二次函数与几何综合压轴题题型归纳 学生版
(完整版)二次函数与几何综合压轴题题型归纳,推荐文档

建议收藏下载本文,以便随时学习!
l a l
是直线同旁的两个定点,线段,在直线上确定两点
F AEFB
的左侧),使得四边形的周长最小。
8、在平面直角坐标系中求面积的方法:直接用公式、割补法
(1)求该抛物线的解析式与△
求L关于X的函数关系式?关写出X的取值范围?
当E点运动到什么位置时,线段EF的值最大,并求此时E点的坐标?
(4)在(5)的情况下直线BC与抛物线的对称轴交于点H。
当E点运动到什么位置时,以点
E、F、H、D为顶点的四边形为平行四边形?
(5)在(5)的情况下点E运动到什么位置时,使三角形BCE的面积最大?
建议收藏下载本文,以便随时学习!
1
;二次函数y=x
2
两点且D点坐标
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
轴交于点A(﹣4,0)和B.的坐标;若不存在,请说明理由.
F
E
O
x
B
A
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙。
二次函数与几何综合压轴题题型归纳精编版

一 基础构图:y=322--x x (以下几种分类的函数解析式就是这个)★和最小,差最大 在对称轴上找一点P ,使得PB+PC 的和最小,求出P 点坐标在对称轴上找一点P ,使得PB-PC 的差最大,求出P 点坐标★求面积最大 连接AC,在第四象限找一点P ,使得ACP ∆面积最大,求出P 坐标★ 讨论直角三角 连接AC,在对称轴上找一点P ,使得ACP ∆为直角三角形,求出P 坐标或者在抛物线上求点P ,使△ACP 是以AC 为直角边的直角三角形.★ 讨论等腰三角 连接AC,在对称轴上找一点P ,使得ACP ∆为等腰三角形,求出P 坐标★ 讨论平行四边形 1、点E 在抛物线的对称轴上,点F 在抛物线上,且以B ,A ,F ,E 四点为顶点的四边形为平行四边形,求点F 的坐标二 综合题型 O xyA B C DO xyA B C DO xyA B C DO xyA B C D例1 (中考变式)如图,抛物线c bx x y ++-=2与x 轴交与A(1,0),B(-3,0)两点,顶点为D 。
交Y 轴于C(1)求该抛物线的解析式与△ABC 的面积。
(2)在抛物线第二象限图象上是否存在一点M ,使△MBC 是以∠BCM 为直角的直角三角形,若存在,求出点P 的坐标。
若没有,请说明理由(3)若E 为抛物线B 、C 两点间图象上的一个动点(不与A 、B 重合),过E 作EF 与X 轴垂直,交BC 于F ,设E 点横坐标为x.EF 的长度为L ,求L 关于X 的函数关系式?关写出X 的取值范围?当E 点运动到什么位置时,线段EF 的值最大,并求此时E 点的坐标?(4)在(5)的情况下直线BC 与抛物线的对称轴交于点H 。
当E 点运动到什么位置时,以点E 、F 、H 、D 为顶点的四边形为平行四边形?(5)在(5)的情况下点E 运动到什么位置时,使三角形BCE 的面积最大?例2 考点: 关于面积最值如图,在平面直角坐标系中,点A 、C 的坐标分别为(-1,0)、(0,3-),点B 在x 轴上.已知某二次函数的图象经过A 、B 、C 三点,且它的对称轴为直线x =1,点P 为直线BC 下方的二次函数图象上的一个动点(点P 与B 、C 不重合),过点P 作y 轴的平行线交BC 于点F . (1)求该二次函数的解析式;(2)若设点P 的横坐标为m ,试用含m 的代数式表示线段PF 的长;(3)求△PBC 面积的最大值,并求此时点P 的坐标.例3 考点:讨论等腰如图,已知抛物线y =21x 2+bx +c 与y 轴相交于C ,与x 轴相交于A 、B ,点A 的坐标为(2,0),点C 的坐标为(0,-1). (1)求抛物线的解析式;(2)点E 是线段AC 上一动点,过点E 作DE ⊥x 轴于点D ,连结DC ,当△DCE 的面积最大时,求点D 的坐标;(3)在直线BC 上是否存在一点P ,使△ACP 为等腰三角形,若存在,求点P 的坐标,若不存在,说明理由.例4考点:讨论直角三角⑴ 如图,已知点A (一1,0)和点B (1,2),在坐标轴上 D B C O A yx E B C O A 备用图y xyxBA FPx =1CO确定点P ,使得△ABP 为直角三角形,则满足这样条件的点P 共有( ). (A )2个 (B )4个 (C ) 6个(D )7个⑵ 已知:如图一次函数y =21x +1的图象与x 轴交于点A ,与y 轴交于点B ;二次函数y =21x 2+bx +c 的图象与一次函数y =21x +1的图象交于B 、C 两点,与x 轴交于D 、E 两点且D 点坐标为(1,0)(1)求二次函数的解析式; (2)求四边形BDEC 的面积S ;(3)在x 轴上是否存在点P ,使得△PBC 是以P 为直角顶点的直角三角形?若存在,求出所有的点P ,若不存在,请说明理由.例5 考点:讨论四边形已知:如图所示,关于x 的抛物线y =ax 2+x +c (a ≠0)与x 轴交于点A (-2,0),点B (6,0),与y 轴交于点C .(1)求出此抛物线的解析式,并写出顶点坐标;(2)在抛物线上有一点D ,使四边形ABDC 为等腰梯形,写出点D 的坐标,并求出直线AD 的解析式;(3)在(2)中的直线AD 交抛物线的对称轴于点M ,抛物线上有一动点P ,x 轴上有一动点Q .是否存在以A 、M 、P 、Q 为顶点的平行四边形?如果存在,请直接写出点Q 的坐标;如果不存在,请说明理由.综合练习:1、平面直角坐标系xOy 中,抛物线244y ax ax a c =-++与x 轴交于点A 、点B ,与y 轴的正半轴O A B yCxD E2 B A y O Cx交于点C ,点 A 的坐标为(1, 0),OB =OC ,抛物线的顶点为D 。
初三二次函数压轴题题型归纳及方法

初三二次函数压轴题题型归纳及方法一、题型归纳初三二次函数压轴题主要包括以下几种题型:1. 解二次方程:给出一个二次方程,要求求出其解。
2. 求顶点坐标:给出一个二次函数,要求求出其顶点坐标。
3. 求零点:给出一个二次函数,要求求出其零点。
4. 求最值:给出一个二次函数,要求求出其最大值或最小值。
5. 综合应用:将上述各种题型结合起来进行综合应用。
二、方法1. 解二次方程(1)将方程化为标准形式ax²+bx+c=0;(2)判断Δ=b²-4ac的正负性:如果Δ>0,则有两个不相等的实数根;如果Δ=0,则有两个相等的实数根;如果Δ<0,则无实数根,但可以得到一对共轭复数根;(3)根据公式x1=(-b+√Δ)/2a和x2=(-b-√Δ)/2a求得解。
2. 求顶点坐标(1)将二次函数化为标准形式y=ax²+bx+c;(2)利用公式x=-b/2a求得顶点的横坐标;(3)将横坐标代入原函数中求得顶点的纵坐标。
3. 求零点(1)将二次函数化为标准形式y=ax²+bx+c;(2)令y=0,解出方程ax²+bx+c=0;(3)根据解出的方程,用上述方法求出零点。
4. 求最值(1)将二次函数化为标准形式y=ax²+bx+c;(2)如果a>0,则函数有最小值,最小值为y0=c-b²/4a,顶点坐标为(-b/2a,y0);如果a<0,则函数有最大值,最大值为y0=c-b²/4a,顶点坐标为(-b/2a,y0)。
5. 综合应用综合应用题目一般会给出一个实际问题,并要求利用二次函数进行建模和求解。
解决这类题目需要结合实际情况进行分析,并运用上述各种方法进行计算和推导。
三、注意事项1. 在解二次方程时,需要注意判别式Δ的正负性,以确定是否有实数根。
2. 在求顶点坐标时,需要注意顶点横坐标的符号和范围。
3. 在求零点时,需要注意解方程的过程和方法,并判断是否存在实数根。
解答题压轴题二次函数与几何图形综合(学生版)

周日解答题压轴题二次函数与几何图形综合一模块一2022中考真题集训类型一二次函数中的最值问题(1)自变量范围与最值问题1.(2022•绍兴)已知函数y =-x 2+bx +c (b ,c 为常数)的图象经过点(0,-3),(-6,-3).(1)求b ,c 的值.(2)当-4≤x ≤0时,求y 的最大值.(3)当m ≤x ≤0时,若y 的最大值与最小值之和为2,求m 的值.2.(2022•安顺)在平面直角坐标系中,如果点P 的横坐标和纵坐标相等,则称点P 为和谐点.例如:点(1,1),12,12 ,(-2,-2),⋯⋯都是和谐点.(1)判断函数y =2x +1的图象上是否存在和谐点,若存在,求出其和谐点的坐标;(2)若二次函数y =ax 2+6x +c (a ≠0)的图象上有且只有一个和谐点52,52.①求a ,c 的值;②若1≤x ≤m 时,函数y =ax 2+6x +c +14(a ≠0)的最小值为-1,最大值为3,求实数m 的取值范围.周日(2)胡不归问题3.(2022•淮安)如图(1),二次函数y=-x2+bx+c的图象与x轴交于A、B两点,与y轴交于C点,点B的坐标为(3,0),点C的坐标为(0,3),直线l经过B、C两点.(1)求该二次函数的表达式及其图象的顶点坐标;(2)点P为直线l上的一点,过点P作x轴的垂线与该二次函数的图象相交于点M,再过点M作y轴的垂线与该二次函数的图象相交于另一点N,当PM=12MN时,求点P的横坐标;(3)如图(2),点C关于x轴的对称点为点D,点P为线段BC上的一个动点,连接AP,点Q为线段AP上一点,且AQ=3PQ,连接DQ,当3AP+4DQ的值最小时,直接写出DQ的长.周日4.(2022•梧州)如图,在平面直角坐标系中,直线y =-43x -4分别与x ,y 轴交于点A ,B ,抛物线y =518x 2+bx +c 恰好经过这两点.(1)求此抛物线的解析式;(2)若点C 的坐标是(0,6),将△ACO 绕着点C 逆时针旋转90°得到△ECF ,点A 的对应点是点E .①写出点E 的坐标,并判断点E 是否在此抛物线上;②若点P 是y 轴上的任一点,求35BP +EP 取最小值时,点P 的坐标.周日5.(2022•济南)抛物线y=ax2+114x-6与x轴交于A(t,0),B(8,0)两点,与y轴交于点C,直线y=kx-6经过点B.点P在抛物线上,设点P的横坐标为m.(1)求抛物线的表达式和t,k的值;(2)如图1,连接AC,AP,PC,若△APC是以CP为斜边的直角三角形,求点P的坐标;PQ的最大(3)如图2,若点P在直线BC上方的抛物线上,过点P作PQ⊥BC,垂足为Q,求CQ+12值.周日类型二二次函数中的面积问题两点,与x轴的另一个交点1.(2022•内蒙古)如图,抛物线y=ax2+x+c经过B(3,0),D-2,-52为A,与y轴相交于点C.(1)求抛物线的解析式和点C的坐标;(2)若点M在直线BC上方的抛物线上运动(与点B,C不重合),求使△MBC面积最大时M点的坐标,并求最大面积;(请在图1中探索)(3)设点Q在y轴上,点P在抛物线上,要使以点A,B,P,Q为顶点的四边形是平行四边形,求所有满足条件的点P的坐标.(请在图2中探索)周日2.(2022•淄博)如图,抛物线y=-x2+bx+c与x轴相交于A,B两点(点A在点B的左侧),顶点Dx+t上,动点P(m,n)在x轴上方的抛物线上.(1,4)在直线l:y=43(1)求这条抛物线对应的函数表达式;(2)过点P作PM⊥x轴于点M,PN⊥l于点N,当1<m<3时,求PM+PN的最大值;(3)设直线AP,BP与抛物线的对称轴分别相交于点E,F,请探索以A,F,B,G(G是点E关于x轴的对称点)为顶点的四边形面积是否随着P点的运动而发生变化,若不变,求出这个四边形的面积;若变化,说明理由.周日类型三二次函数与角度问题1.(2022•菏泽)如图,抛物线y=ax2+bx+c(a≠0)与x轴交于A(-2,0)、B(8,0)两点,与y轴交于点C(0,4),连接AC、BC.(1)求抛物线的表达式;(2)将△ABC沿AC所在直线折叠,得到△ADC,点B的对应点为D,直接写出点D的坐标,并求出四边形OADC的面积;(3)点P是抛物线上的一动点,当∠PCB=∠ABC时,求点P的坐标.周日2.(2022•鞍山)如图,抛物线y =-12x 2+bx +c 与x 轴交于A (-1,0),B 两点,与y 轴交于点C (0,2),连接BC .(1)求抛物线的解析式.(2)点P 是第三象限抛物线上一点,直线PB 与y 轴交于点D ,△BCD 的面积为12,求点P 的坐标.(3)在(2)的条件下,若点E 是线段BC 上点,连接OE ,将△OEB 沿直线OE 翻折得到△OEB ',当直线EB '与直线BP 相交所成锐角为45°,时,求点B '的坐标.类型四二次函数与圆综合1.(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB 在x 轴上,且AB =8dm ,外轮廓线是抛物线的一部分,对称轴为y 轴,高度OC =8dm .现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB 上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB 上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm 的圆,请说明理由.周日2.(2022•盐城)【发现问题】小明在练习簿的横线上取点O为圆心,相邻横线的间距为半径画圆,然后半径依次增加一个间距画同心圆,描出了同心圆与横线的一些交点,如图1所示,他发现这些点的位置有一定的规律.【提出问题】小明通过观察,提出猜想:按此步骤继续画圆描点,所描的点都在某二次函数图象上.【分析问题】小明利用已学知识和经验,以圆心O为原点,过点O的横线所在直线为x轴,过点O且垂直于横线的直线为y轴,相邻横线的间距为一个单位长度,建立平面直角坐标系,如图2所示.当所描的点在半径为5的同心圆上时,其坐标为.【解决问题】请帮助小明验证他的猜想是否成立.【深度思考】小明继续思考:设点P(0,m),m为正整数,以OP为直径画⊙M,是否存在所描的点在⊙M上.若存在,求m的值;若不存在,说明理由.周日类型五二次函数中的定值问题1.(2022•巴中)如图1,抛物线y=ax2+2x+c,交x轴于A、B两点,交y轴于点C,F为抛物线顶点,直线EF垂直于x轴于点E,当y≥0时,-1≤x≤3.(1)求抛物线的表达式;(2)点P是线段BE上的动点(除B、E外),过点P作x轴的垂线交抛物线于点D.①当点P的横坐标为2时,求四边形ACFD的面积;②如图2,直线AD,BD分别与抛物线对称轴交于M、N两点.试问,EM+EN是否为定值?如果是,请求出这个定值;如果不是,请说明理由.周日类型六二次函数中几何图形的存在性问题1.(2022•枣庄)如图①,已知抛物线L:y=x2+bx+c经过点A(0,3),B(1,0),过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点.(1)求抛物线的关系式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当△OPE面积最大时,求出P点坐标;(3)将抛物线L向上平移h个单位长度,使平移后所得抛物线的顶点落在△OAE内(包括△OAE的边界),求h的取值范围;(4)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P,使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.周日2.(2022•攀枝花)如图,二次函数y=ax2+bx+c的图象与x轴交于O(O为坐标原点),A两点,且二次函数的最小值为-1,点M(1,m)是其对称轴上一点,y轴上一点B(0,1).(1)求二次函数的表达式;(2)二次函数在第四象限的图象上有一点P,连结PA,PB,设点P的横坐标为t,△PAB的面积为S,求S与t的函数关系式;(3)在二次函数图象上是否存在点N,使得以A、B、M、N为顶点的四边形是平行四边形?若存在,直接写出所有符合条件的点N的坐标,若不存在,请说明理由.周日3.(2022•阜新)如图,已知二次函数y=-x2+bx+c的图象交x轴于点A(-1,0),B(5,0),交y轴于点C.(1)求这个二次函数的表达式;(2)如图1,点M从点B出发,以每秒2个单位长度的速度沿线段BC向点C运动,点N从点O出发,以每秒1个单位长度的速度沿线段OB向点B运动,点M,N同时出发.设运动时间为t秒(0<t< 5).当t为何值时,△BMN的面积最大?最大面积是多少?(3)已知P是抛物线上一点,在直线BC上是否存在点Q,使以A,C,P,Q为顶点的四边形是平行四边形?若存在,直接写出点Q坐标;若不存在,请说明理由.周日4.(2022•朝阳)如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴分别交于点A(1,0)和点B,与y轴交于点C(0,-3),连接BC.(1)求抛物线的解析式及点B的坐标.(2)如图,点P为线段BC上的一个动点(点P不与点B,C重合),过点P作y轴的平行线交抛物线于点Q,求线段PQ长度的最大值.(3)动点P以每秒2个单位长度的速度在线段BC上由点C向点B运动,同时动点M以每秒1个单位长度的速度在线段BO上由点B向点O运动,在平面内是否存在点N,使得以点P,M,B,N为顶点的四边形是菱形?若存在,请直接写出符合条件的点N的坐标;若不存在,请说明理由.周日5.(2022•黔西南州)如图,在平面直角坐标系中,经过点A(4,0)的直线AB与y轴交于点B(0,4).经过原点O的抛物线y=-x2+bx+c交直线AB于点A,C,抛物线的顶点为D.(1)求抛物线y=-x2+bx+c的表达式;(2)M是线段AB上一点,N是抛物线上一点,当MN∥y轴且MN=2时,求点M的坐标;(3)P是抛物线上一动点,Q是平面直角坐标系内一点.是否存在以点A,C,P,Q为顶点的四边形是矩形?若存在,直接写出点Q的坐标;若不存在,请说明理由.周日6.(2022•鄂尔多斯)如图,在平面直角坐标系中,抛物线y =ax 2+bx +2经过A -12,0 ,B 3,72 两点,与y 轴交于点C .(1)求抛物线的解析式;(2)点P 在抛物线上,过P 作PD ⊥x 轴,交直线BC 于点D ,若以P 、D 、O 、C 为顶点的四边形是平行四边形,求点P 的横坐标;(3)抛物线上是否存在点Q ,使∠QCB =45°?若存在,请直接写出点Q 的坐标;若不存在,请说明理由.周日7.(2022•黄石)如图,抛物线y =-23x 2+23x +4与坐标轴分别交于A ,B ,C 三点,P 是第一象限内抛物线上的一点且横坐标为m .(1)A ,B ,C 三点的坐标为,,.(2)连接AP ,交线段BC 于点D ,①当CP 与x 轴平行时,求PDDA 的值;②当CP 与x 轴不平行时,求PDDA的最大值;(3)连接CP ,是否存在点P ,使得∠BCO +2∠PCB =90°,若存在,求m 的值,若不存在,请说明理由.周日类型七抛物线的平移、翻折与旋转1.(2022•德州)如图,题目中的黑色部分是被墨水污染了无法辨认的文字,导致题目缺少一个条件而无法解答,经查询结果发现,该二次函数的解析式为y=x2-4x+1.已知二次函数y=ax2+bx+c的图象经过点A(0,1),B(1,-2),.求该二次函数的解析式.(1)请根据已有信息添加一个适当的条件:;(2)当函数值y<6时,自变量x的取值范围:;(3)如图1,将函数y=x2-4x+1(x<0)的图象向右平移4个单位长度,与y=x2-4x+1(x≥4)的图象组成一个新的函数图象,记为L.若点P(3,m)在L上,求m的值;(4)如图2,在(3)的条件下,点A的坐标为(2,0),在L上是否存在点Q,使得S△OAQ=9.若存在,求出所有满足条件的点Q的坐标;若不存在,请说明理由.周日2.(2022•大庆)已知二次函数y=x2+bx+m图象的对称轴为直线x=2,将二次函数y=x2+bx+m图象中y轴左侧部分沿x轴翻折,保留其他部分得到新的图象C.(1)求b的值;(2)①当m<0时,图C与x轴交于点M,N(M在N的左侧),与y轴交于点P.当△MNP为直角三角形时,求m的值;②在①的条件下,当图象C中-4≤y<0时,结合图象求x的取值范围;(3)已知两点A(-1,-1),B(5,-1),当线段AB与图象C恰有两个公共点时,直接写出m的取值范围.周日3.(2022•岳阳)如图1,在平面直角坐标系xOy中,抛物线F1:y=x2+bx+c经过点A(-3,0)和点B(1,0).(1)求抛物线F1的解析式;(2)如图2,作抛物线F2,使它与抛物线F1关于原点O成中心对称,请直接写出抛物线F2的解析式;(3)如图3,将(2)中抛物线F2向上平移2个单位,得到抛物线F3,抛物线F1与抛物线F3相交于C,D两点(点C在点D的左侧).①求点C和点D的坐标;②若点M,N分别为抛物线F1和抛物线F3上C,D之间的动点(点M,N与点C,D不重合),试求四边形CMDN面积的最大值.。
二次函数(十二大题型综合归纳 )(学生版)--新九年级数学

二次函数(十二大题型综合归纳)题型1:二次函数的概念1以下函数式二次函数的是()A.y=ax2+bx+cB.y=2x-12-4x2C.y=ax2+bx+c a≠0D.y=x-1x-22二次函数y=2x x−3的二次项系数与一次项系数的和为()A.2B.-2C.-1D.-4题型2:二次函数的值3已知二次函数y=x2+2x-5,当x=3时,y=.4已知二次函数y=ax2+2c,当x=2时,函数值等于8,则下列关于a,c的关系式中,正确的是()A.a+2c=8B.2a+c=4C.a-2c=8D.2a-c=45二次函数y=ax2+bx-3a≠0的图象经过点2,-2,则代数式2a+b的值为.题型3:二次函数的条件6已知y=mx m-2+2mx+1是y关于x的二次函数,则m的值为()A.0B.1C.4D.0或47关于x的函数y=a-bx2+1是二次函数的条件是()A.a≠bB.a=bC.b=0D.a=0题型4:列二次函数关系式8已知有n个球队参加比赛,每两队之间进行一场比赛,比赛的场次数为m,则m关于n的函数解析式为.题型5:特殊二次函数的图像和性质9关于二次函数y =-34x 2-1的图像,下列说法错误的是()A.抛物线开口向下B.对称轴为直线x =0C.顶点坐标为0,-1D.当x <0时,y 随x 的增大而减小,当x >0时,y 随x 的增大而增大10抛物线y =34x 2与抛物线y =-34x 2+3的相同点是()A.顶点相同B.对称轴不相同C.开口方向一样D.顶点都在y 轴上11如果二次函数y =ax 2+m 的值恒大于0,那么必有()A.a >0,m 取任意实数B.a >0,m >0C.a <0,m >0D.a ,m 均可取任意实数12对于二次函数y =-3(x -2)2的图象,下列说法正确的是()A.开口向上B.对称轴是直线x =-2C.当x >-2时,y 随x 的增大而减小D.顶点坐标为2,013二次函数:①y =-13x 2+1;②y =12(x +1)2-2;③y =-12(x +1)2+2;④y =12x 2;⑤y =-12(x -1)2;⑥y =12(x -1)2.(1)以上二次函数的图象的对称轴为直线x =-1的是(只填序号);(2)以上二次函数有最大值的是(只填序号)﹔(3)以上二次函数的图象中关于x 轴对称的是(只填序号).14设函数y 1=x -a 12,y 2=x -a 22,y 3=x -a 3 2.直线x =b 的图象与函数y 1,y 2,y 3的图象分别交于点A b ,c 1,B b ,c 2 ,C b ,c 3,()A.若b <a 1<a 2<a 3,则c 2<c 3<c1B.若a 1<b <a 2<a 3,则c 1<c 2<c 3C.若a 1<a 2<b <a 3,则c 3<c 2<c 1 D.若a 1<a 2<a 3<b ,则c 3<c 2<c 115已知二次函数y =(x -m )2,当x ≤1时,y 随x 的增大而减小,则m 的取值范围是.16已知关于x 的一元二次方程x 2-(2m +1)x +m 2-1=0有实数根a ,b ,则代数式a 2-ab +b 2的最小值为.题型6:与特殊二次函数有关的几何知识17在平面直角坐标系中,点A是抛物线y=a x-42+k与y轴的交点,点B是这条抛物线上的另一点,且AB⎳x轴,则以AB为边的等边三角形ABC的周长为.18在平面直角坐标系内有线段PQ,已知P(3,1)、Q(9,1),若抛物线y=(x-a)2与线段PQ有交点,则a的取值范围是.19二次函数y=-x+3的图象上任意二点连线不与x轴平行,则t的取值范围2+h t≤x≤t+2为.题型7:二次函数y=ax2+bx+c的图像和性质20下列抛物线中,与抛物线y=x2-2x+8具有相同对称轴的是()A.y=4x2+2x+4B.y=x2-4xC.y=2x2-x+4D.y=-2x2+4x21若抛物线y=x2+ax+1的顶点在y轴上,则a的值为()A.2B.1C.0D.-222抛物线y=x-1x+5图象的开口方向是(填“向上”或“向下”).23当二次函数y=ax2+bx+c有最大值时,a可能是()A.1B.2C.-2D.324已知抛物线y=x2-2bx+b2-2b+1(b为常数)的顶点不在抛物线y=x2+c(c为常数)上,则c应满足()A.c≤2B.c<2C.c≥2D.c>225已知二次函数y=x2-2mx+m的图象经过A1,y1,B5,y2两个点,下列选项正确的是()A.若m<1,则y1>y2B.若1<m<3,则y1<y2C.若1<m<5,则y1>y2D.若m>5,则y1<y2题型8:二次函数y=ax2+bx+c的最值与求参数范围问题26已知直线y=2x+t与抛物线y=ax2+bx+c a≠0,且点B、B m,n有两个不同的交点A3,5是抛物线的顶点,当-2≤a≤2时,m的取值范围是.27已知抛物线y=x2+bx+c经过点(1,-2),(-2,13).(1)求抛物线解析式及对称轴.(2)关于该函数在0≤x<m的取值范围内,有最小值-3,有最大值1,求m的取值范围.28已知二次函数y=mx2-4m2x-3(m为常数,m>0).(1)若点(-2,9)在该二次函数的图象上.①求m的值:②当0≤x≤a时,该二次函数值y取得的最大值为18,求a的值;(2)若点P(x,y)是该函数图象上一点,当0≤x p≤4时,y p≤-3,求m的取值范围.题型9:根据二次函数y=ax2+bx+c的图像判断有关信息29函数y=ax2+bx+c a≠0与y=kx的图象如图所示,现有以下结论:①c=3;②k=3;③3b+c+6=0;④当1<x<3时,x2+b-1x+c<0.其中正确的为.(填写序号即可)30如图,已知二次函数y=ax2+bx+c a≠0的图象与x轴交于点A-1,0,与y轴的交点在0,-2和0,-1之间(不包括这两点),对称轴为直线x=1,下列结论:①4a+2b+c>0;②4ac-b2<8a;③13<a<23;④b>c;⑤直线y=k i(k i>0,i=1,2,3,⋯,2023)与抛物线所有交点的横坐标之和为4046;其中正确结论的个数有()A.2个B.3个C.4个D.5个题型10:二次函数的应用31如图,有一个截面边缘为抛物线型的水泥门洞.门洞内的地面宽度为8m ,两侧距地面4m 高处各有一盏灯,两灯间的水平距离为6m ,则这个门洞内部顶端离地面的距离为()A.7.5B.8C.649D.64732某炮兵部队实弹演习发射一枚炮弹,经x 秒后的高度为y 米,且时间x 与高度y 的关系为y =ax 2+bx .若此炮弹在第5秒与第16秒时的高度相等,则在下列哪一个时间段炮弹的高度达到最高.()A.第8秒B.第10秒C.第12秒D.第15秒33在2023年中考体育考试前,小康对自己某次实心球的训练录像进行了分析,发现实心球飞行路线是一条抛物线,若不考虑空气阻力,实心球的飞行高度y (单位:米)与飞行的水平距离x (单位:米)之间具有函数关系y =-116x 2+58x +32,则小康这次实心球训练的成绩为()A.14米B.12米C.11米D.10米34某池塘的截面如图所示,池底呈抛物线形,在图中建立平面直角坐标系,并标出相关数据(单位:m ).有下列结论:①AB =30m ;②池底所在抛物线的解析式为y =145x 2-5;③池塘最深处到水面CD 的距离为3.2m ;④若池塘中水面的宽度减少为原来的一半,则最深处到水面的距离变为1.2m .其中结论错误的是()A.①B.②C.③D.④35某建筑工程队借助一段废弃的墙体CD,CD长为18米,用76米长的铁栅栏围成两个相连的长方形仓库,为了方便取物,在两个仓库之间留出了1米宽的缺口作通道,在平行于墙的一边留下一个1米宽的缺口作小门,现有如下两份图纸(图纸1点A在线段DC的延长线上,图纸2点A在线段DC上),设AB =x米,图纸1,图纸2的仓库总面积分别为y1平方米,y2平方米.(1)分别写出y1,y2与x的函数关系式;(2)小红说:“y1的最大值为384.y2的最大值为507.”你同意吗?请说明理由.题型11:二次函数的解答证明题36已知二次函数y=-x2+bx+c.(1)当b=4,c=3时,①求该函数图象的顶点坐标.②当-1≤x≤3时,求y的取值范围.(2)当x≤0时,y的最大值为2;当x>0时,y的最大值为3,求二次函数的表达式.37如图,已知二次函数y=-12x2+bx+c的图象与x轴交于A1,0,B,与y轴交于点C0,-52.CD∥x轴交抛物线于点D.(1)求b,c的值.(2)已知点E在抛物线上且位于x轴上方,过E作y轴的平行线分别交AB,CD于点F,G,且GE= 2GD,求点E的坐标.38在直角坐标系中,设函数y=ax2+bx+c(a,b,c是常数,a≠0).(1)已知a=1.①若函数的图象经过0,3和-1,0两点,求函数的表达式;②若将函数图象向下平移两个单位后与x轴恰好有一个交点,求b+c的最小值.(2)若函数图象经过-2,m,-3,n和x0,c,且c<n<m,求x0的取值范围.题型12:二次函数压轴题39在平面直角坐标系中,抛物线y=-x2-4x+c与x轴交于点A,B(点A在点B的左侧),与y轴交于点C,且点A的坐标为-5,0.(1)求点C的坐标;(2)如图1,若点P是第二象限内抛物线上一动点,求三角形ACP面积的最大值;(3)如图2,若点M是抛物线上一点,点N是抛物线对称轴上一点,是否存在点M使以A,C,M,N为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标;若不存在,请说明理由.。
(完整word版)二次函数与几何图形结合题型总结,文档

“二次函数〞常考题型总结“二次函数〞综合题经常察看以下几类,面积,周长、最值,也许与四边形、圆等结合察看一些相关的性质等,题目编号灵便,难度有点大,今天整理了常考题型,希望对同学们能有所帮助!面积类1、如图,抛物线经过点A〔-1,0〕、B〔3,0〕、C〔0,3〕三点.〔1〕求抛物线的剖析式.〔2〕点M 是线段BC 上的点〔不与B,C 重合〕,过M 作MN ∥y 轴交抛物线于N,假设点M 的横坐标为m,请用m 的代数式表示MN 的长.〔3〕在〔2〕的条件下,连接NB、NC,可否存在m,使△BNC 的面积最大?假设存在,求m 的值;假设不存在,说明原由.2、如图,抛物线y=ax2- 3/2 x-2(a ≠0)的图象与x 轴交于A、B 两点,与y 轴交于 C 点, B 点坐标为〔4,0〕.〔1〕求抛物线的剖析式;〔2〕试试究△ABC 的外接圆的圆心地址,并求出圆心坐标;〔3〕假设点M 是线段BC 下方的抛物线上一点,求△MBC 的面积的最大值,并求出此时M 点的坐标.平行四边形类3、如图,在平面直角坐标系中,抛物线y=x 2 +mx+n 经过点A〔3,0〕、B〔0,-3〕,点P 是直线AB 上的动点,过点P 作x 轴的垂线交抛物线于点M ,设点P 的横坐标为t。
〔1〕分别求出直线AB 和这条抛物线的剖析式;〔2〕假设点P 在第四象限,连接AM 、BM ,当线段PM 最长时,求△ABM 的面积;〔3〕可否存在这样的点P,使得以点P、M 、B、O 为极点的四边形为平行四边形?假设存在,请直接写出点P 的横坐标;假设不存在,请说明原由。
如图,在平面直角坐标系中放置素来角三角板,其极点为A〔0,1〕,B〔2,0〕,O〔0,0〕,将此三角板绕原点O 逆时针旋转90°,获取△A'B'O .〔1〕一抛物线经过点A'、B'、B,求该抛物线的剖析式;〔2〕设点P 是在第一象限内抛物线上的一动点,可否存在点P,使四边形PB'A'B 的面积是△A'B'O 面积 4 倍?假设存在,央求出P 的坐标;假设不存在,请说明原由.〔3〕在〔2〕的条件下,试指出四边形PB'A'B 是哪一种形状的四边形?并写出四边形PB'A'B 的两条性质.5、如图,抛物线y=x2-2x+c 的极点 A 在直线l :y=x-5 上。
中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x , 直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。
4、二次函数与x 轴的交点为整数点问题。
(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。
解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()mm x 213∆±-=,m x 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个固定的点,并求出固定点的坐标。
解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。
(完整版)中考数学二次函数压轴题题型归纳

中考二次函数综合压轴题型归类一、常考点汇总1、两点间的距离公式:()()22B A B A x x y y AB -+-=2、中点坐标:线段AB 的中点C 的坐标为:⎪⎭⎫⎝⎛++22B A B A y y x x ,直线11b x k y +=(01≠k )与22b x k y +=(02≠k )的位置关系:(1)两直线平行⇔21k k =且21b b ≠ (2)两直线相交⇔21k k ≠ (3)两直线重合⇔21k k =且21b b = (4)两直线垂直⇔121-=k k3、一元二次方程有整数根问题,解题步骤如下:① 用∆和参数的其他要求确定参数的取值范围;② 解方程,求出方程的根;(两种形式:分式、二次根式)③ 分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
例:关于x 的一元二次方程()01222=-m x m x ++有两个整数根,5<m 且m 为整数,求m 的值。
4、二次函数与x 轴的交点为整数点问题。
(方法同上)例:若抛物线()3132+++=x m mx y 与x 轴交于两个不同的整数点,且m 为正整数,试确定此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:已知关于x 的方程23(1)230mx m x m --+-=(m 为实数),求证:无论m 为何值,方程总有一个固定的根。
解:当0=m 时,1=x ;当0≠m 时,()032≥-=∆m ,()m m x 213∆±-=,mx 321-=、12=x ;综上所述:无论m 为何值,方程总有一个固定的根是1。
6、函数过固定点问题,举例如下:已知抛物线22-+-=m mx x y (m 是常数),求证:不论m 为何值,该抛物线总经过一个解:把原解析式变形为关于m 的方程()x m x y -=+-122;∴ ⎩⎨⎧=-=+-01 02 2x x y ,解得:⎩⎨⎧=-=1 1 x y ;∴ 抛物线总经过一个固定的点(1,-1)。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
标准实用二次函数综合压轴题型归类、要学会利用特殊图形的性质去分析二次函数与特殊图形的关系教学目标:1 2、掌握特殊图形面积的各种求法 1、利用图形的性质找点重点、难点: 2、分解图形求面积一、二次函数和特殊多边形形状二、二次函数和特殊多边形面积三、函数动点引起的最值问题四、常考点汇总????22x?AB??yy?x:1、两点间的距离公式BAAB x?xy?y??BABA,ABC??的坐标为::线段的中点2 、中点坐标22??y?kx?bk?0y?kx?bk?0)的位置关系:)与((直线212112??k?bk?kb?k)两直线相交且(1)两直线平行(2212112??kk?b?1bk?k? 3()两直线重合(4)两直线垂直且2121213、一元二次方程有整数根问题,解题步骤如下:?和参数的其他要求确定参数的取值范围;①用②解方程,求出方程的根;(两种形式:分式、二次根式)③分析求解:若是分式,分母是分子的因数;若是二次根式,被开方式是完全平方式。
??22mxm5<m02m?1=x?mx-的值。
为整数,求例:关于的一元二次方程有两个整数根,且x轴的交点为整数点问题。
(方法同上)、4二次函数与??2mx3x?y?mx?3m1?为正整数,试确定轴交于两个不同的整数点,且例:若抛物线与此抛物线的解析式。
5、方程总有固定根问题,可以通过解方程的方法求出该固定根。
举例如下:文案大全.标准实用2mxm0?2m?mx3?3(m?1)x?为何值,方程总为实数)(已知关于,求证:无论的方程有一个固定的根。
1x0?m?时,解:当;??3?1?m?3??2x?2?x?1?x0?m0??3m??;、时,当,,12m2m m为何值,方程总有一个固定的根是1。
综上所述:无论6、函数过固定点问题,举例如下:2mm2?my?x??mx为何值,该抛物线总经过一个固已知抛物线(,求证:不论是常数)定的点,并求出固定点的坐标。
??2mxm?x1?2?y?;的方程解:把原解析式变形为关于2y??1?0??2 y?x?∴,解得:;??x?1 1?x?0??∴抛物线总经过一个固定的点(1,-1)。
??2mmxm?y?x1?2?为何值,方程恒成立)(题目要求等价于:关于不论的方程a?0?x?b?ax的方程小结:关于有无数解?..b?0?7、路径最值问题(待定的点所在的直线就是对称轴)lllll AM?MNMAN之上确定两点,使得上,分别在、(1)如图,直线、,点、在22211和最小。
llll MABN,使得、,分别在、、上确定两点、2()如图,直线相交,两个固定点2211BM?MN?AN 之和最小。
文案大全.标准实用a l、BlAFEEF的上确定两点(3)如图,(,在直线是直线、同旁的两个定点,线段在AEFB,使得四边形的周长最小。
左侧)8、在平面直角坐标系中求面积的方法:直接用公式、割补法S y ·△x=1/2 ·AN·△三角形的面积求解常用方法:如右图,=1/2 ·PM PAB△2c+bx+y=ax h=kx+y)与一次函数()9、函数的交点问题:二次函数(2?c+bx+y=ax(1)解方程组可求出两个图象交点的坐标。
?h +=kx y?2?cbx+y=ax+??20=kx+cax-+hb-?可判断两个图象的交点,通过,即(2)解方程组?h+y=kx?的个数?0?>有两个交点?0??仅有一个交点?0?<没有交点方程法10、)设:设主动点的坐标或基本线段的长度(1 (2)表示:用含同一未知数的式子表示其他相关的数量()列方程或关系式3、11几何分析法“等腰三角形”等图形时,、、特别是构造“平行四边形”“梯形”、“相似三角形”“直角三角形”、利用几何分析法能给解题带来方便。
应用图形几何要求几何分析涉及公式文案大全.标准实用yy?kk=l∥l??k x?xy【例题精讲】基础构图:一232x?x? y=(以下几种分类的函数解析式就是这个)xB A O ★ P,使得PB+PC的和最小,求出P点坐标和最小,差最大在对称轴上找一点C PPB-PC的差最大,求出点坐标在对称轴上找一点P,使得Dy★ACP?,使得P坐标面积最大,求出求面积最大连接AC,在第四象限找一点P xAB OC Dy★ACP?在对称轴上找一点P,使得为直角三角形,连接讨论直角三角AC,ACACPP是以求出P坐标或者在抛物线上求点,使△为直角边的直角三角形.B xA OCD文案大全.标准实用y★ACP?在对称轴上找一点P,使得为等腰三角形,讨论等腰三角连接AC, 坐标求出Px★FE点在抛物线上,在抛物线的对称轴上,点讨论平行四边形 1、FEABF且以四点为顶点的四边形为平行四边形,求点,,的坐标,综合题型二2cbx???x?y。
顶点为D,0)两点,A(1,0),B(-3与1 ( 例中考变式)如图,抛物线x轴交与C轴于Y交的面积。
(1)求该抛物线的解析式与△ABCMBC为直角的直角三角形,若存在,,使△BCM是以∠M(2)在抛物线第二象限图象上是否存在一点求出点P的坐标。
若没有,请说明理由文案大全.标准实用BCX轴垂直EEF与EBC,交,过作B(3)若重合为抛物线)、A两点间图象上的一个动点(不与、F,x.EF的长度为L于,设E点横坐标为的取值范围?X的函数关系式?关写出X求L关于EEFE的值最大,并求此时当点的坐标?点运动到什么位置时,线段、、H,以点E、F(4)在(5)的情况下直线BC与抛物线的对称轴交于点H。
当E点运动到什么位置时 D为顶点的四边形为平行四边形?E运动到什么位置时,使三角形BCE的面积最大?(5)在(5)的情况下点关于面积最值例2 考点:CABx3,0)(1),点,在、轴上.已知某二如图,在平面直角坐标系中,点、(0的坐标分别为--BCPABCx下方的二次函数图象次函数的图象经过为直线、、1三点,且它的对称轴为直线,点=FPyBCCPB作.不重合),过点上的一个动点(点轴的平行线交与、于点 1)求该二次函数的解析式;(yPFmPm(2)若设点的横坐标为的长;,试用含的代数式表示线段PPBC(3面积的最大值,并求此时点的坐标.)求△xB O A FC文案大全P1=x标准实用考点:讨论等腰例312AABybxcCxyx,0),与的坐标为(轴相交于如图,已知抛物线2、+,+,点与轴相交于=2C).的坐标为(0,-点1 1)求抛物线的解析式;(DDCDCEDExDEACE的面积最大时,求点⊥,连结作2()点轴于点是线段,当△上一动点,过点的坐标;PPACPBC的坐标,若不存在,说,使△(3)在直线为等腰三角形,若存在,求点上是否存在一点y 明理由.yxA OB D CxAO BEC备用图考点:讨论直角三角例4),在坐标轴上,2)和点B(11⑴如图,已知点A(一,0 ).P,使得△ABP为直角三角形,则满足这样条件的点共有(确定点P7个个(D)()4个 C) 6个(A)2 (B112xyyAyBxx+,与轴交于点;二次函数轴交于点+⑵已知:如图一次函数1的图象与==221DDExyBCxbxc)1两点,与轴交于点坐标为(、,+图象与一次函数两点且+1图象交于、0=2)求二次函数的解析式;(1SBDEC的面积(2)求四边形;PPPBCx为直角顶点的直角三角形?若存在,求出所有的点,使得△)在(3是以轴上是否存在点P,若不存在,请说明理由.yC2B文案大全xEDOA标准实用5 考点:讨论四边形例2BxcaAxyaxx,,00),点+)()与≠0(轴交于点6已知:如图所示,关于(的抛物线2+,-=Cy轴交于点与.(1)求出此抛物线的解析式,并写出顶点坐标;ADDABDCD的解为等腰梯形,写出点)在抛物线上有一点,使四边形的坐标,并求出直线(2 析式;QPxADM是,中的直线在(2).交抛物线的对称轴于点轴上有一动点,抛物线上有一动点(3)QQMAP的坐标;如果不存为顶点的平行四边形?如果存在,请直接写出点否存在以、、、在,请说明理由.yCxB A O综合练习:2c4a?ax?4ax??y yABxxOy轴的正半轴交、点与与、平面直角坐标系1,中,抛物线轴交于点DOBACOC=于点,点。
的坐标为,抛物线的顶点为(1, 0), (1) 求此抛物线的解析式;PACBPAPB (2) 若此抛物线的对称轴上的点,求点满足∠的坐标;=∠?QABDQAQB A2?QA?QB的坐,若关于∠的平分线的对称点为,求点 (3) 为线段上一点,点?QAA的面积。
标和此时△文案大全.标准实用??23 0 C,c+2axy?ax?y xOyx,与轴交于点、在平面直角坐标系的图像与中,已知二次函数2??0 ,?3BAB。
、两点,点的坐标为轴交于D的坐标;求二次函数的解析式及顶点(1)MOMACDB分成面积为1 :是第二象限内抛物线上的一动点,若直线2把四边形(2)点的两部M的坐标;分,求出此时点CPB PP的面积最大?最大面积点在何处时△是第二象限内抛物线上的一动点,问:点(3)P的坐标。
是多少?并求出此时点22x x2xy??ABxOy,中,抛物线与、如图,在平面直角坐标系,顶点为轴负半轴交于点3m x C轴交于点。
且对称轴与m B;的坐标(用含的代数式表示))求点(1EDADEOBy,若(0),求抛物线的解析式;,2()为中点,直线2交轴于AMC?PMQOB在直上,且使得的周长最小,在抛物线上,23()在()的条件下,点在直线PQA、、PM、BC为顶点的四边形是平行四边形,求点的坐标。
线上,若以文案大全.标准实用2x?(4?m)xx?3?0(1?m)。
4、已知关于的方程m的取值范围;)若方程有两个不相等的实数根,求(12mx2m?8?23?)x?(4?my?(1?)xm轴交于若正整数满足的图象与,设二次函数)(2A、B xx轴翻折,图象的其余部分保持不变,得到一轴下方的部分沿两点,将此图象在y?kx?3与此图象恰好有三个公共点时,请你结合这个新的图象回答:当直线个新的图象;k k值即可)。
的值(只需要求出两个满足题意的求出)和B0轴交于点A(﹣4,))与a≠0y轴交于点C(0,4,与x(5如图,抛物线y=ax+2ax+c )2.求该抛物线的解析式;(1,连接于点E∥AC,交BCQ(2)点Q是线段AB上的动点,过点作QE的坐标;CEQ的面积最大时,求点QCQ.当△,交于点F与该抛物线交于点轴的动直线lP,与直线AC)平行于(3x是等腰三角形?若ODFl).问是否有直线,使△,点D的坐标为(﹣20 明理由.F的坐标;若不存在,请说存在,请求出点文案大全.。