考研数学辅导讲义(完整)
数学分析考研辅导班讲义1

n
2n p
p
11 2n1 2n2
1 2n
p
1 2n1
1
1 2p
1
1 2
1 2n
1 n
,
故 0 , N 1 0 ,当 n N 时, 自然数 p ,由以上不等式知
an p an
1 n
,
故an 收敛. 定理 1.2.2 数列an 收敛 an 的任意两个子数列都收敛,且都收敛于同一
1
2 n2 n
n
1 n2 1
2 n2
2
n n2
n
1
2 n2 1
n
nn 1
2 n2 1
而
lim n n 1
n 2 n2 1
1 2
,故原极限
1 2
.
例 1.2.8 设 0 x1 1, xn1 xn 1 xn , n 1, 2, , 证 明 xn 收 敛 , 并 求
第 3 步 写出 u 在不同区间段上 x 所对应的变化区间;
第 4 步 将第 3 步中所得结果代入 y f (u) 中,便得 y f (g(x)) 的
表达式及相应 x 的变化区间 .
练习题
1
设
f
(x)
1, 0,
x 1 x 1
,
g(x)
2 x2,
2,
x 2 x 2
ab
b 0 不存在 b 0 不定 a 0 不存在 a 0 不定
不确定
lim an b n n
考研数学基础班讲义-微积分第18讲_函数项级数(优选.)

∞
∞
∑ ∑ an 相应于 an (x − 1)n 在 x = 2 处的数项级数,
n=1
n=1
而 x = 2 ∈ (−1, 3) ,所以绝对收敛。
例 18.3 求幂级数 n∑∞=191n x 2n−1 的收敛域。
【解】此时不能套用收敛半径的计算公式,而应直接用比率法求其收敛半径。
lim
k →∞
1 9k +1
的全体。 (2)一般来说,收敛域可能是较为复杂的集合。
18.2 幂级数的概念 幂级数是一类简单的函数项级数。只有真正理解幂级数收敛半径的概念,掌握幂级数
在其收敛区间内的性质,才能掌握好收敛半径的求法,并能处理将函数展开为指定点的幂级
数和求简单级数的和的问题。 18.2.1 幂级数的定义与收敛域
∞
∑ 定义 18.4 设 {an }(n = 0,1,2,3,L) 是一实数列,则称形如 an (x − x0 )n 的函数项级数为 n=0
x 2k +1
1 9k
x 2k −1
= lim x2 k→∞ 9
=
x2 9
,
所以
当 x2 9
< 1,
即 | x |< 3 时,级数 n∑∞=191n
x 2n−1 绝对收敛;
∑ 当 x 2 > 1, 即 | x |> 3 时, lim 1 x 2n−1 = +∞ ,所以级数 ∞ 1 x 2n−1 发散。
n=0
的收敛半径为 R
,并不能保证
lim an+1 a n→∞
n
=1 R
或
lim n
n→∞
an
= 1 成立。 R
∑∞
(2)对于级数 an x n
考研数学基础复习全书《知识点解析》讲义02

一元函数积分学 考纲要求:(1)理解原函数的概念,理解不定积分和定积分的概念(2)掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定 理,掌握换元积分法与分部积分法(3)会求有理函数 三角函数有理式和简单的无理函数的积分(数一数二要求 数三参考)(4)理解积分上限函数,会求它的导数,掌握牛顿-莱布尼茨公式 (5)了解反函数的概念,会计算反常积分(6)掌握用定积分表达和计算一些几何量和物理量(平面图形的面积,平面曲 线的弧长, 旋转体的体积及侧面积,平行截面面积为已知的立体体积,功, 引力,压力,质心,形心等)及函数的平均值(数一,数二),会利用定积 分计算平面图形的面积,旋转体的体积和函数的平均值。
会利用定积分求 解简单的经济应用问题。
(数三)知识结构框架:⎪⎪⎩⎪⎪⎨⎧反常积分变限积分定积分原函数与不定积分概念⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧⎪⎪⎩⎪⎪⎨⎧华里士公式周期性化简计算几何意义计算;分部积分积分表:凑;第二换元定积分的计算简单无理式积分数有理式积分有理函数积分;三角函部积分法第二类换元积分法;分基本积分表:凑微分法不定积分的计算计算⎪⎪⎪⎩⎪⎪⎪⎨⎧⎩⎨⎧经济应用(数三)物理应用(数一数二)二)弧长,侧面积(数一数体体积平面图形的面积和旋转几何应用应用一元函数积分学的概念1.原函数:如果在区间I 上,可导函数函数为的)(导x F ()x f ,即I x ∈∀,都有)()(x f x F ='成立,则称)(x F 是)(x f 在区间I 上的一个 原函数.注:原函数必须指明是函数在哪个区间上的原函数。
定理:若()()()必有无穷多个原函数则上有一个原函数x f x F x f ,在区间 定理:()()的全体原函数函数族包括了x f C x F +对任意常数C,形如 2.不定积分:函数)(x f 在区间I 上的所有原函数称为)(x f 的不定积分,记为⎰dx x f )(,即C x F dx x f +=⎰)()(.例1:设函数()x f 在()∞+∞,-上连续,则()=⎰dx x f d ()()x f A :()dx x f B )( ()()C x f C + ()()dx x f D '答案:B例2:若()()有一个原函数是()则的导函数是x f x x f ,sec 2 ()x A cos ln 1- ()x B sin ln 1- ()x C sin 1+ ()x D cos 1-答案:A2:定积分定义:设函数()x f 在区间[]b a ,上有界,将[]b a ,任意分成n 个子区间[]i i x x ,1-, 分点为11210,---=∆=<<<=i i i n n x x x b x x x x x a 为该小区间的长度, 在每个小区间[]i i x x ,1-上任意取一点i ξ,对()()()i ni i i i x f n i x f ∆=∆∑=13,2,1ξξ求和 ,记{}i ni x ∆=≤≤1max λ,若对[]b a ,的 任意分法,()i ni i x f ∆∑=→1lim ξλ极限存在,则称此极限为()x f 在区间[]b a ,上的定积分,记为()dx x f b a⎰,即定积分()()i ni i bax f dx x f ∆=∑⎰=→1lim ξλ可积的条件:例3 ⎪⎭⎫ ⎝⎛+++++++++∞→n n n n n n n n n 2224211lim答案:dx x x⎰++10211例4:∑∑==∞→ni nj n n ij 114lim答案:41例5:()()=++∑∑==∞→ni nj n j n i n n1122lim答案:()()dy y dx x ⎰⎰++102101111定积分的几何意义若0)(≥x f ,则dx x f ba ⎰)(表示以曲线)(x f y =、两直线b x a x ==,与x 轴所围成的曲边梯形的面积. 若0)(≤x f ,则dx x f ba ⎰)(表示以曲线)(x f y =、两直线b x a x ==,与x 所围成的曲边梯形的面积的负值 若)(x f 在[]b a ,上有正有负,则dx x f ba ⎰)(表示曲边梯形的面积的代数和,在0)(≥x f 部分,取“+”,在0)(≤x f 部分,取“-”定积分的性质:当()()()0.==-=<⎰⎰⎰bababadx x f b a dx x f dx x f a b 时,特别的,时,约定(1)⎰-=baa b dx 1(2)[]⎰⎰⎰±=±b ab abadx x g k dx x f k dx x g k x f k )()()()(2121(3)⎰⎰⎰∀+=b aabc dx x f dx x f dx x f c c,)()()((4)在[]b a ,上,)()(x g x f ≤,则⎰⎰≤b abadx x g dx x f )()(特别地⎰⎰≤babadx x f dx x f )()((5)Mm ,是)(x f 在[]b a ,上的最小值与最大值,则⎰-≤≤-b aa b M dx x f a b m )()()((6)积分中值定理:设函数()x f 在区间[]b a ,上连续,则存在[]b a ,∈ξ,使得()()()a b f dx x f ba -=⎰ξ3:变限积分:设函数()x f 在区间[]b a ,上连续,并且设x 为[]b a ,上的一点,考察()x f 在部分区间[]x a ,上的定积分()dx x f xa ⎰首先,由于()x f 在区间[]x a ,上仍旧连续,因此这个定积分存在。
考研高数讲义新高等数学上册辅导讲义——第二章上课资料

第二章导数与微分第一节导数概念一、导数的定义 定义:若极限()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆存在,则称函数()y f x =在点0x 处可导,此极限值称为函数()y f x =在点0x 处的导数。
记为: ()0f x '、0x x y ='、0x x dy dx =、()0x x df x dx = (或极限()()lim 000x x f x f x x x →--存在也可)()()lim lim 0000x x f x x f x y x x∆→∆→+∆-∆=∆∆单侧导数:左导数:()()lim 000x f x x f x x-∆→+∆-=∆()()lim 000x x f x f x x x -→--存在,则称左导数存在,记为:()0f x -'。
右导数:()()lim 000x f x x f x x+∆→+∆-=∆()()lim 000x x f x f x x x +→--存在,则称右导数存在,记为:()0f x +'。
【例1】(89一)已知()32f '=,则【例2】(87二)设()f x 在x a =处可导,则(A )()f a '. (B )()2f a '.(C )0. (D )()2f a '.【例3】(89二)设()()()()12f x x x x x n =+++,则()0f '= .(C)可导,但导数不连续. (D)可导,但导数连续.处的(A)左、右导数都存在. (B)左导数存在,但右导数不存在.(C)左导数不存在,但右导数存在.(D)左、右导数都不存在.【例7】(96二)设函数()f x在区间(,)-δδ内有定是()f x的(A)间断点. (B)连续而不可导的点. (C)可导的点,且()00f'=.(D)可导的点,且()00f'≠.【例8】(90三)设函数()f x 对任意的x 均满足等式()()1f x af x +=,且有()0f b '=,其中a 、b 为非零常数,则(A )()f x 在1x =处不可导.(B )()f x 在1x =处可导,且()1f a '=.(C )()f x 在1x =处可导,且()1f b '=.(D )()f x 在1x =处可导,()1f ab '=.二、导数的几何意义和物理意义导数的几何意义: 切线的斜率为:()()tan lim 00x x f x f x k x x →-==-α, ()()00f x f x x x --导数的物理意义:某变量对时间t 的变化率,常见的有速度和加速度。
考研陈文灯考研数学讲义【绝密版】

e2
三、补充习题(作业)
1. f (x) ln 1 x ,求y''(0) 3
1 x2
2
2.曲线
x y
et et
sin 2t 在(0,1)处切线为y cos 2t
2x
1
0
考研资料——免费提供
微信公众:机械考研汇
- 8 -1
3. y x ln(e 1 )(x 0)的渐进线方程为y x 1
证: Lagrange : f (b) f (a) f '( ) ba
械考研汇
令 f (x) ln 2 x, ln 2 b ln 2 a 2 ln
ba
:机
号
众 令(t) ln t ,'(t) 1 ln t 0( ) (e2 ) ln 2
公 t
t2
e2
信
微 ln 2 b ln 2 a 4 (b a) (关键:构造函数)
证: f (x) f (0) f '(0)x 1 f ''(0)x2 1 f '''()x3
2!
3!
其中 (0, x), x [1,1]
考研资料——免费提供
微信公众:机械考研汇
- 7 -1
0
将 x=1,x=-1 代入有
f (1)
f (0)
1 2
f ''(0) 1 6
f '''(1 )
lim b
b1 ( 1x
x 1 x2
)dx
4
1 ln 2 2
考 5. f (x) 连续,(x) 1 f (xt)dt ,且 lim f (x) A ,求(x) 并讨论'(x) 在 x 0 的连
数学分析考研讲义10

∫ 的部分,计算积分 xyds . C
{ 解:因C :
x = r cosθ y = r sinθ
,0
≤θ
≤
π 2
,所以
∫ ∫ ∫ xyds =
π
2 r2 sinθ cosθ
r2 dθ = r3
uLv+
r
∫ (2) L = L1 + L2 ,
F ( x, y) d r
L
uv
r uv
r
= ∫L1 F ( x, y) d r + ∫L2 F ( x, y) d r .
(3) (4)
∫L ∫L
k
⋅
uv F
(
x,
uv uFv
(
x,
y
r
)y+) rdGuvr(=x,kuyv⋅)∫L
uv F
(
∴
∫L
(
x,
y
)
ds
=
1
∫0
xdx
+
1
∫0
ydy
+
1
∫0
(
x
+
1
−
x
)
2dx
= 1 + 1 + 2 =1+ 2 . 22
∫ 例 10.1.2 (湖南大学考研试题)计算 x2 + y2 ds ,其中 c : x2 + y2 = −2 y . c
解:令 x = r cosθ , y = r sinθ ,则 c : r = −2sinθ (−π ≤ θ ≤ 0) .
)
dx
+
Q
( x,
r
y
)
dy
考研数学之高等数学讲义第五章(考点知识点+概念定理总结)

82 第五章 向量代数与空间解析几何§5.1 向量代数(甲)内容要点内容要点一、空间直角坐标系一、空间直角坐标系 二、向量概念二、向量概念®a =®i x +®j y +®k z坐标()z y x ,,模®a =222z y x ++ 方向角g b a ,,方向余弦g b a cos ,cos ,cosa cos =222zy x x ++ ;b cos =222zy x y ++ ;g cos =222zy x z ++三、向量运算三、向量运算设®a ()11,1,z y x ;®b ()22,2,z y x ;®c ()33,3,z y x 1. 加(减)法加(减)法®a ±®b =()2121,21,z z y y x x ±±± 2. 数乘数乘 ()111,,z y x a l l l l =®3. 数量积(点乘)(ⅰ)定义®a ·®b =®a®b ÷øöçèæ®®Ðb a ,cos (ⅱ)坐标公式®a ·®b =21x x +21y y +21z z (ⅲ)重要应用®a ·®b =0Û®a ^®b4.向量积(叉乘)(ⅰ)定义®a ´®b =®®ba ÷øöçèæ®®Ðb a ,sin ®a ´®b 与®a 和®b 皆垂直,且®a ,®b ,®a ´®b 构成右手系构成右手系83(ⅱ)坐标公式®a ´®b =222111z y x z y x k j i®®®(ⅲ)重要应用®a ´®b =®0Û®a ,®b 共线共线5、混合积、混合积 (ⅰ)定义(ⅰ)定义(®a ,®b ,®c )=(®a ´®b )·®c (ⅱ)坐标公式(®a ,®b ,®c )=333222111z y x z y x z y x (ⅲ)÷øöçèæ®®®c b a ,,表示以®a ,®b ,®c 为棱的平行六面体的体积为棱的平行六面体的体积§5.2 平面与直线(甲)内容要点(甲)内容要点一、一、 空间解析几何空间解析几何1 空间解析几何研究的基本问题。
考研数学基础串讲讲义

考研数学的命题特点1. 基础性【例一】极限定义1、lim x →∙是什么?(lim n →∞是什么?)①lim x →∙1)“x →∙”存在六种情形 (1)0x x →00,0,x x εδ∃><-< (2)0x x +→00,0,x x εδ∃><-<(3)0x x -→00,0,x x εδ∃><-<(4) x →∞0,,X x X ∃>> (5) x →+∞0,,X x X ∃>> (6) x →-∞0,,X x X ∃><-2极限趋向的“过程性”——若lim x →∙f(x)∃,则f(x)在x →∙时处处有定义(命题A ⇒B ,则B ⇒A )故有:若f(x)在x →∙时至少一点无定义,⇒lim x →∙f(x)不存在。
(2016)求0lim x →1sin sin()1sin()x x x x⎛⎫ ⎪⎝⎭【分析】x →∙,xsin(1x)→0x ~0, sinx ~x. 狗~0,sin 狗~狗xsin(1x )→0, xsin(1x )~sin(xsin(1x))故原式=1知道为什么这么做不对吗?来看看正解吧!【正解】当x=π1k ,|k|充分大,xsin(1x )=0。
还记得极限的定义吗?0x →时可以取到0嘛?答案当然是不可以!但是却可以取到除零外任意小的点,例如取x=π1k ,此时xsin(1x )的极限=0。
所以xsin(1x)在时0x →不能叫0→,而叫做无穷小量。
故f(x)= 1sin(sin())1sin()x x x x在x=π1k 处无定义,⇒原极限不∃ ②lim n →∞n →∞只有一种情形,专指n →+∞∃N>0, n>N(注意n 是自然数,没有负的,而且都是整数,所以是离散的) 2、极限定义 ①函数极限的定义 若0lim x x →f(x)=A ⇔∀ε>0, ∃δ>0,当0<|x-x0|<δ时,|f(x)-A|<ε②数列极限的定义。