封装与微组装

合集下载

微组装工艺

微组装工艺

微组装工艺1 1.1 概述集成电路产业设计、制造、封装逐渐成为衡量一个国家综合国力的重要指标之一。

先进封装技术的发展使得日本在电子系统、特别是日用家电消费品的小型化方面一度走在了世界之前。

据估计我国集成电路的年消费将达到932亿美圆约占世界市场的20其中的30将用于电子封装则年产值将达几千亿人民币。

现在每年全国大约需要180亿片集成电路但我们自己制造特别是封装的不到20。

一、微电子封装微电子封装——A Bridge from IC to System 狭义芯片级 IC Packaging 广义芯片级系统级——电子封装工程电子封装工程将基板、芯片封装体和分立器件等要素按电子整机要求进行连接和装配实现一定电气.物理性能转变为具有整机或系统形式的整机装置或设备。

二、芯片级封装涉及的技术领域芯片封装技术涉及物理、化学、化工、材料、机械、电气与自动化等学科。

所涉及材料包括金属、陶瓷、玻璃和高分子材料等。

芯片封装技术整合了电子产品的电气特性、热特性、可靠性、材料与工艺应用和成本价格等因素是以获得综合性能最优化为目的的工程技术。

1.2 微电子封装技术 1.2.1 概念一、微电子封装技术的定义利用薄膜技术及微细连接技术将半导体元器件及其它构成要素在框架和基板上布置、固定及连接引出接线端子并通过可塑性绝缘介质灌封固定构成整体结构的工艺。

二、封装的作用紧固的引脚系统将脆弱的芯片表面器件连线与外部世界连接起来物理性保护、支撑保护芯片需要外壳底座防止芯片破碎或受外界损伤环境性保护外壳密封防止芯片污染免受化学品、潮气等的影响散热封装体的各种材料本身可带走一部分热量 1.2.2 微电子封装技术的分级微电子封装可以分为几个层次零级封装、一级封装、二级封装和三级封装。

一、零级封装芯片互连级-CLP 按芯片连接方法不同又分为 1、芯片粘接IC芯片固定安装在基板上。

一般有以下几种方法 1 Au-Si合金共熔法 370?Au与Si有共熔点可在多个IC芯片装好后在氮气保护下烧结也可用超声熔焊法逐个熔焊。

二级封装

二级封装

先A 面再流焊 后B 面波峰焊
先贴后插,B面 波峰焊
一般采用先贴后 插,工艺简单
PCB 成 本 低 , 工艺单。
双面PCB
先A 面再流焊, 后B 面波峰焊
适合高密度组装
双面PCB
A 面再流焊, B 面波峰焊,B
工艺复杂,很少 采用
面插装件
混载焊接技术举例
二级封装(微组装)技术小结
二级封装本质 波峰焊原理与技术 回(再)流焊原理与技术 混载焊接技术 其它
Mount Reflow
回流焊机外观及内部结构
回流焊炉主要由: 炉体 上下加热源 PCB传送装置 空气循环装置 冷却装置 排风装置 温度控制装置
计算机控制系统组成
回流焊机加热方式
虽然加热方法很多,但一般采用采用强制热风对 流或强制热风对流+红外辐射的加热方式,以保证 加热的均匀,避免局部过热和温度不够。
贴附封装元件
再流焊
印刷电路板
焊膏指助焊剂与 焊锡粉混合而成 的粘糊状物。
要保证焊接后焊锡的高度,以确 保焊接的强度、
一般高度要求是印刷电路板厚的 1/2以上。
回流焊原理
各温区的作用与波峰焊基本相同
焊接区
保温区
升温区
使 PCB 和 元 器
件得到充分的预
焊膏中的溶剂、 气体蒸发掉,同 时,焊膏中的助 焊剂润湿焊盘、
锡膏丝网印刷
Squeegee
Solder paste
Stencil
丝网印刷
Squeegee(又叫刮板或刮刀)
菱形刮刀 拖裙形刮刀
聚乙烯材料 金屬
Squeegee Stencil
菱形刮刀
10mm 45度角
Squeegee Stencil

微组装技术简述及工艺流程及设备

微组装技术简述及工艺流程及设备

2.优点——MCM技术有以下主要优点。
1)使电路组装更加高密度化,进一步实现整机 的小型化和轻量化。与同样功能的SMT组装 电路相比,通常MCM的重量可减轻 80%~90%,其尺寸减小70~80%。在军事应 用领域,MCM的小型化和轻量化效果更为明 显,采用MCM技术可使导弹体积缩小90%以 上,重量可减轻80%以上。卫星微波通信系 统中采用MCM技术制作的T/R组件,其体积 仅为原来的1/10~1/20。
3)淀积型MCM(MCM-D,其中D是“淀积”的英 文名Deposition 的第一个字母),系采用高密度 薄膜多层布线基板构成的多芯片组件。其主要特 点是布线密度和组装效率高,具有良好的传输特 性、频率特性和稳定性.
4)混合型MCM-H(MCM-C/D和MCM-L/D,其中 英文字母C、D、L的含义与上述相同),系采用 高密度混合型多层基板构成的多芯片组件。这是 一种高级类型的多芯片组件,具有最佳的性能/价 格比、组装密度高、噪声和布线延迟均比其它类 型MCM小等特点。这是由于混合多层基板结合了 不同的多层基板工艺技术,发挥了各自长处的缘 故。特别适用于巨型、高速计算机系统、高速数 字通信系统、高速信号处理系统以及笔记本型计 算机子系统。
2)厚膜陶瓷型MCM(MCM-C,其中C是“陶瓷 ”的英文名Ceramic的第一个字母),系采用 高密度厚膜多层布线基板或高密度共烧陶瓷 多层基板构成的多芯片组件。其主要特点是 布线密度较高,制造成本适中,能耐受较恶 劣的使用环境,其可靠性较高,特别是采用 低温共烧陶瓷多层基板构成的MCM-C,还 易于在多层基板中埋置元器件,进一步缩小 体积,构成多功能微电子组件。MCM-C主 要应用于30~50MHz的高可靠中高档产品。 包括汽车电子及中高档计算机和数字通信领 域。

微电子封装技术发展趋势

微电子封装技术发展趋势

微电子封装技术发展趋势从80年代中后期开始,电子产品正朝着便携式/小型化、网络化和多媒体化方向发展,这种市场需求对电路组装技术提出了相应的要求:即单位体积信息的提高(高密度化)和单位时间处理速度的提高(高速化)。

为了满足这些要求,势必要提高电路组装的功能密度,这就成为了促进微电子封装技术发展的最重要的因素。

一、片式元件:小型化、大容量、集成化、高性能片式元件是应用最早、产量最大的表面组装元件。

随着工业和消费类电子产品市场对电子设备小型化、高性能、高可靠性、安全性和电磁兼容性的需求,对电子电路性能不断地提出新的要求,片式元件进一步向小型化、多层化、大容量化、耐高压、集成化和高性能化方向发展。

二、芯片封装技术:追随IC的发展而发展数十年来,芯片封装技术一直追随着IC的发展而发展,一代IC就有相应一代的封装技术相配合,而SMT的发展,更加促进芯片封装技术不断达到新的水平。

六七十年代的中、小型规模IC,曾大量使用TO型封装,后来又开发出DIP、PDIP,并成为这个时期的主导产品形式;80年代出现了SMT,相应的IC封装形式开发出适于表面贴装短引线或无引线的LCCC、PLCC、SOP等结构。

在此基础上,经十多年研制开发的QFP不但解决了LSI的封装问题,而且适于使用SMT在PCB或其他基板上表面贴装,使QFP终于成为SMT主导电子产品并延续至今。

BGA的兴起和发展解决了QFP面临的困难,但它不能满足电子产品向更加小型、更多功能、更高可靠性对电路组件的要求,也不能满足硅集成技术发展对进一步提高封装效率和进一步接近芯片本征传输速率的要求,所以更新的封装CSP(Chip Size Package)又出现了。

从CSP近几年的发展趋势来看,CSP将取代QFP成为高I/O端子IC封装的主流。

为了最终接近IC本征传输速度,满足更高密度、更高功能和高可靠性的电路组装的要求,还必须发展裸芯片(Bare chip)技术。

从1997年以来裸芯片的年增长率已达到30%之多,发展较为迅速的裸芯片应用包括计算机的相关部件。

电子封装与微组装密封技术发展

电子封装与微组装密封技术发展
是安装半导体集成电路芯片用的外壳 ,它不仅起着安 放 、固定 、密封 、保护芯片和增强导热性能的作用 , 而且还是沟通芯片 内部世界与外部 电路 的桥梁 。对于
很 多电子产 品而言 ,封装技术都是非常关键 的一环 。 电子封装通 常有 五个 主要 功能 ,即电源分配 、信号分
配 、散热通道 、机械支撑和环境保护 。
方法有 胶粘 剂密 封 、衬 垫密 封 、玻璃金 属封 接 、软 钎焊 密封 、平行 缝焊 密封 和脉 冲激光熔 焊 密封等 。
机械 支撑 :封 装要 为芯 片和 其他 部件 提供 牢 固
可靠的机械支撑 ; 环境 保 护 :半 导体 器件 和 电路 的许 多参数 均与 半 导体 表面状 态 密切相 关 ,半导体 芯 片制造 出来 在
光熔焊 和平行缝焊等 密封方法 ,如对 R 射频 I 接 口 F / O 采 用玻璃 金属烧 结 、对控 制接 口采 用高频 感应 软钎
焊 、对大壳体 / 盖板采用 脉冲激 光熔 焊等 。对于 异型
密封性要 求不 高 的非气密 微组 装 电路组件 ,也 可选 用胶粘剂密封和衬垫密封等低成本常规密封方法 。
件长期 T作 时产 生 的热量 散发 出去 ,有 时还要 附加
散热器和热沉 ;
波 电路 、控制 电路 和 电源等 复杂 电路 ,因此 ,微组
装 电路 组件需 要 密封 的部位包 括控 制接 口及 电源接 口的插 头 、R 射频 I F / 口的 插头 、冷 却 功放 单元 O接
部件 的输入 输 的水管 和盖 板等 。 目前 采用 的密 封
2 1年 7 01
功 能 ,逐 渐融 人到 芯 片制造技 术 和系统 集成技 术之 中 , 目前 已经发展 到新 型 的微 电子 封装 工艺技 术 ,

电子封装与微组装密封技术发展

电子封装与微组装密封技术发展

电子封装与微组装密封技术发展电子封装与微组装密封技术是电子工程领域的重要组成部分,它涉及到封装材料、封装工艺、封装设备等多个方面的技术。

随着科技的不断进步和应用领域的拓展,电子封装与微组装密封技术得到了广泛应用并取得了突破性的发展。

电子封装是指对芯片、电阻、电容等电子元器件进行封装,以便保护其免受外界环境的影响并便于组装、连接和使用。

随着电子产品的迅猛发展,电子封装需要满足更高的可靠性、更小的尺寸和更高的集成度要求。

为此,封装材料、封装工艺和封装设备也在不断创新和改进。

封装材料是电子封装与微组装密封技术的重要组成部分。

在封装材料的选择上,需要考虑其绝缘性能、导热性能、机械性能、耐热性能等多方面的指标。

近年来,一些新型的封装材料如环氧树脂、有机硅胶、纳米材料等被广泛应用于电子封装领域,以实现更高的性能和更小的尺寸。

封装工艺是电子封装与微组装密封技术的核心。

它包括了封装材料的制备、封装工艺参数的选择和封装过程的控制等多个环节。

精确的封装工艺能够确保封装材料与封装部件之间的良好结合,并提供良好的导热和防护性能。

近年来,一些先进的封装工艺如微电子激光焊接、微微纳米级封装、微细制造等技术被广泛研究和应用于电子封装领域。

封装设备是电子封装与微组装密封技术中的重要环节。

它用于制备封装材料、控制封装工艺参数和实现封装过程的自动化和精确控制。

封装设备的发展趋势是向高效、智能、多功能方向发展。

近年来,一些自动化封装设备如贴片机、焊接机器人等被广泛应用于电子封装与微组装密封技术,以提高生产效率和产品的一致性。

总的来说,电子封装与微组装密封技术在电子工程领域发挥着重要的作用。

随着科技的不断进步和应用领域的拓展,电子封装与微组装密封技术在材料、工艺和设备等方面都取得了突破性的发展。

未来,随着电子产品的进一步发展和市场需求的不断增加,电子封装与微组装密封技术将继续发展,并为电子产品的性能和功能提供更全面、更可靠的保障。

封装与微组装论文

封装与微组装论文

毕业设计报告(论文)论文题目:集成电路封装芯片互连技术研究作者所在系部:电子工程系作者所在专业:电子工艺与管理作者所在班级: 10252作者姓名:鹿英建作者学号: ***********指导教师姓名:孙燕完成时间: 2012年11月9日摘要现代电子的高度先进性决定着现代科技的发展水平,而电子封装与互连技术作为现代电子系统能否成功的关键技术支撑之一,也自然而然的随着电子业的发展而越来越先进,日新月异。

电子封装的基本技术,即当代电子封装常用的塑料、复合材料、粘结剂、下填料与涂敷料等封装材料,热管理,连接器,电子封装与组装用的无铅焊料和焊接技术。

电子封装的互连技术,包含焊球阵列、芯片尺寸封装、倒装芯片粘结、多芯片模块、混合微电路等各类集成电路封装技术及刚性和挠性印制电路板技术,还有高速和微波系统封装。

随着电子产品进入千家万户,甚至每人随身都会带上几个、几十个集成电路产品(如手表、手机、各类IC卡、u盘、MP3、手提计算机、智能玩具、电子钥匙等),这些都要求电子产品更小、更轻、更高密度的组装、更多的性能、更快的速度、更可靠,从而驱动了集成电路封装和电子组装技术的飞速发展,促使电子组装产业向高密度、表面组装、无铅化组装发展,驱使集成电路新颖封装的大量涌现。

关键词集成电路互连技术电子封装目录第1章绪论 (3)1.1 课题背景 (3)1.2 发展趋势 (4)第2章电子封装工艺流程................................... 错误!未定义书签。

第3章常见芯片互连方法 (5)3.1 引线键合技术(WB) (5)3.2 载带自动键合技术(TAB) (6)3.3 倒装芯片键合技术(FCB) (7)3.4 小结 (7)第4章总结 (8)参考文献 (8)第1章绪论1.1 课题背景21 世纪是信息时代, 信息产业是推动人类社会持续进步的重要力量.现代信息产业涵盖众多制造领域, 其中芯片制造!电子封装及产品测试等均是必不可少的生产过程.电子封装是一个多学科交叉的高新技术产业, 涉及机械!电子!材料!物理!化学!光学!力学!热学!电磁学!通讯!计算机!控制等学科,成为信息产业发展的关键领域之一信息产品对微型化!低成本!高性能!高可靠性的需求促进了电子封装朝着高密度封装的方向发展.因此, 新型元器件及功能材料的研发是金字塔结构的电子封装产业最具活力和最具含金量的关键.芯片制造产业数十年来不断超越摩尔定律,生产出集成度越来越高的芯片,加速了晶圆级!芯片级等高密度封装技术的出现. 国内封装产业随半导体市场规模快速增长,与此同时,IC设计、芯片制造和封装测试三业的格局也正不断优化,形成了三业并举、协调发展的格局。

微组装技术简述及工艺流程及设备课件

微组装技术简述及工艺流程及设备课件

精度控制问题
精度控制问题
微组装技术要求零件的精度非常高,如何确保每个组件的精确位置和尺寸是微组装过程中的一大挑战 。
解决方案
采用高精度的设备和工艺,如激光加工、纳米压印等,同时加强质量检测,对不合格的零件进行修复 或替换。
生产效率问题
生产效率问题
微组装技术的复杂性和高精度要求使 得生产效率相对较低。
ERA
定义及特点
微组装技术定义 高密度组装 高可靠性 高灵活性
微组装技术是一种将微电子器件(如芯片、MEMS等)通过物 理、化学或电学方法组装到基板上,形成复杂电路和系统的技
术。
微组装技术可以实现高密度组装,将多个微电子器件组装到有 限的基板面积内,提高了电路和系统的集成度。
由于微组装技术采用可靠的物理、化学或电学方法进行连接和 固定,因此可以保证组装后的电路和系统具有高可靠性。
05
案例分析
BIG DATA EMPOWERS TO CREATE A NEW
ERA
案例一:某公司微组装生产线
总结词
高效、自动化、定制化
主要设备
自动拾取机、微型焊接机、芯片贴装机、烘箱、 显微镜等。
详细描述
该公司的微组装生产线采用了先进的自动化设备 和精细的工艺流程,实现了高效的生产。同时, 公司根据客户需求进行定制化生产,满足客户多 样化的需求。
技术参数
引线键合机的主要技术参数包括 金属线的直径、键合压力、加热 温度和键合速度等,这些参数需 要根据不同的芯片和基板材料进 行调整。
芯片封接机
设备功能
芯片封接机主要用于将芯片、引线和基板等部件密封在一起,以保 护电气连接不受环境影响。
工作原理
芯片封接机采用热压、超声波焊接或环氧树脂密封等技术,将芯片 、引线和基板等部件密封在环氧树脂或其他密封材料中。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

摘要:近年来,封装与微组装技术进入了超高速发展时期,新的封装和组装形式不断涌现,而其标准化工作已经严重滞后,导致概念上的模糊,这必然会对该技术的发展造成影响。

力求将具有电子行业特点的封装与微组装技术的内涵和特点加以诠释,并对其发展提出见解和建议,以促进该技术的发展。

关键字:封装、微组装、发展、BGA、SOP、FC、CSP、MCM、集成电路、系统级封装正文:一、电子产品技术概述第一代电子产品以电子管为核心。

四十年代末世界上诞生了第一只半导体三极管,它以小巧、轻便、省电、寿命长等特点,很快地被各国应用起来,在很大范围内取代了电子管。

五十年代末期,世界上出现了第一块集成电路,它把许多晶体管等电子元件集成在一块硅芯片上,使电子产品向更小型化发展。

集成电路从小规模集成电路迅速发展到大规模集成电路和超大规模集成电路,从而使电子产品向着高效能低消耗、高精度、高稳定、智能化的方向发展。

随着电子元器件向小型化、复合化、轻量化、多功能、高可靠、长寿命的方向变革,从而相继出现了各种类型的片式电子元器件(SMC/SMD),导致了第四代组装技术即表面组装技术(SMT)的出现,在世界上引发了一场电子组装技术的新革命。

在国际上,片式电子元器件应用于电子整机,始于用年代,当时美国IBM公司首先把片式电子元器件用于微机。

目前世界上发达国家已广泛采用表面贴装技术,片式元器件已成为电子元器件的主体,其中片式电容、片式电阻、片式电感以及片式敏感元件的需求量约占片式元件的90%,世界上发达国家电子元器件片式化率己高达80%以上,全世界平均亦在40%,而我国仅为约30%,可以预见,加入WTO后,片式元件产业的市场竞争将更趋激烈。

实现了批量生产全系列片式电容器、片式电阻器、片式电感器,开始摆脱一代代重复引进的被动局面,并逐步走上自主发展的道路。

2001年片式电容器、片式电阻器、片式电感器等片式元件市场低迷,价格普遍下调15%~20%,对国内元件生产企业造成了一定的影响。

二、集成电路与微电子封装技术集成电路(integrated circuit)是一种微型电子器件或部件。

采用一定的工艺,把一个电路中所需的晶体管、二极管、电阻、电容和电感等元件及布线互连一起,制作在一小块或几小块半导体晶片或介质基片上,然后封装在一个管壳内,成为具有所需电路功能的微型结构;其中所有元件在结构上已组成一个整体,使电子元件向着微小型化、低功耗和高可靠性方面迈进了一大步。

它在电路中用字母“IC”表示。

集成电路发明者为杰克·基尔比(基于硅的集成电路)和罗伯特·诺伊思(基于锗的集成电路)。

当今半导体工业大多数应用的是基于硅的集成电路。

集成电路具有体积小,重量轻,引出线和焊接点少,寿命长,可靠性高,性能好等优点,同时成本低,便于大规模生产。

它不仅在工、民用电子设备如收录机、电视机、计算机等方面得到广泛的应用,同时在军事、通讯、遥控等方面也得到广泛的应用。

用集成电路来装配电子设备,其装配密度比晶体管可提高几十倍至几千倍,设备的稳定工作时间也可大大提高。

集成电路按其功能、结构的不同,可以分为模拟集成电路、数字集成电路和数/模混合集成电路三大类。

模拟集成电路又称线性电路,用来产生、放大和处理各种模拟信号(指幅度随时间变化的信号。

例如半导体收音机的音频信号、录放机的磁带信号等),其输入信号和输出信号成比例关系。

而数字集成电路用来产生、放大和处理各种数字信号(指在时间上和幅度上离散取值的信号。

例如3G手机、数码相机、电脑CPU、数字电视的逻辑控制和重放的音频信号和视频信号等)。

现代微电子封装的基本概念,定义,分类及发展历史;各级封装技术的内涵和各种封装体的基本构造,其中包括DIP,QFP,BGA,FCBGA, CSP,TAB等封装形式。

还将通过各种现场生产过程中的实际图片等讲解各级封装的工艺,技术及相关的理论,使同学对整个封装技术有一个较为全面的了解。

在封装材料方面,本课程将阐述金线,塑封树脂,引线框架,有机基板,焊接材料等的性能,要求及制造技术。

电路产业已成为国民经济发展的关键,而集成电路设计、制造和封装测试是集成电路产业发展的三大产业之柱。

这已是各级领导和业界的共识。

微电子封装不但直接影响着集成电路本身的电性能、机械性能、光性能和热性能,影响其可靠性和成本,还在很大程度上决定着电子整机系统的小型化、多功能化、可靠性和成本,微电子封装越来越受到人们的普遍重视,在国际和国内正处于蓬勃发展阶段。

本文试图综述自二十世纪九十年代以来迅速发展的新型微电子封装技术,包括焊球阵列封装(BGA)、芯片尺寸封装(CSP)、圆片级封装(WLP)、三维封装(3D)和系统封装(SIP)等项技术。

介绍它们的发展状况和技术特点。

同时,叙述了微电子三级封装的概念。

并对发展我国新型微电子封装技术提出了一些思索和建议。

本文试图综述自二十世纪九十年代以来迅速发展的新型微电子封装技术,包括焊球阵列封装(BGA)、芯片尺寸封装(CSP)、圆片级封装(WLP)、三维封装(3D)和系统封装(SIP)等项技术。

介绍它们的发展状况和技术特点。

同时,叙述了微电子三级封装的概念。

并对发展我国新型微电子封装技术提出了一些思索和建议。

微电子封装,首先我们要叙述一下三级封装的概念。

一般说来,微电子封装分为三级。

所谓一级封装就是在半导体圆片裂片以后,将一个或多个集成电路芯片用适宜的封装形式封装起来,并使芯片的焊区与封装的外引脚用引线键合(WB)、载带自动键合(TAB)和倒装芯片键合(FCB)连接起来,使之成为有实用功能的电子元器件或组件。

一级封装包括单芯片组件(SCM)和多芯片组件(MCM)两大类。

三级封装就是将二级封装的产品通过选层、互连插座或柔性电路板与母板连结起来,形成三维立体封装,构成完整的整机系统,这一级封装应包括连接器、迭层组装和柔性电路板等相关材料、设计和组装技术。

这一级也称系统级封装。

所谓微电子封装是个整体的概念,包括了从一极封装到三极封装的全部技术内容。

我们应该把现有的认识纳入国际微电子封装的轨道,这样既有利于我国微电子封装界与国外的技术交流,也有利于我国微电子封装自身的发展。

三、集成电路封装知识电子封装是一个富于挑战、引人入胜的领域。

它是集成电路芯片生产完成后不可缺少的一道工序,是器件到系统的桥梁。

封装这一生产环节对微电子产品的质量和竞争力都有极大的影响。

按目前国际上流行的看法认为,在微电子器件的总体成本中,设计占了三分之一,芯片生产占了三分之一,而封装和测试也占了三分之一,真可谓三分天下有其一。

封装研究在全球范围的发展是如此迅猛,而它所面临的挑战和机遇也是自电子产品问世以来所从未遇到过的;封装所涉及的问题之多之广,也是其它许多领域中少见的,它需要从材料到工艺、从无机到聚合物、从大型生产设备到计算力学等等许许多多似乎毫不关连的专家的协同努力,是一门综合性非常强的新型高科技学科。

什么是电子封装 (electronic packaging)? 封装最初的定义是:保护电路芯片免受周围环境的影响(包括物理、化学的影响)。

所以,在最初的微电子封装中,是用金属罐 ( metal can) 作为外壳,用与外界完全隔离的、气密的方法,来保护脆弱的电子元件。

但是,随着集成电路技术的发展,尤其是芯片钝化层技术的不断改进,封装的功能也在慢慢异化。

通常认为,封装主要有四大功能,即功率分配、信号分配、散热及包装保护,它的作用是从集成电路器件到系统之间的连接,包括电学连接和物理连接。

目前,集成电路芯片的I/O线越来越多,它们的电源供应和信号传送都是要通过封装来实现与系统的连接;芯片的速度越来越快,功率也越来越大,使得芯片的散热问题日趋严重;由于芯片钝化层质量的提高,封装用以保护电路功能的作用其重要性正在下降。

金属封装是半导体器件封装的最原始的形式,它将分立器件或集成电路置于一个金属容器中,用镍作封盖并镀上金。

金属圆形外壳采用由可伐合金材料冲制成的金属底座,借助封接玻璃,在氮气保护气氛下将可伐合金引线按照规定的布线方式熔装在金属底座上,经过引线端头的切平和磨光后,再镀镍、金等惰性金属给与保护。

在底座中心进行芯片安装和在引线端头用铝硅丝进行键合。

组装完成后,用10号钢带所冲制成的镀镍封帽进行封装,构成气密的、坚固的封装结构。

金属封装的优点是气密性好,不受外界环境因素的影响。

它的缺点是价格昂贵,外型灵活性小,不能满足半导体器件日益快速发展的需要。

现在,金属封装所占的市场份额已越来越小,几乎已没有商品化的产品。

少量产品用于特殊性能要求的军事或航空航天技术中。

陶瓷封装是继金属封装后发展起来的一种封装形式,它象金属封装一样,也是气密性的,但价格低于金属封装,而且,经过几十年的不断改进,陶瓷封装的性能越来越好,尤其是陶瓷流延技术的发展,使得陶瓷封装在外型、功能方面的灵活性有了较大的发展。

目前,IBM的陶瓷基板技术已经达到100多层布线,可以将无源器件如电阻、电容、电感等都集成在陶瓷基板上,实现高密度封装。

陶瓷封装由于它的卓越性能,在航空航天、军事及许多大型计算机方面都有广泛的应用,占据了约10%左右的封装市场(从器件数量来计)。

陶瓷封装除了有气密性好的优点之外,还可实现多信号、地和电源层结构,并具有对复杂的器件进行一体化封装的能力。

它的散热性也很好。

缺点是烧结装配时尺寸精度差、介电系数高(不适用于高频电路),价格昂贵,一般主要应用于一些高端产品中。

相对而言,塑料封装自七十年代以来发展更为迅猛,已占据了90%(封装数量)以上的封装市场份额,而且,由于塑料封装在材料和工艺方面的进一步改进,这个份额还在不断上升。

塑料封装最大的优点是价格便宜,其性能价格比十分优越。

随着芯片钝化层技术和塑料封装技术的不断进步,尤其是在八十年代以来,半导体技术有了革命性的改进,芯片钝化层质量有了根本的提高,使得塑料封装尽管仍是非气密性的,但其抵抗潮气侵入而引起电子器件失效的能力已大大提高了,因此,一些以前使用金属或陶瓷封装的应用,也已渐渐被塑料封装所替代。

SIP是从封装体的一边引出管脚。

通常,它们是通孔式的,管脚插入印刷电路板的金属孔内。

这种形式的一种变化是锯齿型单列式封装(ZIP),它的管脚仍是从封装体的一边伸出,但排列成锯齿型。

这样,在一个给定的长度范围内,提高了管脚密度。

SIP的吸引人之处在于它们占据最少的电路板空间,但在许多体系中,封闭式的电路板限制了SIP的高度和应用。

四、BGA封装技术阵列封装(BGA)是世界上九十年代初发展起来的一种新型封装。

BGA封装的I/O端子以圆形或柱状焊点按阵列形式分布在封装下面,BGA技术的优点是I/O引脚数虽然增加了,但引脚间距并没有减小反而增加了,从而提高了组装成品率;虽然它的功耗增加,但BGA能用可控塌陷芯片法焊接,从而可以改善它的电热性能;厚度和重量都较以前的封装技术有所减少;寄生参数减小,信号传输延迟小,使用频率大大提高;组装可用共面焊接,可靠性高。

相关文档
最新文档