直流电路设计实验报告
直流电路实验报告

直流电路实验报告直流电路实验报告引言:直流电路是电子学中最基础的一个概念,它涉及到电流、电压、电阻等物理量的研究和应用。
通过实验,我们可以深入了解直流电路的特性和性能,以及探索电子元件的工作原理和应用场景。
本实验报告将详细介绍我们进行的直流电路实验,包括实验目的、实验装置、实验步骤、实验结果和分析等内容。
实验目的:本次实验的主要目的是通过搭建直流电路,测量电流、电压和电阻的数值,并探究其之间的关系。
同时,我们还将学习使用万用表进行测量和使用电阻箱调节电阻值的方法。
实验装置:本次实验所用的装置包括直流电源、电阻箱、电流表、电压表和万用表。
其中,直流电源提供了稳定的电压源,电阻箱可以调节电阻的大小,电流表和电压表用于测量电流和电压,而万用表则可以测量电流、电压和电阻。
实验步骤:1. 首先,我们将直流电源的正极和负极分别与电流表和电阻箱相连,以形成一个简单的电路。
然后,将电流表的两个接线头分别与电阻箱的两个接线头相连。
2. 接下来,我们将电压表的两个接线头分别与电阻箱的两个接线头相连,以测量电压。
3. 然后,我们打开直流电源,调节电阻箱的电阻值,并记录下电流表和电压表的读数。
4. 重复以上步骤,改变电阻箱的电阻值,记录不同情况下的电流和电压数值。
实验结果与分析:通过实验,我们得到了一系列的电流和电压数值。
在分析这些数据时,我们可以发现以下规律:1. 当电阻值增大时,电流值会减小,而电压值保持不变。
这是因为根据欧姆定律,电流与电压成正比,与电阻成反比。
当电阻增加时,电流减小。
2. 当电阻值减小时,电流值会增大,而电压值保持不变。
这也符合欧姆定律的规律。
3. 在实验中,我们还发现了电流表和电压表的读数会受到误差的影响。
这可能是由于电阻箱的内阻、电流表和电压表的精度等因素导致的。
结论:通过本次实验,我们深入了解了直流电路的特性和性能,并学习了使用万用表进行测量和使用电阻箱调节电阻值的方法。
我们通过实验数据的分析,验证了欧姆定律的准确性,并了解到了电流、电压和电阻之间的关系。
电工实验直流电路实验报告

电工实验直流电路实验报告篇一:电工与电子技术实验报告XX实验一电位、电压的测量及基尔霍夫定律的验证一、实验目的1、用实验证明电路中电位的相对性、电压的绝对性。
2、验证基尔霍夫定律的正确性,加深对基尔霍夫定律的理解。
3、掌握直流电工仪表的使用方法,学会使用电流插头、插座测量支路电流的方法。
二、实验线路实验线路如图1-1所示。
DAE12BC图1-1三、实验步骤将两路直流稳压电源接入电路,令E1=12V,E2=6V(以直流数字电压表读数为准)。
1、电压、电位的测量。
1)以图中的A点作为电位的参考点,分别测量B、C、D各点的电位值U及相邻两点之间的电压值UAB、UCD、UAC、UBD,数据记入表1-1中。
2)以C点作为电位的参考点,重复实验内容1)的步骤。
2、基尔霍夫定律的验证。
1)实验前先任意设定三条支路的电流参考方向,如图中的I1,I2,I3所示,熟悉电流插头的结构,注意直流毫安表读出电流值的正、负情况。
2)用直流毫安表分别测出三条支路的电流值并记入表1-2中,验证?I=0。
3)用直流电压表分别测量两路电源及电阻元件上的电压值并记入表1-2中,验证?U=0。
四、实验数据表1-1表1-2五、思考题 1、用万用表的直流电压档测量电位时,用负表棒(黑色)接参考电位点,用正表棒(红色)接被测各点,若指针正偏或显示正值,则表明该点电位参考点电位;若指针反向偏转,此时应调换万用表的表棒,表明该点电位参考点电位。
A、高于B、低于 2、若以F点作为参考电位点,R1电阻上的电压 ()A、增大B、减小C、不变六、其他实验线路及数据表格图1-2表1-3 电压、电位的测量实验二叠加原理和戴维南定理一、实验目的1、牢固掌握叠加原理的基本概念,进一步验证叠加原理的正确性。
2、验证戴维南定理。
3、掌握测量等效电动势与等效内阻的方法。
二(转载自:小草范文网:电工实验直流电路实验报告)、实验线路1、叠加原理实验线路如下图所示DE1IAIB2C图2-12、戴维南定理实验线路如下图所示ALB图2-2三、实验步骤1、叠加原理实验实验前,先将两路直流稳压电源接入电路,令E1=12V,E2=6V。
直流电路实验报告

直流电路实验报告直流电路实验报告一、实验目的:1. 了解直流电路的基本组成和工作原理;2. 掌握直流电路中的电流、电压的测量方法;3. 学习使用电路元件进行电路搭建;4. 通过实验验证欧姆定律和基尔霍夫定律。
二、实验仪器和材料:实验仪器:直流电源、万用表、电阻箱、导线等。
实验材料:电阻、电流表、电压表等。
三、实验原理:1. 欧姆定律:欧姆定律指出,在一个导体上的电流I与其两端的电压V成正比,即I = V/R,其中R为导体的电阻。
2. 基尔霍夫定律:基尔霍夫定律包括两条定律:(1)电流定律:在任意一个电路节点中,流入该节点的电流等于流出该节点的电流之和。
(2)电压定律:沿着闭合电路的任意一条闭合回路,电压源电压之和等于电阻器电压之和。
四、实验步骤:1. 连接电路:使用导线连接直流电源的正、负极,接入一个电流表。
再将电流表的另一端分别接入不同大小的电阻。
2. 测量电压:使用导线连接直流电源的正、负极,接入一个电压表。
分别在不同的位置测量电路中的电压。
3. 设置电阻值:通过拧动电阻箱上的旋钮,设置不同大小的电阻值。
4. 记录实验数据:分别记录电流表的示数和电压表的示数,以便后续分析计算。
五、实验结果和分析:根据实验测量数据计算得到的电阻值与设置的电阻箱值之间存在一定的误差。
这可能是由于电阻箱本身的精度问题,或者是测量仪器的误差所致。
不过整体来说,实验结果与理论值比较接近,验证了欧姆定律和基尔霍夫定律。
六、实验心得:通过本次实验,我更加深入地了解了直流电路的基本原理和测量方法。
实验过程中,我学会了正确连接电路、测量电流电压,并且熟悉了使用电阻箱调节电阻值。
在实验中,我还注意到了测量仪器的精度对于实验结果的影响,并且学会了如何减小误差。
这次实验对我来说是一次很有意义的学习经历,增强了我的实验操作能力和实验数据处理能力。
直流稳压电路实验报告

直流稳压电路实验报告实验名称:直流稳压电路实验实验目的:通过实验掌握直流稳压电路的基本原理、工作方式和特点,查看实验结果是否符合理论分析结果,并熟练掌握实验测量仪器的使用方法。
实验器材:1. 直流电源2. 变阻器3. 整流电路(二极管)4. 滤波电路(电容器)实验原理:当直流电源输出电压受到负载影响时,它的稳定性很差。
由于它只有保持恒定的电压,所以稳压电路就应运而生。
稳压电路是一种电路,它可以提供一个恒定的输出电压,不同于变压器,稳压电路可以使输出电压保持恒定,即使输入电压有所变化也不受影响。
电路图:R C_____________ ______________| | ||V_in| ———> | 电压降 | ———> | |———>V_out|___________| |_______|D实验步骤:1. 搭建直流稳压电路,如上图所示,并接上电源线。
2. 将电阻电位器连接到输入电源的正极和负极之间,调整电位器上的滑动电阻,使输入电源电压调整到所需的电压范围。
3. 用万用表测量输出电压。
将万用表设置为电压检测模式,一端接在电路的输出端,另一端接在输出电源的负极。
4. 分别对调整输入电压和负载电阻,多次测量输出电压,记录测量值并进行比较分析。
实验数据:输入电压:12V输出电压:4.6V~5.2V负载电阻:10Ω实验结论:1. 稳压电路可以使输入电压波动时输出电压不变。
2. 当输入电压稳定时,输出电压与负载电阻大小成反比例关系。
3. 通过改变滤波电容量的大小,可以改变输出的输出电压,电容器的容量越大,输出电压越平稳。
4. 实验结果与理论分析结果基本符合。
实验心得:通过实验我掌握了直流稳压电路的基本原理、工作方式和特点,了解了直流稳压电路的组成和构成,更加深入地了解了稳压电路的实际应用。
在实验中,我不仅学会了如何使用万用表和调节电位器,而且还学会了如何检验电路的工作情况,提高了我的实践能力。
直流电路实验报告答案

直流电路实验报告答案直流电路实验报告答案引言:直流电路实验是电子工程专业学生必修的一门实验课程,通过实际操作,学生能够深入了解直流电路的基本原理和特性。
本次实验旨在通过测量直流电路中的电流、电压和电阻,探究欧姆定律和基尔霍夫定律的应用,同时培养学生的实验操作能力和数据分析能力。
实验目的:1. 了解直流电路的基本概念和特性。
2. 掌握使用万用表测量电流、电压和电阻的方法。
3. 验证欧姆定律和基尔霍夫定律在直流电路中的应用。
实验仪器和材料:1. 直流电源2. 电阻箱3. 万用表4. 连线电缆实验步骤:1. 搭建简单的串联电路,将电源、电阻箱和万用表连接起来。
2. 调节电源电压为合适的数值,例如5V。
3. 用万用表分别测量电源的电压、电阻箱的电阻值和电流。
4. 记录测量数据,并计算电路中的电流强度。
实验结果分析:根据实验数据,可以计算得到电路中的电流强度。
根据欧姆定律,电流强度与电压成正比,与电阻成反比。
因此,可以通过改变电阻箱的阻值,观察电流强度的变化。
实验中,我们可以发现当电阻增大时,电流强度减小;当电阻减小时,电流强度增大。
这与欧姆定律的预期结果相符。
此外,根据基尔霍夫定律,电路中的电流总和等于各个支路电流之和。
在本实验中,我们可以通过测量电流来验证基尔霍夫定律。
将电流表依次连接在电源和电阻箱两端,测量电流值。
然后将电流表连接在电源和电阻箱之间,再次测量电流值。
结果应该是两次测量值之和等于第三次测量值。
如果结果相符,则说明基尔霍夫定律成立。
实验总结:通过本次实验,我们深入了解了直流电路的基本原理和特性,掌握了使用万用表测量电流、电压和电阻的方法。
同时,通过验证欧姆定律和基尔霍夫定律在直流电路中的应用,加深了对这两个定律的理解。
在实验过程中,我们还发现了一些问题。
例如,当电流表的内阻较大时,会对电路中的电流产生一定影响。
此外,电源的电压稳定性也会对实验结果产生一定影响。
因此,在进行实验时,需要注意选择合适的仪器和材料,并进行准确的数据测量。
电工直流电路实验报告

电工直流电路实验报告实验目的:通过搭建直流电路,探究电阻、电流、电压和电功率的关系,加深对直流电路的理解。
实验器材和材料:1. 直流电源2. 电阻3. 万用表4. 连接导线实验步骤:1. 搭建直流电路,电源正极连接电阻的一端,负极连接电阻的另一端。
2. 用万用表分别测量电阻两端电压和电流,记录数据。
3. 分别更换不同阻值的电阻,按照同样的方法测量电压和电流,记录数据。
4. 分析实验结果,绘制电流、电压、电功率随电阻变化的曲线图。
实验结果及分析:在搭建的实验电路中,随着电阻阻值的增加,电阻两端的电压也随之增加,而电路中的电流却随之减小。
这说明在直流电路中,电流和电压是成反比例关系的,即如果电压增大,则电流减小;如果电压减小,则电流增大。
同时,根据计算公式P=UI,可以得出电功率也随着电阻的变化而变化。
当电阻阻值越大时,通过电路的电流越小,因此在实验结果图中,电功率随电阻值的增大而逐渐减小。
实验结论:通过本次实验,我们得出了以下结论:1. 直流电路中,电流和电压呈反比例关系。
2. 直流电路中,电阻越大,电路中的电流越小,电功率也随之减小。
实验反思:在本次实验过程中,我们遇到的主要问题是电源电压不稳定,导致实验结果有一定误差。
在今后的实验中,我们需要更加注意实验器材的选用和使用,保证实验结果的准确性和可靠性。
总结:本次实验通过实际的搭建直流电路以及实验数据的记录和分析,深入探究了电阻、电流、电压和电功率之间的关系。
通过本次实验,我们对直流电路的运作原理有了更加深入的了解。
直流充放电实验报告(3篇)

第1篇一、实验目的1. 了解直流充放电的基本原理和过程。
2. 掌握直流电源、电压表、电流表的使用方法及其特性。
3. 熟悉直流电路的测量和分析方法。
4. 通过实验验证直流电路中电压、电流、电阻之间的关系。
二、实验原理直流充放电实验是研究直流电路中电能储存、转换和释放过程的基本实验。
在实验中,通过向蓄电池组充电和放电,观察和分析电路中的电压、电流、电阻等参数的变化规律。
三、实验仪器与器材1. 直流稳压电源2. 电压表3. 电流表4. 电阻5. 电容器6. 蓄电池组7. 导线8. 连接器9. 实验台四、实验步骤1. 连接电路按照实验电路图连接好直流电源、电压表、电流表、电阻、电容器和蓄电池组等器材。
2. 充电过程将蓄电池组接入电路,观察并记录充电过程中电压、电流、电阻等参数的变化。
3. 放电过程将蓄电池组从电路中断开,观察并记录放电过程中电压、电流、电阻等参数的变化。
4. 数据分析根据实验数据,分析充电和放电过程中电压、电流、电阻等参数的变化规律,验证直流电路中电压、电流、电阻之间的关系。
五、实验结果与分析1. 充电过程在充电过程中,电压逐渐升高,电流逐渐减小,电阻逐渐增大。
这是因为在充电过程中,电能被储存到蓄电池组中,电压升高,电流减小,电阻增大。
2. 放电过程在放电过程中,电压逐渐降低,电流逐渐增大,电阻逐渐减小。
这是因为在放电过程中,蓄电池组释放储存的电能,电压降低,电流增大,电阻减小。
3. 数据分析根据实验数据,可以得出以下结论:(1)在充电过程中,电压与电流成反比,电阻与电流成正比。
(2)在放电过程中,电压与电流成反比,电阻与电流成反比。
(3)直流电路中,电压、电流、电阻之间的关系符合欧姆定律。
六、实验总结通过本次实验,我们了解了直流充放电的基本原理和过程,掌握了直流电源、电压表、电流表的使用方法及其特性,熟悉了直流电路的测量和分析方法。
同时,通过实验验证了直流电路中电压、电流、电阻之间的关系,加深了对直流电路的理解。
电路实验报告-直流基本实验

深圳大学实验报告实验课程名称:电路与电子学实验项目名称:直流基本实验学院:计算机与软件专业:报告人:文成学号:2011150258 班级: 5 同组人:陈圳杰指导教师:李炎然实验时间:2012-3-27实验报告提交时间:2012-3-28教务处制实验报告包含内容一、实验目的与要求1.熟悉直流电源、直流仪表的使用方法。
2.验证基尔霍夫定律,加深对基尔霍夫定律的理解;3.学会测量电路中各点电位和电压的方法,理解电位的相对性和电压的绝对性4.分析电压表、电流表内阻对测量电路的影响。
二、方法、步骤利用电压表和电流表测量电路中各点之间的电流及电压。
具体步骤见三、实验过程及内容。
三、实验过程及内容实验设备:1.直流双路恒压电源2.直流稳流电源3.直流电压表4.直流电流表5. EEL-51元件箱、EEL-53电工原理(一)、电流表插头线实验注意事项:稳压电源输出端不允许短路。
注意正确选择仪表的量程。
断电接线拆线。
任务一.KCL 定律的验证步1-1.按图接线,S1开关往上拨,S2往下拨,S3开关往上拨,然后按表测量各支路电流,验证∑I=0.任务二.KVL 定律的验证,电位和电压的测量步2-1.按图接线,图中的电源1s U 用恒压源I 路(0~+30V)可调电源输出端,选择10V 档,并将输出电压调到+6V,2s U 用II 路(0~+30V)可调电源输出端,选择20V 档,并将输出电压调到+12V,测量各元件电压填入表中,验证∑U=0.步2-2.测量fc U ,填入表中,再选两条不同路径计算fc U ,与实测fc U 比较。
步2-3.分别以A 点和D 点作为参考点,测量各点电位填入表;计算f 、c 两点间电压并与步2-2结果比较。
四、 数据处理分析分析:在误差允许的范围内,电路中,任何时刻,任一节点处,电流的代数和为0。
分析:在误差允许的范围内,电路中,任何时刻,沿任一回路所有支路电压的代数和为0。
在电路中,可选某一点作为参考节点,而其余任意一点相对于该参考点的电压就称该点的电位。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
3.6直流电路设计性实验
3.6.4实验数据的记录、电路分析及数据处理
1将微安表改装成为多量程电流表。
改装电路为图3.6.1
①用惠斯通电桥测i R并求i R
∆。
设计电路如图3.6.2
lim 0.2%(500)0.2%(2130500) 5.26
E CR C
=+=⨯+=
6.55
Ri
∆===Ω
()
21307
Ri
∴=±Ω
②用数字电压表及电阻箱测量微安表满偏时实际电流值Im。
见图3.6.3
当微安表满偏时,数字电压表和电阻箱上的示值如下:
③ 根据Ri 、M I 估算出12R R 、的值
由()4
221/10
M M R R I R I ++= ()312/10i M M R I R R I ++=
可得:()
33
1/10102130100.67/10(10100.67)23.8i M M R R I I =-=⨯-=Ω
219214.6R R ==Ω
④ 对改装好的量程进行初较。
见图3.6.4(a )(b )
每个量程均在20、40、60、80、100等5格刻度处进行校准,根据数据判断改装后的双量程是否符合1.5级标准。
(R 为精密电阻,视校正量程而定
测量数据如下表:
从上表可以看出改装后的双量程表符合1.5级标准
2用多种方法测微安表内阻 ① 比较法。
见图3.6.5
双置开关分别放于C1、C2上即可分别测出电阻箱和微安表两端电压。
比较如下
注:i
i R R R i i R
U R U U R R R U ⨯=⇒=
不确定度推导:ln ln ln ln i i R R R U U R =-+
ln ln 11
,i i i i R R R R i
i
R R U U U U R R ∂∂⇒
==-∂∂∆⇒
=
i i 0.050.03mv 0.03802mv 0.050.03mv 0.047195mv
R R R R U U U U ∆∆ =%+=且=%+=
i 2144.0 5.87R ∴∆Ω=
()i 21446R ∴±Ω=
② 伏安法。
见图3.6.6
直接用数字电压表测微安表两端电压。
测量结果如下
不确定度推导
ln ln ln U R R R U I I R
∆=⇒=-⇒=0.05%0.030.05%64.070.030.0620.1U U mV
I A
μ∆=+=⨯+=∆=
2135.077.41R ∴∆=Ω
()21357R ∴=±Ω
比较法与伏安法的比较分析:
伏安法比比较法的不确定度大一些,说明比较法比伏安法更精确一些。
伏安法中由于电表本身电阻的影响以及人读数的不准都使测量误差加大而比较法中电流的影响在U/R 相除中可抵消,且测量的数据由数字电压表和电阻箱直接给出所以人为误差较小。
③ 用自组变形桥测量。
设计电路如图3.6.7
测量时调节R 使K 闭合时微安表的示数不变,这时
12i R r r R = ——(1) 12
r
r 即为比率臂; 然后调换微安表和电阻箱,同样调R 使K 闭合时微安表示数不变,这时
'
12i
r R r R = ——(2) 综合(1)(2)
,可得i R 测量结果如下:R=2173Ω 230/R ∆=Ω格
R ’=2120Ω 200/R ∆=Ω格
i 2146.34R ∴Ω
不确定度推导:(
)1ln ln ln '2i i i R R R R R ∆=+⇒=
12i lim 0.2/r '21200.9877
r 2146.34
0.20.987723045.440.2%(500)0.245.75R s C R d
R C R s E CR C R ∆=∆=∆∆=∴∆=⨯⨯Ω
=+=⨯⨯Ω∴∆==Ω
====%(0.98772173+5000.9877)=5.28
同理可得R ’的不确定度'R ∆=39.85Ω
2146.330.28i R R ∆==Ω
()215310i R ∴=±⨯Ω⎡⎤⎣⎦
3.6.5总结与思考
总结:
1开始实验时,闭合开关后用电器均无任何反应,经检查后确定连线无错误,于是我想到了用万用表排查的方法,检测出一根导线断路,经更换后电路工作正常。
这个经历让我对电路突然产生了兴趣,实验室可以考虑开设电路排查方面的实验。
2做自组变形桥实验的时候,我设计了两种电路,一种是数据处理中提到的,令一种电路
图如下
但是,测量数据时,无论滑动变阻器放在什么位置,闭合开关K 微安表都不动。
我用数
字电压表测量两桥中点的电压差发现是有数值的,调节滑动变阻器可以使电压表示数为零或
接近零,此时测出了R 和R ’的值分别为2130.1和2138.9,计算得i R =2134.4Ω,但因为无法测量灵敏域所以无法计算不确定度。
可能这种设计本身存在缺陷,也可能是我操作过程有误,总之未达到理想结果。
思考题:
1用惠斯通电桥测量微安表内阻时,为了时微安表不超载需要降低电源电压,可以用分压电路也可用限流电路,如果用限流电路,请估算需要多大的限流电阻?
答:电源电压为1.5V ,电桥平衡时干路电流最大不能超过200微安,所以总电阻应大于7500Ω,估算电桥总电阻为1500Ω,所以限流电阻不能小于6000Ω 2用电桥测A μ表内阻与测一般电阻更需要注意哪些问题?
答:应注意流过微安表的电流不能超过电流表的量程,防止打表,还有注意电流流向,确保电流从电流表的正极流入。
3测微安表内阻时,微安表的示值大小对测量的准确度有无影响?
答:无影响。
因为检流计的偏转只与桥臂中点的电位差有关,只要电桥平衡则检流计不偏转,与微安表的示数无关。
4测微安表满偏电流时为什么不采用将数字电压表并接在微安表两端的方法测量呢?
答:因为微安表内阻的测量的精度不能达到要求,所以要用精确电阻测量。