包括表面取代、水解、聚合和接枝等。
填料聚表合面物处共混理改物性理原作理用与示应意用 图
填料表聚合面物处共理混化改学性作原用理示与应意用图
中空玻璃微珠 ⑿金属粉末 ❖ 性能:提高导热性、降低膨胀系数、降低摩擦
力、防辐射。
聚合物共混改性原理与应用
⒀天然材料填充剂 木粉、竹纤维、麻纤维、秸秆纤维、果壳粉、淀 粉
聚合物共混改性原理与应用
❖ 增强纤维 ①玻璃纤维 性能:拉伸强度高而弹性模量低;热导率比较

3 第二章 聚合物共混改性基本原理

3 第二章  聚合物共混改性基本原理
(2)破碎能
Edb Edk Edf
分散相物料宏观破碎能Edk←取决于颗粒内部阻碍变 形和破碎的因素,即熔体黏度、熔体弹性等。 分散相物料表面能Edf←取决于界面张力
S 3 Edf Vd R
2013-7-28 31
第四节 混合过程的理论模型
五、分散相的分散与集聚 2. 破碎过程的影响因素 剪切能E← E 2 m
y Ky0 1 y 0

K值超过某个临界值时,粒子破碎。 双小球模型 液滴模型
6R m 6R K Fr Fr
mR R We
K决定于——外力,内力 剪切应力(外力)、分散相内力与分散相颗粒破碎 分散密切相关。增大τ或降低Fr可以促进分散相颗粒 的破碎。
2013-7-28
12
第四节 混合过程的理论模型
二、作用于分散相粒子上的力
F1 6Rmy cos F2 6Rmysin
α
F1 F
F2
处于连续相流体剪切力场中的分散相粒子,首先会 在F2的作用下发生转动,与此同时F1也逐渐增大, 分散相粒子在F1作用下发生伸长变形。当分散相粒 子的取向与流体速度场的夹角为45°时,F1达到最 大,这时,最有利于分散相粒子的破碎分散。 共混设备施加给共混体系的作用力方向应该不断地 或周期地变化。
2013-7-28 6
第四节 混合过程的理论模型
一、液滴模型 2. 影响液滴形变的因素
连续相黏度:ηm↑ → We ↑ → D ↑ 界面张力: σ ↓ → We ↑ → D ↑ 熔体弹性:
mR R We
流动场:对于牛顿流体,拉伸流动比剪切流动更能 有效地促使液滴破裂。 ηm<<ηd,拉伸流动起主导作用。 d 两相粘度比: m

聚合物共混改性原理要点整理

聚合物共混改性原理要点整理

聚合物共混改性原理要点整理1.相容性与互溶性:共混改性的关键在于混合体系中组分的相容性和互溶性。

当两种聚合物具有相似的化学结构和相互相容的功能团时,它们往往具有较好的互溶性。

相反,如果两种聚合物具有不同的化学结构和互不相容的功能团,则会导致相分离和互不溶性。

因此,相容性和互溶性对于聚合物共混改性是非常重要的。

2.功能团的互相作用:在聚合物共混体系中,不同聚合物的功能团之间可以进行相互作用。

比如,酸酐可以与氢键形成聚合物链的交联点,改善聚合物的力学性能;硬度大的聚合物可以增加聚合物的刚性和强度;柔软的聚合物可以改善聚合物的柔韧性等。

因此,通过不同聚合物之间的功能团的互相作用,可以实现特定性能的调控和改善。

3.聚合物相互作用:当不同聚合物混合在一起时,它们之间的相互作用也会影响聚合物的性能。

例如,通过静电作用、范德华力、亲疏水性等,聚合物可以在分子水平上形成相互作用,进而影响聚合物体系的相行为、阻碍相分离、提高相容性。

通过调控聚合物之间的相互作用,可以改善混合聚合物的性能。

4.分散剂和助剂:在共混改性中,分散剂和助剂的使用也是非常重要的。

分散剂可以帮助将两种或多种聚合物均匀地分散在一起,避免相分离和互不溶性。

助剂可以改变聚合物的流动性、黏度、硬度等特性,进一步调节聚合物的性能。

通过合理选择和使用分散剂和助剂,可以实现更好的共混改性效果。

5.共混相的结构和形态:共混改性的聚合物体系中,聚合物相互作用和相互溶解会导致不同的结构和形态形成。

这些结构和形态对聚合物的性能有重要影响。

例如,共混相的尺寸、分散度、分布等可以影响材料的力学性能、热性能、导电性等。

通过控制共混相的结构和形态,可以调节聚合物的性能和特征。

综上所述,聚合物共混改性是一种提高聚合物性能和改变其性质的重要方法。

混合聚合物的相容性和互溶性、功能团的互相作用、聚合物之间的相互作用、分散剂和助剂的使用以及共混相的结构和形态等都是影响共混效果的重要因素。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

聚合物共混改性原理
湿法生产工艺:
原土 包装
破碎 粉碎
制浆 干燥
干法生产工艺:
提纯 过滤
改型活化 有机覆盖 覆盖剂
原土 包装
制浆 粉碎
提纯1
提纯2
干燥
加热混合
改型活化 精细钠土 覆盖剂
聚合物共混改性原理
Structure of 2:1 layered silicates
蒙脱土的结构特征---天然的纳米结构
01~0.1 μm, 10~1000Å)
(5~100 Å)
(1)聚合物 /低分子物
低分子作增容 低分子流变改 外部热塑性

性剂
聚合物
(2)聚合物 /聚合物
宏观相分离 型聚合物掺
混物
微观相分离型 (1)分子复合物;
聚合物合金
(2)完全相容型 聚合物合金
(3)聚合物 聚合物/填充 聚合物/填充 聚合物/超细粒 聚合物纳米
常用的插层剂有烷基铵盐、季铵盐、吡啶类衍生物和其他阳离子型表面活性剂
聚合物共混改性原理
聚合物共混改性原理
聚合物/层状硅酸盐纳米复合材料特点
需要填料体积分数少; 具有优良的热稳定性及尺寸稳定性; 性价比高。
聚合物共混改性原理
Polymer layered Nanocomposites preparation
✓ Because the building blocks making up the nanocomposites are therefore so close to the molecular scale, confinement and quantum effects result from the way that the blocks interact.
金属/金属 金属/陶瓷 陶瓷/陶瓷
聚合物 纳米复合材料
有机/无机 纳米复合材料
聚合物/聚合物 纳米复合材料
聚合物基
无机物基
分子复合 原位复合 微纤/基体
Classification of nanocomposite
聚合物共混改性原理
Polymer/inorganic nanocomposites
Polymer nanocomposites are generally defined as the combination of a polymer matrix resin and inorganic particles (particles, layers or fibres) which have at least one dimension (i.e. length, width, or thickness) in the nanometer size range
➢ In-situ intercalation polymerization
to intercalate the monomer and then take advantage of the host’s oxidising properties to induce polymerization
College of Polymer Science & Engineering
聚合物共混改性原理
———— 聚合物纳米复合材料
张琴
聚合物共混改性原理
聚合物复合体系的分类
复合体系 组合
>1000nm (>1μm)
分散相的尺度大小
100~1000nm 1~100nm(0.0 0.5~10nm
(0.1~1 μm)
✓ Nanocomposites show properties not found in bulk materials, differentiating them from typical composites or filled-polymer systems.
聚合物共混改性原理
纳米复合材料
非聚合物 纳米复合材料
合物共混改性原理
蒙脱土的化学通式: Nax(H2O)4{(AL2~xMgx)[Si4O10](OH)2}
分类: 钠基蒙脱土(碱性土) 钙基蒙脱土(碱土性土) 天然漂白土(酸性土)
聚合物共混改性原理
蒙脱土的改性方法
人工钠化改型(悬浮液法、堆场钠化法、挤压法) 酸活化方法(干法活化工艺、湿法活化工艺)
聚合物共混改性原理
制备聚合物纳米复合材料的无机物的种类
• 纳米粒子(CaCO3 、SiO2 、 TiO2、ZnO、Al2O3、Cr2O3 )
• 纳米纤维 (碳纳米管、纤维素晶须、凹凸棒土 ) • 层状无机物
聚合物共混改性原理
Layered host crystals susceptible to intercalation by a polymer
/填充物
物复合体系 物复合体系 子填充复合体系 复合体系
聚合物共混改性原理
纳米概念的形成
早期,石墨、炭黑中的颗粒 1959年,美国物理学家Richard Feynman提出“what
would happen if we could arrange the atoms one by one the way we want them?” 20世纪70年代康乃尔大学C.G.Granqvist & R.A.Buhrman 小组气相沉积制备纳米 20世纪80年代,原西德Gleiter首次制备金属纳米,提出 纳米材料及其应用 1981年,IBM发明AFM和STM,推动纳米技术发展 20世纪80年代末期,日本丰田研究中心制得PA6/粘土纳米 复合材料
聚合物共混改性原理
What nanocomposites are
✓ Nanocomposites are made by mixing two or more phase, such as particles, layers or fibres, where at least one of the phases is in the nanometre size range.
聚合物共混改性原理
Cation-exchange reaction between the silicate and the alkylammonium salt
蒙脱土族矿物具有离子交换性、吸水性、 膨胀性、触变性、黏结性、吸附性等特性
聚合物共混改性原理
插层剂的作用
利用离子交换的原理进入蒙脱土片层之间; 扩张片层间距; 改善层间的微环境; 使蒙脱土的内外表面由亲水性转化为疏水性; 增强蒙脱土片层与聚合物分子链之间的亲和性; 降低硅酸盐材料的表面能。
相关文档
最新文档