大物 上海交大课后答案 第七章
大学物理课后习题答案 第七章

Q
RT1
ln
V2 V1
8.31 400 ln 0.005 0.001
5.35 103 J
(2) 根据卡诺循环的效率公式可得
1 T2 A净 T1 Q吸
A净
(1
T2 T1
)Q吸
(1
300 ) 5.35 103 400
1.34 103 J
(3)由能量守恒 Q吸 A净 Q放 可得
Pa Va )
1 2 (Pb
Pa ) (Vb
Va )
9.5 102 J
A 100 10.5% Q吸 950
B
C 2 V (L)
62
大学物理上习题册参考解答
10、一定质量理想气体(摩尔热容比为 γ)的某循环过程的 T-V 图如下,其中 CA 为绝
热过程,状态 A(T1,V1)和状态 B(T2,V2)为已知,试问:
RT2
ln
VA VB
R(T1 T2) ln
VA VB
T2 T1 T2
14、一台家用冰箱放在室温为 300K 的房间内,做一盘 2.09105 J 的热量。设冰箱为理想卡诺制冷机。 (1)求做一盘冰块所需要的功;
℃的冰块需从冷冻室取走
(2)若此冰箱能以 2.09102 J / s 的速率取出热量,求冰箱的电功率。
mR mR
60
大学物理上习题册参考解答
6、某理想气体在 P-V 图上等温线与绝热线相交于 A
点(如图所示)。 已知 A 点的压强 P1=2×105Pa,体积 V1=0.5 P ×10-3m3 ,而且 A 点处等温线的斜率与绝热线斜率之比为
0.714,现使气体从 A 点绝热膨胀至 B 点,其体积 V2=1×10-3m3。
大学物理课后答案第七章.doc

第七章静电场中的导体和电介质一、基本要求1. 掌握导体静电平衡的条件及静电平衡时导体电荷的分布规律;2. 学会计算电容器的电容;3. 了解介质的极化现象及其微观解释;4. 了解各向同性介质中D和E的关系和区别;5. 了解介质中电场的高斯定理;6. 理解电场能量密度的概念。
二、基本内容1. 导体静电平衡(1) 静电平衡条件:导体任一点的电场强度为零(2) 导体处于静电平衡时:①导体是等势体,其表面是等势面;②导体表面的场强垂直于导体表面。
(3) 导体处于静电平衡时,导体内部处处没有净电荷存在,电荷只能分布在导体的表面上。
2. 电容(1) 孤立导体的电容c=勺V电容的物理意义是使导体电势升高单位电势所需的电量。
电容是导体的重要属性之一,它反映导体本身具有储存电荷和储存电能的能力。
它的大小仅由导体的几何形状、大小和周围介质决定,与导体是否带电无关。
(2) 电容器的电容C =—9-V A~ Vq为构成电容器两极板上所带等量异号电荷的绝对值。
V A-V B为A、B两极间电势差。
电容器电容与电容器形状、大小及两极间介质有关,与电容器是否带电无关。
(3) 电容器的串并联串联的特点:各电容器的极板上所带电量相等,总电势差为各电容器上电势差之111 1和。
等效电容由一=—+—+川+一进行计算。
C C C C1 2 n并联的特点:电容器两极板间的电势差相等,不同电容器的电量不等,电容大者电量多。
等效电容为C=C +C ,川*C o 1 2 n(4) 计算电容的一般步骤+ 一%1设两极带电分别为q和q,由电荷分布求出两极间电场分布。
~ = J B%1由V V E dl求两极板间的电势差。
A B A%1根据电容定义求c wV A VB3. 电位移矢量D=£ +人为引入的辅助物理量,定义D E P, D既与E有关,又与P有关。
说明D 0不是单纯描述电场,也不是单纯描述电介质的极化,而是同时描述场和电介质的。
定义式无论对各向同性介质,还是各向号惟会质都适用。
大学物理习题答案解析第七章

第七章 恒定磁场7 -1 两根长度相同的细导线分别多层密绕在半径为R 和r 的两个长直圆筒上形成两个螺线管,两个螺线管的长度相同,R =2r ,螺线管通过的电流相同为I ,螺线管中的磁感强度大小B R 、B r 满足( ) (A ) (B ) (C ) (D )分析与解 在两根通过电流相同的螺线管中,磁感强度大小与螺线管线圈单位长度的匝数成正比.根据题意,用两根长度相同的细导线绕成的线圈单位长度的匝数之比因而正确答案为(C )。
7 -2 一个半径为r 的半球面如图放在均匀磁场中,通过半球面的磁通量 为( )(A ) (B ) (C ) (D )分析与解 作半径为r 的圆S ′与半球面构成一闭合曲面,根据磁场的高斯定理,磁感线是闭合曲线,闭合曲面的磁通量为零,即穿进半球面S 的磁通量等于穿出圆面S ′的磁通量;.因而正确答案为(D ). 7 -3 下列说法正确的是( )(A ) 闭合回路上各点磁感强度都为零时,回路内一定没有电流穿过 (B ) 闭合回路上各点磁感强度都为零时,回路内穿过电流的代数和必定为零 (C ) 磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度必定为零(D ) 磁感强度沿闭合回路的积分不为零时,回路上任意一点的磁感强度都不可能为零分析与解 由磁场中的安培环路定律,磁感强度沿闭合回路的积分为零时,回路上各点的磁感强度不一定为零;闭合回路上各点磁感强度为零时,穿过回路的电流代数和必定为零。
因而正确答案为(B ).7 -4 在图(a)和(b)中各有一半径相同的圆形回路L1 、L2 ,圆周内有电流I1 、I2 ,其分布相同,且均在真空中,但在(b)图中L2 回路外有电流I3 ,P 1 、P 2 为两圆形回路上的对应点,则( )r R B B 2=r R B B =r R B B =2r R B B 4=21==R r n n r R B r 2π2B r 2παB r cos π22αB r cos π2S B ⋅=m Φ(A ) ,(B ) ,(C ) ,(D ) ,分析与解 由磁场中的安培环路定律,积分回路外的电流不会影响磁感强度沿回路的积分;但同样会改变回路上各点的磁场分布.因而正确答案为(C ).*7 -5 半径为R 的圆柱形无限长载流直导体置于均匀无限大磁介质之中,若导体中流过的恒定电流为I ,磁介质的相对磁导率为μr (μr<1),则磁介质内的磁化强度为( ) (A )(B ) (C ) (D )分析与解 利用安培环路定理可先求出磁介质中的磁场强度,再由M =(μr-1)H 求得磁介质内的磁化强度,因而正确答案为(B ).7 -6 北京正负电子对撞机的储存环是周长为240 m 的近似圆形轨道,当环中电子流强度为8 mA 时,在整个环中有多少电子在运行? 已知电子的速率接近光速。
上海交大第三版大学物理学答案上册

第一章 运动的描述1、解:设质点在x 处的速度为v ,62d d d d d d 2x txx t a +=⋅==v v ()x x xd 62d 02⎰⎰+=v v v()2 213xx +=v2、解:=a d v /d t 4=t , d v 4=t d t⎰⎰=vv 0d 4d tt tv 2=t 2v d =x /d t 2=t 2t t x txx d 2d 020⎰⎰=x 2=t 3 /3+x 0 (SI)3、解: ct b t S +==d /d vc t a t ==d /d v()R ct b a n /2+=根据题意:a t =a n即()R ct b c /2+=解得cb c R t -=4、解:根据已知条件确定常量k()222/rad 4//s Rt t k ===v ω24t =ω, 24Rt R ==ωvs t 1=时,v = 4Rt 2 = 8 m/s 2s /168/m Rt dt d a t ===v22s /32/m R a n ==v()8.352/122=+=nt a a a m/s 25、解:(1) 球相对地面的初速度=+='v v v 030 m/s抛出后上升高度9.4522='=gh v m/s 离地面高度H = (45.9+10) m =55.9 m(2) 球回到电梯上时电梯上升高度=球上升高度2021)(gt t t -+=v v v 08.420==gt v s 6、解: 设人到船之间绳的长度为l ,此时绳与水面成θ角,由图可知222s h l +=将上式对时间t 求导,得ts s t l ld d 2d d 2= 根据速度的定义,并注意到l ,s 是随t 减少的,∴tsv v t l v d d ,d d 0-==-=船绳即 θcos d d d d 00v v s lt l s l t s v ==-=-=船 或 sv s h s lv v 02/1220)(+==船 将船v 再对t 求导,即得船的加速度320222022002)(d d d d d d sv h s v s l s v s lv s v v s t sl t l st v a =+-=+-=-==船船 7、解:(1)大船看小艇,则有1221v v v-=,依题意作速度矢量图如图(a)由图可知1222121h km 50-⋅=+=v v v方向北偏西︒===87.3643arctan arctan21v v θ (2)小船看大船,则有2112v v v-=,依题意作出速度矢量图如图(b),同上法,得5012=v 1h km -⋅,方向南偏东o 87.36第二章 运动定律与力学中的守恒定律1、解:(1)位矢j t b i t a rωωsin cos += (SI)可写为t a x ωcos =,t b y ωsin =t a t x x ωωsin d d -==v ,t b ty ωωυcos d dy == 在A 点(a ,0) ,1cos =t ω,0sin =t ω E KA =2222212121ωmb m m y x =+v v 在B 点(0,b ) ,0cos =t ω,1sin =t ωE KB =2222212121ωma m m y x =+v v (2) j ma i ma F y x +==j t mb i t ma ωωωωsin cos 22--由A →B ⎰⎰-==020d cos d a a x x x t a m x F W ωω=⎰=-022221d a ma x x m ωω ⎰⎰-==b b y y t b m y F W 020dy sin d ωω=⎰-=-b mb y y m 022221d ωω2、解:A 、B 两球发生弹性正碰撞,由水平方向动量守恒与机械能守恒,得B B A A A A m m m v v v +=0①2220212121B B A A A A m m m v v v +=② 联立解出0A B A B AA m m m m v v +-=,02A BA AB m m m v v += 由于二球同时落地,∴0>A v ,B A m m >;且B B A A L L v v //=∴52==B A B A L L v v ,522=-A B Am m m 解出5/=B A m m3、解:(1) 释放后,弹簧恢复到原长时A 将要离开墙壁,设此时B 的速度为v B 0,由机械能守恒,有2/3212020B m kx v = 得mk x B 300=v A 离开墙壁后,系统在光滑水平面上运动,系统动量守恒,机械能守恒,当弹簧伸长量为x 时有022211B m m m v v v =+①202222221121212121B m m kx m v v v =++②当v 1 =v 2时,由式①解出v 1 =v 2mkx B 3434/300==v (2) 弹簧有最大伸长量时,A 、B 的相对速度为零v 1 =v 2 =3v B 0/4,再由式②解出0max 21x x =4、解:二滑块在弹力作用下将沿水平导杆作振动. 因导杆光滑,不产生摩擦阻力, 故整个系统的机械能守恒,而且沿水平方向的动量守恒(等于零).当二滑块运动到正好使弹簧垂直于二导杆时,二滑块所受的弹力的水平分力同时为零,这时二滑块的速度将分别达到其最大速度v 1和v 2且此时弹簧为原长,弹簧势能为零。
大学物理学课后习题7第七章答案

q 6 0
对于边长 a 的正方形,如果它不包含 q
所在的顶点,则 e
q 24 0
,
如果它包含 q 所在顶点则 e 0 .
7.8 均匀带电球壳内半径6cm,外半径10cm,电荷体密度为2×
105 C·m-3求距球心5cm,8cm ,12cm 各点的场强.
解:
高斯定理 当 r 5 cm
均匀分布,其电势U
E
dr
R2
qdr R2 4π 0 r 2
q 4π 0 R
题 7.16 图
(2)外壳接地时,外表面电荷 q 入地,外表面不带电,内表面电荷仍
为 q .所以球壳电势由内球 q 与内表面 q 产生:
U
q 4π 0 R2
q 4π 0 R2
(2)同理
dEQ
1 4π 0
dx
x2
d
2 2
方向如题 7.6 图所示
由于对称性 l dEQx 0 ,即 EQ 只有 y 分量,
∵
dEQy
1 4π 0
dx
x2
d
2 2
d2
x2
d
2 2
EQy
l dEQy
d2 4π 2
l 2
dx
l
3
2
(x2
d
2 2
)
2
l
1由于电荷均匀分布与对称性ab和cd段电荷在o点产生的场强互相抵消取?ddrl?则??ddrq?产生o点e?d如图由于对称性o点场强沿y轴负方向题714图??????cos4dd2220?????rreeyr04???2sin??2sin??r02????2ab电荷在o点产生电势以0??u?????ab200012ln44d4drrxxxxu??????同理cd产生2ln402???u半圆环产生00344??????rru0032142ln2?????????uuuuo715两个平行金属板ab的面积为200cm2a和b之间距离为2cmb板接地如图715所示
大学物理学第三版上海交大上册习题答案

第一章习 题1-1. 已知质点位矢随时间变化的函数形式为)ωt sin ωt (cos j i +=R r其中ω为常量.求:(1)质点的轨道;(2)速度和速率。
解:1) 由)ωt sin ωt (cos j i +=R r 知 t cos R x ω= t sin R y ω=消去t 可得轨道方程 222R y x =+2) j rv t Rcos sin ωωt ωR ωdtd +-==i R ωt ωR ωt ωR ωv =+-=2122])c o s ()s i n [(1-2. 已知质点位矢随时间变化的函数形式为j i r )t 23(t 42++=,式中r 的单位为m ,t 的单位为s .求:(1)质点的轨道;(2)从0=t 到1=t 秒的位移;(3)0=t 和1=t 秒两时刻的速度。
解:1)由j i r )t 23(t 42++=可知2t 4x =t 23y +=消去t 得轨道方程为:2)3y (x -=2)j i rv 2t 8dtd +==j i j i v r 24)dt 2t 8(dt 11+=+==⎰⎰Δ3) j v 2(0)= j i v 28(1)+=1-3. 已知质点位矢随时间变化的函数形式为j i r t t 22+=,式中r 的单位为m ,t 的单位为s .求:(1)任一时刻的速度和加速度;(2)任一时刻的切向加速度和法向加速度。
解:1)j i rv 2t 2dt d +== i va 2dtd ==2)212212)1t (2]4)t 2[(v +=+= 1t t 2dtdv a 2t +==n a ==1-4. 一升降机以加速度a 上升,在上升过程中有一螺钉从天花板上松落,升降机的天花板与底板相距为d ,求螺钉从天花板落到底板上所需的时间。
解:以地面为参照系,坐标如图,升降机与螺丝的运动方程分别为20121at t v y += (1) 图 1-420221gt t v h y -+= (2)21y y = (3)解之t =1-5. 一质量为m 的小球在高度h 处以初速度0v 水平抛出,求: (1)小球的运动方程;(2)小球在落地之前的轨迹方程; (3)落地前瞬时小球的t d d r ,t d d v ,tv d d . 解:(1) t v x 0= 式(1)2gt 21h y -= 式(2)j i r )gt 21-h (t v (t)20+=(2)联立式(1)、式(2)得 22v 2gx h y -=(3)j i rgt -v t d d 0= 而 落地所用时间 gh 2t = 所以j i r 2gh -v t d d 0= j v g td d -= 2202y 2x )gt (v v v v -+=+=212220[()]g t dv dt v gt ==+1-6. 路灯距地面的高度为1h ,一身高为2h 的人在路灯下以匀速1v 沿直线行走。
大物 上海交大课后答案 第七章

习题77-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:; 直导线在O点的磁感应强度:000020[sin 60sin(60)]4cos602II B R Rμππ=--=,方向:⊗;∴总场强:01)23IB Rμ=,方向⊗。
7-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B aR x μ=++,右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B a R x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向右,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:d B d x 25502222223()[()]()[()]22222I R a a a a x R x x R x μ--⎧⎫=-++++-+-⎨⎬⎩⎭当0x =时,0d Bd x=,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:22()d d B d B d x d x d x== 222057572222222222225()5()311222[()][()][()][()]2222a a x x I R a a a a R x R x R x R x μ⎧⎫+-⎪⎪⎪⎪--+-⎨⎬⎪⎪+++++-+-⎪⎪⎩⎭当0x =时,202x d Bd x ==222072223[()]2a R I R a R μ-+, 可见,当a R >时,2020x d Bd x=>,O 点的磁感应强度B 有极小值, 当a R <时,2020x d Bd x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d Bd x ==,说明磁感应强度B 在O 点附近的磁场是相当均匀的,可看成匀强磁场。
大学物理课后答案第七章静电场中的导体和电介质(精)

习题727-2 三个平行金属板A,B和C的面积都是200cm,A和B相距4.0mm,A与C相距2.0 mm.B,C都接地,如题7-2图所示.如果使A板带正电3.0×-710C,略去边缘效应,问B板和C板上的感应电荷各是多少?以地的电势为零,则A板的电势是多少?解: 如题7-2图示,令A板左侧面电荷面密度为σ1,右侧面电荷面密度为σ2题7-2图(1)∵ UAC=UAB,即∴ EACdAC=EABdAB∴ σ1EACdAB===2 σ2EABdACqA S且σ1+σ2=得σ2=qA2q, σ1=A 3S3S而 qC=-σ1S=-2qA=-2⨯10-7C 3qB=-σ2S=-1⨯10-7C(2) UA=EACdAC= σ1dAC=2.3⨯103V ε07-3 两个半径分别为R1和R2(R1<R2)的同心薄金属球壳,现给内球壳带电+q,试计算:(1)外球壳上的电荷分布及电势大小;(2)先把外球壳接地,然后断开接地线重新绝缘,此时外球壳的电荷分布及电势;*(3)再使内球壳接地,此时内球壳上的电荷以及外球壳上的电势的改变量.解: (1)内球带电+q;球壳内表面带电则为-q,外表面带电为+q,且均匀分布,其电势题7-3图U=⎰∞R2 ∞E⋅dr=⎰qdrq= R24πεr24πε0R0(2)外壳接地时,外表面电荷+q入地,外表面不带电,内表面电荷仍为-q.所以球壳电势由内球+q与内表面-q产生:U=q4πε0R2-q4πε0R2=0(3)设此时内球壳带电量为q';则外壳内表面带电量为-q',外壳外表面带电量为-q+q' (电荷守恒),此时内球壳电势为零,且UA=q'4πε0R1-q'4πε0R2+-q+q'=0 4πε0R2得 q'=外球壳上电势 R1q R2-q+q'(R1-R2)q= 24πε0R24πε0R2UB=q'4πε0R2-q'4πε0R2+7-4 半径为R的金属球离地面很远,并用导线与地相联,在与球心相距为d=3R 处有一点电荷+q,试求:金属球上的感应电荷的电量.解: 如题8-24图所示,设金属球感应电荷为q',则球接地时电势UO=07-4图由电势叠加原理有:UO=q'q+=0 4πε0R4πε03Rq 3得 q'=-7-5有三个大小相同的金属小球,小球1,2带有等量同号电荷,相距甚远,其间的库仑力为F0.试求:(1)用带绝缘柄的不带电小球3先后分别接触1,2后移去,小球1,2之间的库仑力;(2)小球3依次交替接触小球1,2很多次后移去,小球1,2之间的库仑力.q2解: 由题意知F0= 24πε0r(1)小球3接触小球1后,小球3和小球1均带电q, 2小球3再与小球2接触后,小球2与小球3均带电3q''=q 4∴此时小球1与小球2间相互作用力 q'=32qq'q"3F1=-=F0 2284πε0r4πε0r(2)小球3依次交替接触小球1、2很多次后,每个小球带电量均为2q. 322qq4∴小球1、2间的作用力F2==F0 4πε0r297-6如题7-6图所示,一平行板电容器两极板面积都是S,相距为d,分别维持电势UA=U,UB=0不变.现把一块带有电量q的导体薄片平行地放在两极板正中间,片的面积也是S,片的厚度略去不计.求导体薄片的电势.解: 依次设A,C,B从上到下的6个表面的面电荷密度分别为σ1,σ2,σ3,由静电平衡条件,电荷守恒定律及维持UAB=Uσ4,σ5,σ6如图所示.可得以下6个方程题7-6图ε0UqA1⎧σ+σ==CU=20⎪1SSd⎪⎪σ+σ=q4⎪3S⎪⎨σ+σ=qB=-ε0U56⎪Sd⎪σ+σ=03⎪2⎪σ4+σ5=0⎪⎩σ1=σ2+σ3+σ4+σ5+σ6q解得σ1=σ6= 2Sσ2=-σ3=ε0Ud-q 2Sσ4=-σ5=ε0Ud+q 2S所以CB间电场E2=σ4Uq=+ ε0d2ε0Sd1qd=(U+) 222ε0SUC=UCB=E2注意:因为C片带电,所以UC≠UU,若C片不带电,显然UC= 227-7 在半径为R1的金属球之外包有一层外半径为R2的均匀电介质球壳,介质相对介电常数为εr,金属球带电Q.试求:(1)电介质内、外的场强;(2)电介质层内、外的电势;(3)金属球的电势.解: 利用有介质时的高斯定理D⋅dS=∑q S(1)介质内(R1<r<R2)场强Qr QrD=,E内=; 334πr4πε0εrr介质外(r<R2)场强Qr QrD=,E外= 334πr4πε0r(2)介质外(r>R2)电势U=⎰介质内(R1<r<R2)电势∞r E外⋅dr=Q 4πε0rU=⎰∞r ∞ E内⋅dr+⎰E外⋅drr=11Q (-)+4πε0εrrR24πε0R21ε-1(+r) 4πε0εrrR2Qq=(3)金属球的电势R2 ∞ U=⎰E内⋅dr+⎰E外⋅dr R1R2R2=⎰=Qdr4πε0εrr2Q(R+⎰∞R2Qdr 4πε0r24πε0εr1εr-1+) R1R27-8如题7-8图所示,在平行板电容器的一半容积内充入相对介电常数为εr的电介质.试求:在有电介质部分和无电介质部分极板上自由电荷面密度的比值.解: 如题7-8图所示,充满电介质部分场强为E2,真空部分场强为E1,自由电荷面密度分别为σ2与σ1 由D⋅dS=∑q0得D1=σ1,D2=σ2而D1=ε0E1,D2=ε0εrE2E1=E2=∴ U dσ2D2==εr σ1D1题7-8图7-9 金属球壳A和B的中心相距为r,A和B原来都不带电.现在A的中心放一点电荷q1,在B的中心放一点电荷q2,如题8-30图所示.试求:(1) q1对q2作用的库仑力,q2有无加速度;(2)去掉金属壳B,求q1作用在q2上的库仑力,此时q2有无加速度.解: (1)q1作用在q2的库仑力仍满足库仑定律,即F=1q1q2 4πε0r2但q2处于金属球壳中心,它受合力为零,没有加速度...(2)去掉金属壳B,q1作用在q2上的库仑力仍是F=受合力不为零,有加速度.1q1q2,但此时q24πε0r2题7-9图 7-10 半径为R1=2.0cm 的导体球,外套有一同心的导体球壳,壳的内、外半径分别为R2=4.0cm和R3=5.0cm,当内球带电荷Q=3.0×10C 时,求: -8(1)整个电场储存的能量;(2)此电容器的电容值.解: 如图,内球带电Q,外球壳内表面带电-Q,外表面带电Q题7-10图(1)在r<R1和R2<r<R3区域E=0在R1<r<R2时E1= Qr 34πε0rr>R3时 E2=∴在R1<r<R2区域Qr 4πε0r3W1=⎰R2R11Qε0()24πr2dr 224πε0rQ2drQ211=(-) 8πε0r28πε0R1R2=⎰在r>R3区域 R2R11QQ2122W2=⎰ε0()4πrdr= 2R328πε0R34πε0r∞Q2111(-+) ∴总能量W=W1+W2=8πε0R1R2R3 =1.82⨯10-4J(2)电容器电容C=2W11=4πε/(-) 02R1R2Q=4.49⨯10-12F。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
习题77-1.如图所示的弓形线框中通有电流I ,求圆心O 处的磁感应强度B 。
解:圆弧在O 点的磁感应强度:00146I IB R Rμθμπ==,方向:;直导线在O点的磁感应强度:000020[sin 60sin(60)]4cos602II B R Rμππ=--=,方向:⊗;∴总场强:01)23IB Rμπ=-,方向⊗。
7-2.如图所示,两个半径均为R 的线圈平行共轴放置,其圆心O 1、O 2相距为a ,在两线圈中通以电流强度均为I 的同方向电流。
(1)以O 1O 2连线的中点O 为原点,求轴线上坐标为x 的任意点的磁感应强度大小;(2)试证明:当a R =时,O 点处的磁场最为均匀。
解:见书中载流圆线圈轴线上的磁场,有公式:2032222()I R B R z μ=+。
(1)左线圈在x 处P 点产生的磁感应强度:20132222[()]2P I R B a R x μ=++,右线圈在x 处P 点产生的磁感应强度:20232222[()]2P I R B aR x μ=+-,1P B 和2P B 方向一致,均沿轴线水平向右,∴P 点磁感应强度:12P P P B B B =+=2330222222[()][()]222I R a a R x R x μ--⎧⎫++++-⎨⎬⎩⎭;(2)因为P B 随x 变化,变化率为d Bd x,若此变化率在0x =处的变化最缓慢,则O 点处的磁场最为均匀,下面讨论O 点附近磁感应强度随x 变化情况,即对P B 的各阶导数进行讨论。
对B 求一阶导数:d B d x 25502222223()[()]()[()]22222I R a a a a x R x x R x μ--⎧⎫=-++++-+-⎨⎬⎩⎭当0x =时,0d Bd x=,可见在O 点,磁感应强度B 有极值。
对B 求二阶导数:22()d d B d B d x d x d x== 222057572222222222225()5()311222[()][()][()][()]2222a a x x I R a a a a R x R x R x R x μ⎧⎫+-⎪⎪⎪⎪--+-⎨⎬⎪⎪+++++-+-⎪⎪⎩⎭当0x =时,202x d Bd x ==222072223[()]2a R I R a R μ-+, 可见,当a R >时,2020x d Bd x=>,O 点的磁感应强度B 有极小值, 当a R <时,2020x d Bd x =<,O 点的磁感应强度B 有极大值,当a R =时,2020x d Bd x ==,说明磁感应强度B 在O 点附近的磁场是相当均匀的,可看成匀强磁场。
【利用此结论,一般在实验室中,用两个同轴、平行放置的N 匝线圈,相对距离等于线圈半径,通电后会在两线圈之间产生一个近似均匀的磁场,比长直螺线管产生的磁场方便实验,这样的线圈叫亥姆霍兹线圈】7-3.无限长细导线弯成如图所示的形状,其中c 部分是在xoy 平面内半径为R 的半圆,试求通以电流I 时O 点的磁感应强度。
解:∵a 段对O 点的磁感应强度可用0SB d l I μ⋅=∑⎰求得,有:04a I B R μπ=,∴04a IB j Rμπ=-b 段的延长线过O 点,0b B =,c 段产生的磁感应强度为:0044c I I B R R μμππ=⋅=,∴04c IB k R μ=则:O 点的总场强:0044O I IB j k R Rμμπ=-+,方向如图。
7-4.在半径cm 1=R 的无限长半圆柱形金属片中,有电流A 5=I 自下而上通过,如图所示。
试求圆柱轴线上一点P 处的磁感应强度的大小。
解:将半圆柱形无限长载流薄板细分成宽为dl R d θ=的长直电流, 有:dl d d I R θππ==,利用0S B d l I μ⋅=∑⎰。
在P 点处的磁感应强度为:00222d I I d dB R Rμμθππ==, ∴02sin sin 2x IdB dB d Rμθθθπ==,而因为对称性,0y B = 那么,005220sin 6.37102x x I IB B dB d T R Rπμμθθππ-=====⨯⎰⎰。
7-5.如图所示,长直电缆由半径为R 1的导体圆柱与同轴的内外半径分别为R 2、R 3的导体圆筒构成,电流沿轴线方向由一导体流入,从另一导体流出,设电流强度I 都均匀地分布在横截面上。
求距轴线为r 处的磁感应强度大小(∞<<r 0)。
解:利用安培环路定理0SB d l I μ⋅=∑⎰分段讨论。
(1)当10r R <≤时,有:210212r I B r R ππμπ⋅= ∴01212I rB R μπ=;(2)当12R r R ≤≤时,有:202B r I πμ⋅=,∴022IB r μπ=; (3)当23R r R ≤≤时,有:2223022322()r R B r I I R R πππμππ-⋅=--, ∴2232032232I B R r R rR μπ--=⋅; (4)当3r R >时,有:402()B r I I πμ⋅=-,∴40B =。
则:021011222323223230(0)()()0()222r R R r R B R r R r R I rR IrR r r I R R μπμπμπ⎧<≤⎪⎪⎪≤≤⎪⎪=⎨⎪-⎪⋅≤≤-⎪⎪>⎪⎩7-6.一边长为l =0.15m 的立方体如图放置在均匀磁场(63 1.5)T =++B i j k 中,计算(1)通过立方体上阴影面积的磁通量;(2)通过立方体六面的总磁通量。
解:(1)通过立方体上(右侧)阴影面积的磁通量为Wb135.015.066)5.136(21=⨯=⨯=⋅++=⋅=Φ⎰⎰⎰SSSm dS i dS k j i S d B(2)由于立方体左右两个面的外法线方向相反,通过这两个面的磁通量相互抵消,同理,上下两面和前后两面各相互抵消,因此通过立方体六面的总磁通量为0。
7-7.一根很长的直导线,载有电流10A ,有一边长为1m 的正方形平面与直导线共面,相距为1m ,如图所示,试计算通过正方形平面的磁感应通量。
解:将正方形平面分割成平行于直导线的窄条,对距离直导线为x 宽度为dx 的窄条,通过的磁通量为dx xIdx x I Bldx d m πμπμ21200=⨯⨯==Φ 通过整个正方形平面的磁通量为Wb 104122260210-⨯===Φ⎰.ln Idx x I m πμπμ7-8.如图所示,在长直导线旁有一矩形线圈,导线中通有电流120A =I ,线圈中通有电流210A =I ,已知d =1cm,b =9cm,l =20cm ,求矩形线圈上所受到的合力是多少?解:矩形线圈上下两边所受的磁力相互抵消。
矩形线圈左边所受的磁力为 N 10824102121-⨯===dI lI lB I F πμ 方向向左 矩形线圈右边所受的磁力为 N 108)(25102222-⨯=+==b d I lI lB I F πμ方向向右 矩形线圈上所受到的合力为 N 102.7421-⨯=-=F F F 方向向左7-9.无限长直线电流1I 与直线电流2I 共面,几何位置如图所示, 试求直线电流2I 受到电流1I 磁场的作用力。
解:在直线电流2I 上任意取一个小电流元dl I 2, 此电流元到长直线的距离为x ,无限长直线电流1I 在小电流元处产生的磁感应强度为:012I B xμπ=⊗,再利用d F I Bdl =,考虑到0cos60d xdl =,有:01202cos60I I d x d F x μπ=⋅, ∴0120120ln 2cos60b a I I I I d xb F x aμμππ=⋅=⎰。
7-10.一半径为R 的无限长半圆柱面导体,载有与轴线上的 长直导线的电流I 等值反向的电流,如图所示,试求轴线上长 直导线单位长度所受的磁力。
解:设半圆柱面导体的线电流分布为1I i Rπ=, 如图,由安培环路定理,i 电流在O 点处产生的磁感应强度为:02i d B Rd Rμθπ=⋅,可求得:00120sin 2O y iR I B d B d R Rπμμθθππ==⋅=⎰⎰; 又∵d F I dl B =⨯,故01222O I I d F B I dl dl Rμπ==, 有:0122I I d F f dl Rμπ==,而21I I =,所以:202πμ==Id F f dl R。
7-11.有一根U 形导线,质量为m ,两端浸没在水银槽中, 导线水平部分的长度为l ,处在磁感应强度大小为B 的均匀 磁场中,如图所示。
当接通电源时,U 导线就会从水银槽中 跳起来。
假定电流脉冲的时间与导线上升时间相比可忽略, 试由导线跳起所达到的高度h 计算电流脉冲的电荷量q 。
解:接通电流时有F BIl =⇒d v mBIl dt =,而d q I dt =, 则:mdv Bl dq =,积分有:0v m mvq dv Bl Bl==⎰; 又由机械能守恒:mgh mv =221,有:gh v 2=,∴mv q Bl ==7-12.截面积为S 、密度为ρ的铜导线被弯成正方形的三边, 可以绕水平轴O O '转动,如图14-53所示。
导线放在方向竖 直向上的匀强磁场中,当导线中的电流为I 时,导线离开原来 的竖直位置偏转一个角度θ而平衡,求磁感应强度。
解:设正方形的边长为a ,质量为m ,aS m ρ=。
平衡时重力矩等于磁力矩:由m M p B =⨯,磁力矩的大小:22sin (90)cos M BI a BI a θθ=-=; 重力矩为:sin 2sin 2sin 2aM mga mg mga θθθ=+⋅=平衡时:2cos 2sin BI a mga θθ=,∴22tan tan mg gSB I a Iρθθ==。
7-13.在电子显像管的电子束中,电子能量为12000eV ,这个显像管的取向使电子水平地由南向北运动。
该处地球磁场的竖直分量向下,大小为55.510T -⨯。
问: (1)电子束受地磁场的影响将偏向什么方向? (2)电子的加速度是多少?(3)电子束在显像管内在南北方向上通过20cm 时将偏离多远? 解:(1)根据f q v B =⨯可判断出电子束将偏向东。
(2)利用221mv E =,有:m E v 2=, 而ma qvB f ==,∴1141028.62-⋅⨯===s m m EmqB m qvB a(3)2211()3mm 22Ly at a v===。
7-14.如图所示,一个带有电荷q (0q >)的粒子,以速度v 平行于均匀带电的长直导线运动,该导线的线电荷密度为λ(0λ>),并载有传导电流I 。