最常用的统计学概率分布总结含清晰图
钟形分布和幂律分布-概述说明以及解释

钟形分布和幂律分布-概述说明以及解释1.引言1.1 概述钟形分布和幂律分布是在统计学和概率论领域中常见的两种分布形式。
它们在描述人文、社会、生物和物理现象等方面具有重要的应用价值。
钟形分布又被称为正态分布或高斯分布,以钟形曲线状的分布特征而得名。
正态分布是一种对称的连续概率分布,其特点是均值、中位数和众数都相等,并且数据点在均值附近集中分布,呈现出明显的对称性。
正态分布广泛应用于自然科学和社会科学领域,如经济学、心理学、物理学等。
幂律分布是一种长尾分布,也被称为帕累托分布。
与钟形分布不同,幂律分布呈现出长尾的特点,即在分布右侧有大量较小的概率密度。
幂律分布在描述一些重要现象的发生概率时十分有效,如城市人口分布、互联网链接数量和地震强度等。
本文旨在深入探讨钟形分布和幂律分布的定义、特征及其在实际应用中的例子和实际意义。
我们将分别介绍这两种分布的基本概念和统计性质,并通过实例阐述它们的应用领域,包括经济学、社会学、生物学和物理学等。
最后,我们会总结这两种分布的特点,并对它们在未来的应用前景进行展望。
通过深入了解钟形分布和幂律分布,我们将能够更好地理解和描述现实世界中的复杂现象,并为各个领域的研究和决策提供有力的工具和方法。
1.2文章结构文章结构部分的内容可以包括以下方面的描述:文章的结构是为了有条理地讲述和探讨钟形分布和幂律分布的相关内容而设计的。
通过以下章节的安排,我们将逐步介绍和分析这两种分布的定义、特征、例子和应用,并最终总结它们的特点以及对其比较和应用前景的展望。
在第一章引言部分,我们将提供对整篇文章的概述,介绍整篇文章的结构和目的。
我们将简要介绍钟形分布和幂律分布的研究背景以及为什么它们具有重要性。
在第二章钟形分布部分,我们将给出钟形分布的定义和特征的详细解释。
我们会通过一些具体的例子来说明钟形分布的应用领域和重要性。
例如,钟形分布在统计学中常被用于描述人口分布、测量误差和自然现象的变化等。
医学统计学 常用概率分布-正态分布

N (123.02,4.792)
(2)身高在120~128者占该地8岁男孩总数的百分比;
解析:
58.65%
58.65%
120cm 128cm N (123.02,4.792)
-0.63 1.46 N (0,1)
(3)该地80%男孩的身高集中在哪个范围?
解析:
80%
10%
10%
10% Z1
80%
10% Z2
任意正态分布曲线 X~N(μ,σ2)
标准正态分布曲线 X~N(0,1)
采用定积分的办法,对函数式 (1) 或 (2) 定积分, 算得从 -∞ 到 x累计面积,从而推算出该区间事件发 生的概率值。 .
j(Z )
1 2
Z
e
Z
2
/ 2
dZ
图 6 正态分布(左)及标准正态曲线下(右)的累计面积
1.2 正态概率密度曲线下的面积 1.3 正态分布的应用
1.4 正态分布的判断
一、正态分布的概念
正态分布(normal distribution)
德莫佛最早发现了二项概率
的一个近似公式,这一公式被 认为是正态分布的首次露面。
德莫佛
正态分布在十九世纪前叶由
高斯加以推广,所以通常称为 高斯分布(Gauss distribution)。
单侧临界值:标准正态分布单侧尾部面积等于α 时所对应 的正侧变量值,记作Zα 。
若按左单侧算,则是 97.5% 参考值范围
按左单侧算,是 95% 参考值范围
举例2: 某地调查120名健康成年男性的第一秒肺通 气量得均数 X =4.2(L), 标准差S =0.7(L),试据此估 计其第一秒肺通气量的95%参考值范围。 解析: 分布近似正态 1. 2. 仅过低为异常 3. 求下界值
统计学课件PPT课件

用直条表示频数,用横轴表示 数据范围,纵轴表示频数。
箱线图
表示一组数据的中位数、四分 位数和异常值。
散点图
表示两个变量之间的关系。
折线图
表示时间序列数据随时间的变 化趋势。
04
概率与概方法
描述随机事件发生的可能性程度,通 常用P表示。
通过实验或经验数据计算随机事件的 概率。
表示数量、大小、距离等可以量化的 数据,如年龄、收入。
统计数据的收集方法
直接观察法
通过实地考察、观测等方式收集数据, 如市场调研人员现场观察消费者行为。
实验法
通过实验设计和实验操作获取数据, 如产品测试实验。
调查法
通过问卷、访谈等方式收集数据,如 民意调查。
行政记录法
通过政府部门或企业提供的记录获取 数据,如企业财务报表。
01
单总体参数假设检 验的概念
根据单一样本数据对总体参数进 行假设检验。
02
单总体参数假设检 验的方法
如t检验、Z检验、卡方检验等。
03
单总体参数假设检 验的应用场景
如检验单个样本的平均数、比例 等是否与已知的总体参数存在显 著差异。
两总体参数的假设检验
两总体参数假设检验的概念
根据两个样本数据对两个总体的参数进行假设检验。
04
常见概率分布及其应用
二项分布
适用于独立重复试验中成功次数的概率分布, 如抛硬币、抽奖等。
正态分布
适用于许多自然现象的概率分布,如人的身 高、考试分数等。
泊松分布
适用于单位时间内随机事件的次数概率分布, 如放射性衰变、网站访问量等。
指数分布
适用于描述时间间隔或寿命的概率分布,如 电子产品寿命、等待时间等。
学习简单的统计学方法频率和概率分布

学习简单的统计学方法频率和概率分布学习简单的统计学方法: 频率和概率分布统计学是一门研究数据收集、分析和解释的学科,它可以帮助我们了解和应用各种研究领域中的数据。
在统计学中,频率和概率分布是两个重要的概念和方法。
本文将介绍频率和概率分布的基本概念、计算方法和应用。
一、频率分布频率分布是指将一组数据按照各个数值的出现次数进行分类和总结的方法。
通过频率分布,我们可以更清楚地了解数据的分布情况,并从中得出一些有关数据的结论。
下面是一个简单的例子来说明频率分布的概念。
假设我们有一组数据,表示某个班级学生的考试成绩。
这些成绩的数据如下:75, 86, 92, 78, 66, 86, 75, 92, 80, 82。
为了得出这组数据的频率分布,我们需要进行以下步骤:1. 将数据从小到大排序:66, 75, 75, 78, 80, 82, 86, 86, 92, 922. 列出每个数值的出现次数:66(1次), 75(2次), 78(1次), 80(1次), 82(1次), 86(2次), 92(2次)3. 将数据和出现次数放在一起,形成频率分布表:分数 | 频数------------66 | 175 | 278 | 180 | 182 | 186 | 292 | 2通过这个频率分布表,我们可以看到各个分数的出现次数,从而对学生的考试成绩有更深入的了解。
频率分布不仅可以应用于离散数据,也可以应用于连续数据。
对于连续数据,我们可以将其分成一定数量的区间,然后计算每个区间的频率。
比如,如果我们有一组表示某地降雨量的数据,我们可以将其分为0-10毫米、10-20毫米、20-30毫米等区间,并计算每个区间的频率。
二、概率分布概率分布是指将一个随机变量的每个可能取值及其对应的概率进行总结和归类的方法。
概率分布可以帮助我们研究和预测随机变量的分布规律。
下面是两种常见的概率分布。
1. 离散型概率分布离散型概率分布是指随机变量取有限个或无限个离散数值的概率分布。
常用概率分布-医学统计学

标准正态分布的µ=0,σ=1,则 µ±σ相当于区间(-1,1), µ±1.96σ相当于区间(-1.96,1.96), µ±2.58σ的区间相当于区间(-2.58,2.58)。
区间(-1,1)的面积:1-2Φ(-1)=1-2×0.1587=0.6826=68.26% 区间(-1.96,1.96)的面积:1-2Φ(-1.96)=1-2×0.0250=0.9500=95% 区间(-2.58,2.58)的面积:1-2Φ(-2.58)=1-2×0.0049=0.9902=99.02%
在单位空间中某种昆虫或野生动物数的分布,粉尘在
观察容积内的分布,放射性物质在单位时间内放射出
质点数的分布等。Poisson分布一般记作
。
Poisson分布作为二项分布的一种极限情况
Poisson分布可以看作是发生的概率π 很小,而观
察例数很大时的二项分布。除要符合二项分布的三个
基本条件外,Poisson分布还要求π或1-π接近于0和1。 有些情况π和n都难以确定,只能以观察单位(时间、
例 3 某年某市调查了 200例正常成人血铅含量 (μg/100g)如下,试估计该市成人血铅含量的95%医 学参考值范围。
分析:血铅的分布为偏态分布,且血铅含量只以 过高为异常,要用百分位数法制定单侧上限。
二、质量控制 为了控制实验中的检测误差,常用 ±2S作上
下但的警影随响机戒某因线一素,指很以标多, ±3S作为上下控制线。这里的2S和 3如S可果该视指为标1的.96随S 和2.58S的约数。其依据是正常情况下 检机误测波差动,误属则差于往是随往服机符从正态分布的。
概率 密度
正态分布的密度函数,即正态曲线的方程为 -∞<X<+∞
均数为0,标准差为1的正态分布,这种正态分布 称为标准正态分布。
(卫生统计学)第四章 常用概率分布

第二节 Poisson分布的概念与特征
一、Poisson分布概念与特征
若某一随机变量X的取值为0,1,2,…,且X=k 的概率为:
P(X k) k e
k!
记作 X~P( λ )
其中 自然数e≈2.7182; λ 是大于0的常数,称X服从以λ 为参数的Poisson分布。
Poisson分布主要用于描述在单位时间(空间)内稀有事件的发生数。例如:放 射性物质在单位时间内的放射次数、单位容积内充分摇匀的水中的细菌数、染色 体异变数等。
350 300 250 200
人数
150 100
50 0
109 111 113 115 117 119 121 123 125 127 129 131 133 135 137 139 141 143
不同参数µ和σ下的正态分布曲线
正态分布函数
1.Gauss函数 (Gauss, 1777~1855 德国人)
某地正常成人心率(次/分)的频率分布
频数 1 5 12 13 26 31
组段 75~ 80~ 85~ 90~ 95~ 100~105
频数 24 15 9 7 5 2
心率频数分布
35
30
25
20
人数
15
10
5
0
45
50
55
60
65
70
75
80
85
90
95 100~105
正态曲线
例4-10 某地1986年120名8岁男孩身高频数图
百分位数法
例4-13
282名正常人尿汞值(g/L)测量结果
尿汞值 0~ 8.0~
16.0~ 24.0~ 32.0~ 40~ 48.0~ 56.0~ 64.0~72.0
13种常见的统计分布ppt课件

属性
✓ 连续型分布 ✓ 用于描述以方向、位置、周期性(环形)时间、角度等为测度
单位的数字特征
应用
✓ 医学领域内一些现象是以方向或时间度量,具有周期性特点, 如某疾病在一年内各月份的发生数、胎儿在一昼夜间各时点 分娩的频度
✓ 有些数据本身就是以角度来表示:如脑电阴图的上升角,气 象环境的风向玫瑰图
✓ 这些数据不能用通常的均数、标准差描述
1 二项分布 Binomial Distribution
应用 条件
✓ 各观察单位只能具有相互对立的一种结果,如阳性或阴 性,生存或死亡等,属于两分类资料
✓ 已知发生某一结果(阳性)的概率为π,其对立结果的概 率为1-π,实际工作中要求π是从大量观察中获得比较稳 定的数值。
✓ n次试验在相同条件下进行,且各个观察单位的观察结果 相互独立,即每个观察单位的观察结果不会影响到其他观 察单位的结果。如要求疾病无传染性、无家族性等。
9 F分布 F Distribution
属性
✓ 连续型分布 ✓ 用于方差Γ分布 Γ Distribution or Gamma Distribution
属性
✓ 连续型分布 ✓ 正偏态分布,常用于正偏态分布的拟合
11 圆形分布 Circular Distribution
5 均匀分布 Uniform Distribution
属性
✓ 连续型分布 ✓ 数值计算的误差分析 ✓ 任意分布的随机数
理解
✓ 均匀分布在自然情况下极为罕见,而人工栽培的有一定株 行距的植物群落即是均匀分布
✓ 均匀,表示可能性相等的含义
6 正态分布 Normal Distribution
属性
✓ 连续型分布 ✓ 自然界、人类社会、心理和教育中大量现象均按正态形式分布,
卫生统计学七版 第四章常用概率分布

该地健康女性血红蛋白的95%医学参考值范围在 137.39~97.41之间。
2、质量控制图 随机误差服从正态分布,而系统误差 则不服从正态分布。
例4 10
如果某地居民脑血管疾 病的患病率为 150/ 10万,
那么调查该地 1000 名居民中至多有 2人患脑血管疾病的概率 有 多大?至少有 3人患脑血管疾病的概率 有多大?
n 1000 0.0015 1.5
调查该地 1000 名居民中至多有 2人患脑血管疾病的概率 为0.809, 至少有3人患脑血管疾病的概率 为0.191 。
那么调查该地 1000 名居民中有2人患脑血管疾病的概率 有多大?
n 1000 0.0015 1.5
2 1 . 5 P( X 2) e 1.5 0.251 2!
调查该地 1000 名居民中有2人患脑血管疾病的概率 为25.1%。
2、累积概率计算
稀有事件发生次数至多为k次的概率为:
2、累积概率计算 二项分布出现阳性次数最多为k次的概率:
二项分布出现阳性次数至少为k次的概率:
二项分布出现阳性次数至少为k次至至多为K次的概率(k<K):
n! P(k X K ) P( X ) X (1 ) n X k X k X !( n X )!
K K
(1) 百分位数法 适用范围:偏态分布的资料。
双侧界值:P 和P 2.5 97.5 单侧上界:P 95 单侧下界:P 5
(2) 正态分布法 适用范围:正态或近似正态分布的资料。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
1
µ
e
dt
σ√2π
3. Chi-squared ( )分布 如果 Z1, Z2 ..., Zn 是相互独立的随机变量,且都服从于 N(0,1)分布,那么
服从自由度(degree of freedom, df)为 n 的χ 分布,记为X~χ n . (1)PDF of χ
2
(2)CDF of χ
4. t-分布(student's t-distribution) 设 X ~ N(0,1)和Y ~ χ2 (n) ,且 X 和 Y 相互独立,则称随机变量
T= X Y /n
服从 df. 为 n 的 t-分布,记为 T ~ t(n)。 (1)PDF of t-distribution
(2)CDF of t-distribution
3
5. F-分布 X 和 Y 是相互独立的χ 分布随机变量,d.f 分别为 m 和 n,则称随机变量
F= X/m Y/n
服从 df.为 (m, n)的 F-分布,且通常写为 F~F(m,n)。 (1)PDF of F distribution
PX x
(2)概率密度函数(Probability Density Function (PDF)) The probability density function (PDF) f(x) of a continuous distribution is defined as the derivative of the (cumulative) distribution function F(x),
d d
so we rmal distribution)
(1)概率密度函数(PDF)
以上结果可表示为 ~
|µ, σ ,.
1
µ
e
σ√2π
标准正态分布(standard normal distribution)表示为 N(0,1) xµ ~N 0,1 σ
1
(2) 累积分布函数 (CDF)
复习: 统计推断常用概率分布
1.随机变量分布函数 (1)累积分布函数(Cumulative Distribution Function (CDF)) If X is any random variable, then its CDF is defined for any real number x by