单因素方差分析$非参数检验用

合集下载

16种统计分析方法

16种统计分析方法

16种常用的数据分析方法汇总2015-11-10 分类:数据分析评论(0)经常会有朋友问到一个朋友,数据分析常用的分析方法有哪些,我需要学习哪个等等之类的问题,今天数据分析精选给大家整理了十六种常用的数据分析方法,供大家参考学习。

一、描述统计描述性统计是指运用制表和分类,图形以及计筠概括性数据来描述数据的集中趋势、离散趋势、偏度、峰度。

1、缺失值填充:常用方法:剔除法、均值法、最小邻居法、比率回归法、决策树法。

2、正态性检验:很多统计方法都要求数值服从或近似服从正态分布,所以之前需要进行正态性检验。

常用方法:非参数检验的K-量检验、P-P图、Q-Q图、W 检验、动差法。

二、假设检验1、参数检验参数检验是在已知总体分布的条件下(一股要求总体服从正态分布)对一些主要的参数(如均值、百分数、方差、相关系数等)进行的检验。

1)U验使用条件:当样本含量n较大时,样本值符合正态分布2)T检验使用条件:当样本含量n较小时,样本值符合正态分布A单样本t检验:推断该样本来自的总体均数μ与已知的某一总体均数μ0 (常为理论值或标准值)有无差别;B配对样本t检验:当总体均数未知时,且两个样本可以配对,同对中的两者在可能会影响处理效果的各种条件方面扱为相似;C 两独立样本t检验:无法找到在各方面极为相似的两样本作配对比较时使用。

2、非参数检验非参数检验则不考虑总体分布是否已知,常常也不是针对总体参数,而是针对总体的某些一股性假设(如总体分布的位罝是否相同,总体分布是否正态)进行检验。

适用情况:顺序类型的数据资料,这类数据的分布形态一般是未知的。

A 虽然是连续数据,但总体分布形态未知或者非正态;B 体分布虽然正态,数据也是连续类型,但样本容量极小,如10以下;主要方法包括:卡方检验、秩和检验、二项检验、游程检验、K-量检验等。

三、信度分析检査测量的可信度,例如调查问卷的真实性。

分类:1、外在信度:不同时间测量时量表的一致性程度,常用方法重测信度2、内在信度;每个量表是否测量到单一的概念,同时组成两表的内在体项一致性如何,常用方法分半信度。

SPSS数据的参数检验和方差分析

SPSS数据的参数检验和方差分析

SPSS数据的参数检验和方差分析参数检验和方差分析是统计学中常用的两种分析方法。

本文将详细介绍SPSS软件中如何进行参数检验和方差分析,并提供一个示例来说明具体的操作步骤。

参数检验(Parametric Tests)适用于已知总体分布类型的数据,通过比较样本数据与总体参数之间的差异,来判断样本数据是否与总体相符。

常见的参数检验包括:1. 单样本t检验(One-sample t-test):用于比较一个样本的均值是否与总体均值相等。

2. 独立样本t检验(Independent samples t-test):用于比较两个独立样本的均值是否相等。

3. 配对样本t检验(Paired samples t-test):用于比较两个相关样本的均值是否相等。

4. 卡方检验(Chi-square test):用于比较两个或多个分类变量之间的关联性。

接下来,将以一个具体的实例来说明SPSS软件中如何进行单样本t检验和卡方检验。

实例:假设我们有一个数据集,记录了一所学校不同班级学生的身高信息。

我们想要进行以下两种分析:1. 单样本t检验:假设我们想要检验学生身高平均值是否等于169cm(假设总体均值为169cm)。

步骤如下:b.选择“分析”菜单,然后选择“比较均值”下的“单样本t检验”。

c.在弹出的对话框中,选择需要进行t检验的变量(身高),并将值169输入到“测试值”框中。

d.点击“确定”按钮,SPSS将生成t检验的结果,包括样本均值、标准差、t值和p值。

2.卡方检验:假设我们想要检验学生身高与体重之间是否存在关联。

步骤如下:a.打开SPSS软件,并导入数据集。

b.选择“分析”菜单,然后选择“非参数检验”下的“卡方”。

c.在弹出的对话框中,选择需要进行卡方检验的两个变量(身高和体重)。

d.点击“确定”按钮,SPSS将生成卡方检验的结果,包括卡方值、自由度和p值。

方差分析(Analysis of Variance,简称ANOVA)用于比较两个或以上样本之间的均值差异。

抽样检验方案的类型有哪些

抽样检验方案的类型有哪些

抽样检验方案的类型有哪些抽样检验方案的类型有哪些摘要:抽样检验是统计学中常用的一种方法,用于判断一个总体是否具有某种特征。

在实际应用中,根据研究目的和数据特点的不同,可以选择不同类型的抽样检验方案。

本文将介绍六种常见的抽样检验方案类型:单样本检验、双样本检验、配对样本检验、方差分析、相关分析和非参数检验,并对每种类型的方案进行详细的叙述和讨论。

关键词:抽样检验,类型,单样本检验,双样本检验,配对样本检验,方差分析,相关分析,非参数检验一、单样本检验单样本检验是指在抽样过程中,只有一个样本参与检验的方法。

它适用于总体参数已知的情况下,通过对样本数据进行统计推断,判断总体是否满足某种特征。

常用的单样本检验方法包括:单样本均值检验、单样本比例检验和单样本方差检验。

单样本检验的步骤包括:建立假设、选择显著性水平、计算统计量和判断决策。

二、双样本检验双样本检验是指在抽样过程中,同时有两个样本参与检验的方法。

它适用于对比两个总体是否相同或不同的情况。

双样本检验常用的方法包括:独立样本 t 检验、配对样本 t 检验和 Mann-Whitney U 检验。

独立样本 t 检验适用于两个独立样本的均值比较,配对样本 t 检验适用于两个相关样本的均值比较,Mann-Whitney U 检验适用于两个独立样本的中位数比较。

三、配对样本检验配对样本检验是指在抽样过程中,每个样本中的观测值之间存在相关关系的方法。

它适用于在相同样本上进行两次观测,比较观测值前后的差异是否显著。

常用的配对样本检验方法包括:配对样本 t 检验和符号检验。

配对样本 t 检验适用于样本差异服从正态分布的情况,符号检验适用于样本差异不服从正态分布的情况。

四、方差分析方差分析是一种用于比较两个以上样本均值是否存在显著差异的方法。

它适用于多个不同总体均值之间的比较。

方差分析常用的方法包括:单因素方差分析和多因素方差分析。

单因素方差分析用于比较一个因素下不同水平之间的均值差异,多因素方差分析用于比较多个因素的交互作用对均值的影响。

方差分析与非参数检验

方差分析与非参数检验

方差分析与非参数检验方差分析和非参数检验是两种常见的统计分析方法,用于比较不同组之间的差异或关联。

本文将详细介绍方差分析和非参数检验的原理、应用场景以及各自的优缺点。

方差分析(Analysis of Variance,ANOVA)是一种用于比较多个组之间均值差异的统计方法。

它基于总体均值与组内个体的个体值之间的差异,将总方差拆分为组内方差和组间方差,通过比较组间与组内方差的大小来判断组间均值是否显著不同。

方差分析一般分为单因素方差分析和多因素方差分析两种类型。

单因素方差分析适用于只有一个自变量(即因素)的情况,用于比较不同水平的因素是否对因变量(即观测值)有显著影响。

多因素方差分析适用于有多个自变量(即因素)的情况,用于比较各个因素及其交互作用对因变量的影响。

方差分析的优点主要有以下几点:1.可以同时比较多个组之间的差异,提供了一种全面且有效的统计方法。

2.可以通过比较组间与组内方差来判断差异是否显著,更加客观。

3.可以用于不同水平的因素对因变量的影响程度排名,帮助进一步探究因素的影响机制。

然而,方差分析也存在一些限制:1.方差分析对数据满足正态分布和方差齐性的要求比较严格,如果数据不满足这些要求,结果可能不准确。

2.方差分析只能对均值差异进行比较,不能揭示具体的分布差异。

3.方差分析本身不能进行推断和预测,只能判断差异是否显著。

非参数检验(Nonparametric Test)是一种不依赖于总体分布的统计方法,适用于数据不满足正态分布或方差齐性的情况。

与方差分析不同,非参数检验基于样本的秩次或次序,通过比较统计量来判断组间差异是否显著。

非参数检验包括了多种方法,如Wilcoxon秩和检验、Mann-WhitneyU检验、Kruskal-Wallis H检验等。

它们在样本较小或数据不满足正态分布的情况下具有较高的灵活性和鲁棒性。

非参数检验的优点有以下几点:1.不依赖于总体分布的参数,对数据的要求较低,尤其适用于数据不满足正态分布的情况。

单因素试验的方差分析

单因素试验的方差分析

>weight=c(51,40,43,48,23,25,26,23,28) >A=factor(c(rep(1,4),rep(2,3),rep(3,2))) >result=aov(weight~A) >summary(result)
方差分析表
方差来源 平方和 自由度 均方和 F 值
F 值临介值
组间
1)组间差别:因素效应
灯泡的使用寿命——试验指标
灯丝的配料方案——试验因素(唯一的一个) 四种配料方案(甲乙丙丁)——四个水平
因此,本例是一个四水平的单因素试验。
用X1,X2,X3,X4分别表示四种灯泡的使用寿命,即为 四个总体。假设X1,X2,X3,X4相互独立,且服从方差 相同的正态分布,即Xi~N(i,2)(i=1,2,3,4)
单因素试验方差分析表
方差来源 平方和 自由度 均方和
F值
组间 组内
SS A
df A
MS A
SS A df A
F MSA MSE
SSE
df E
MSE
SSE df E
总和 SST dfT
r ni
2
SST
Xij X
i1 j1
dfT n 1
r ni
2
SSA
Xi X
i1 j1
dfA r 1
引言
在工农业生产和科研活动中,我们经常遇到这样 的问题:影响产品产量、质量的因素很多,例如影 响农作物的单位面积产量有品种、施肥种类、施肥 量等许多因素。我们要了解这些因素中哪些因素对 产量有显著影响,就要先做试验,然后对测试结果 进行分析,作出判断。方差分析就是分析测试结果 的一种方法。
Hale Waihona Puke 基本概念本例问题归结为检验假设 H0:1= 2= 3= 4 是否成立

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验

SPSS的参数检验和非参数检验SPSS是一种非常常用的统计分析软件,可以用于参数检验和非参数检验。

参数检验是假设检验的一种方法,用于判断统计样本是否代表总体。

而非参数检验则是用于检验数据是否满足一些分布假设,或判断两个或多个群体是否具有差异。

参数检验主要有t检验、方差分析和回归分析等。

其中,t检验用于比较两个样本均值是否有显著差异,包括独立样本t检验和相关样本t检验。

方差分析用于比较三个或更多样本均值是否有显著差异,可以进行单因素方差分析或多因素方差分析。

回归分析用于建立预测模型,可以通过线性回归或多项式回归进行。

非参数检验通常适用于数据不满足正态分布或方差齐性的情况,如Wilcoxon符号秩检验、Kruskal-Wallis H检验、Mann-Whitney U检验等。

Wilcoxon符号秩检验用于比较两个配对样本的差异是否有显著差异,Kruskal-Wallis H检验用于比较三个或更多独立样本的差异是否有显著差异,Mann-Whitney U检验用于比较两个独立样本的差异是否有显著差异。

在SPSS中进行参数检验和非参数检验一般需要进行以下步骤:1.导入数据:将数据导入SPSS软件,可以通过选择文件-导入功能进行操作。

2.设定分析变量:定义需要进行分析的变量,并将其添加到分析列表中。

3.选择统计方法:根据实验设计和数据分布情况,选择合适的参数检验或非参数检验方法。

4.执行分析:点击运行按钮进行分析,在分析结果中可以查看得到显著性水平、均数、方差等指标。

5.结果解释:根据分析结果进行假设检验,判断是否存在显著差异,并解释其结果。

无论是参数检验还是非参数检验,在进行分析前需要注意数据的合理性、样本的选择和实验设计的合理性等,以保证分析结果的可靠性。

同时,还应根据不同的研究目的和数据特点选择适当的方法,并合理解释分析结果。

在SPSS软件中,可以通过图表、表格和描述性统计等形式展示和解释结果,并通过结果进行科学判断和相关推断。

参数检验和非参数检验

参数检验和非参数检验

一.单因素方差分析(one-way ANOVA),用于完全随机设计的多个样本均数间的比较,其统计推断是推断各样本所代表的各总体均数是否相等。

完全随机设计(completely random design)不考虑个体差异的影响,仅涉及一个处理因素,但可以有两个或多个水平,所以亦称单因素实验设计。

在实验研究中按随机化原则将受试对象随机分配到一个处理因素的多个水平中去,然后观察各组的试验效应;在观察研究(调查)中按某个研究因素的不同水平分组,比较该因素的效应。

二.T检验,亦称student t检验(Student's t test),主要用于样本含量较小(例如n<30),总体标准差σ未知的正态分布资料。

t检验是用t分布理论来推论差异发生的概率,从而比较两个平均数的差异是否显著。

它与Z检验、卡方检验并列。

t检验t检验分为单总体检验和双总体检验。

单总体t检验时检验一个样本平均数与一个已知的总体平均数的差异是否显著。

当总体分布是正态分布,如总体标准差未知且样本容量小于30,那么样本平均数与总体平均数的离差统计量呈t分布。

单总体t检验统计量为:双总体t检验是检验两个样本平均数与其各自所代表的总体的差异是否显著。

双总体t 检验又分为两种情况,一是独立样本t检验,一是配对样本t检验。

独立样本t检验统计量为:S1 和S2 为两样本方差;n1 和n2 为两样本容量。

(上面的公式是1/n1 + 1/n2 不是减!)配对样本t检验统计量为:t检验的适用条件(1) 已知一个总体均数;(2) 可得到一个样本均数及该样本标准差;(3) 样本来自正态或近似正态总体。

t检验步骤以单总体t检验为例说明:问题:难产儿出生体重n=35,X拔=3.42,S =0.40,一般婴儿出生体重μ0=3.30(大规模调查获得),问相同否?解:1.建立假设、确定检验水准αH0:μ = μ0 (无效假设,null hypothesis)H1:μ≠μ0(备择假设,alternative hypothesis,)双侧检验,检验水准:α=0.052.计算检验统计量3.查相应界值表,确定P值,下结论查附表1,t0.05 / 2.34 = 2.032,t < t0.05 / 2.34,P >0.05,按α=0.05水准,不拒绝H0,两者的差别无统计学意义例:某校二年级学生期中英语考试成绩,其平均分数为73分,标准差为17分,期末考试后,随机抽取20人的英语成绩,其平均分数为79.2分。

SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景

SPSS:T检验、方差分析、非参检验、卡方检验的使用要求和适用场景

SPSS:T检验、⽅差分析、⾮参检验、卡⽅检验的使⽤要求和适⽤场景SPSS:T检验、⽅差分析、⾮参检验、卡⽅检验的使⽤要求和适⽤场景⼀、T检验1.1 样本均值⽐较T检验的使⽤前提正态性;(单样本、独⽴样本、配对样本T检验都需要)连续变量;(单样本、独⽴样本、配对样本T检验都需要)独⽴性;(独⽴样本T检验要求)⽅差齐性;(独⽴样本T检验要求)1.2 样本均值⽐较T检验的适⽤场景单样本T检验(⽐较样本均数和总体均数);操作:打开分析—⽐较均值—单样本t检验要求:正态性(可以⽤K-S检验法,在SPSS中的“分析”–“⾮参数检验”—“单样本”中;或者直接根据直⽅图、P-P图,Q-Q图来观察或根据偏度峰度法来分析)说明:由中⼼极限定理可知,即使原数据不符合正态分布,只要样本量⾜够⼤时样本均数分布仍然是正态的。

只要数据不是强烈的偏正态,没有明显的极端值,⼀般⽽⾔单样本t检验都是可以使⽤的,分析结果都是稳定的。

独⽴样本T检验(⽐较成组设计的两个样本);操作:打开分析—⽐较均值—独⽴样本t检验我们输⼊数据的时候,两个样本的数据是要在⼀列变量⾥的,另外还有⼀列⼆分类变量为这列因变量做标注。

要求:独⽴性、正态性(对正态性有耐受性)、⽅差齐性(影响⼤,检验更有必要,使⽤Levene’s检验,两样本T检验中提供Levene’s检验,如需更详细的检验结果可在“分析”–“描述统计”–“探索”中进⾏)说明:各样本相互独⽴,且均来⾃于正态分布的样本,各样本所在总体的⽅差相等;* 疑问:独⽴性怎么检验?有些数据可以根据现实环境判断;*配对样本T检验(如⽤药前和⽤药后的两个⼈群的样本、同⼀样品⽤两种⽅法的⽐较)操作:打开分析—⽐较均值—配对样本t检验要求:正态性(配对样本等价于单样本T检验,检验的是两个样本对应的差值,初始假设为差值等于0)⼆、单因素⽅差分析2.1 单因素⽅差分析的基本思想基本思想:变异分解,总变异=随机变异处理因素导致的变异,⼜可以分解为总变异=组内变异组间变异,F=组间变异/组内变异,F的值越⼤,处理因素的影响越⼤。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
是通过对多个样本的研究,来推断这些样本是否来自于同 一个总体。 那么能否使用两两t 检验,例如做三组比较,则分别进行 三次 t 检验来解决此问题呢?这样做在统计上是不妥的。 因为统计学的结论都是概率性的,存在犯错误的可能。
方差分析入门
分析: 用6 次 t 检验来考察 4个省份的大学生新生入学成绩是
预分析(重要):检验其应用条件
选择data 中的split file,出现如下对话框:
单因素方差分析
正态性检验
A
单击Analyze—Nonparametric —1-Sample K-S
单因素方差分析
单因素方差分析
c One-Sample Kolmogorov-Smirnov Test
ATP N Normal Parameters Most Extreme Differences Kolmog orov-Smirnov Z Asymp. Sig. (2-tailed) a. Test distribution is Normal. b. Calculated from data. c. group = A 组
单因素方差分析
例 1 为了研究烫伤后不同时间切痂对大鼠肝脏三磷酸腺苷 ( ATP )的影响,将 30 只雄性大鼠随机等分成三组,每组
10只:A组为烫伤对照组、B组为烫伤后24小时切 痂组,C
组为烫伤后96小时切 痂组。全部大鼠在烫伤168小时候处死 并测量其肝脏 ATP含量,数据见数据文件 F1.sav,试检验3 组大鼠肝脏ATP总体均数是否不同?
带检验的正态图
Tests of Normality Kolmog orov-Smirnov Statistic df Sig . .197 10 .200* .187 10 .200* .164 10 .200*
a
ATP
group A组 B组 C组
Shapiro-Wilk Statistic df .918 10 .929 10 .972 10
方差分析入门
案例 对于大学新生的入学成绩,可以通过 t 检验来考察 男女学生间的入学成绩是否有差异?但要是想知道来自 于江苏、浙江、上海、安徽等省份的学生,其入学成绩 是否有差异,那么是否可以用6次t 检验来达成目的?
方差分析入门
在以上例子中,涉及的问题其实就是在单一处理因素之下,
多个不同水平(多组)之间的连续性观察值的比较,目的
用方差分析!
方差分析入门
R.A.Fisher 提出的方差分析的理论基础: 将总变异分解为由研究因素所造成的部分和由抽样误差 所造成的部分,通过比较来自于不同部分的变异,借助 F 分布作出统计推断。后人又将线性模型的思想引入方
差分析,为这一方法提供了近乎无穷的发展空间。
方差分析入门
总变异 = 随机变异 + 处理因素导致的变异
每个水平下的应变量应当服从正态分布
方差齐性(homoscedascity)
各水平下的总体具有相同的方差。但实际上,只要最大/最小
方差小于3,分析结果都是稳定的
应用条件
有时原始资料不满足方差分析的要求,除了求助于非参数 检验方法外,也可以考虑变量变换。常用的变量变换方法 有: 对数转换:用于服从对数正态分布的资料等; 平方根转换:可用于服从Possion分布的资料等; 平方根反正弦转换:可用于原始资料为率,且取值广泛的资料; 其它:平方变换、倒数变换等。
Fk-1,N k
MS B SS B /(k- 1) MSW SSW ( / N-k)
其中,MSB是组间均方,MSW 是组内均方,在原假设成立 时,F值应该服从自由度为k-1,N-k的中心F分布。
应用条件
独立性(independence)
观察对象是所研究因素的各个水平下的独立随机抽样
正态性(normality)
否相同,对于某一次比较,其犯I类错误的概率为,那么连
续进行6次比较,其犯I类错Fra bibliotek的概率是多少呢?不是 6,而 是1-(1- )6。也就是说,如果检验水准取0.05,那么连续 进行6次 t 检验,犯I类错误的概率将上升为 0.2649!这是一 个令人震惊的数字!
结论:多个均数比较不宜采用 t 检验作两两比较;而应该采
单因素方差分析
分析:
对于单因素方差分析,其资料在 SPSS 中的数据结构应当由 两列数据构成,其中一列是观察指标的变量值,另一列是用
以表示分组变量。实际上,几乎所有的统计分析软件,包括
SAS,STATA等,都要求方差分析采用这种数据输入形式, 这一点也暗示了方差分析与线性模型间千丝万缕的联系。
单因素方差分析
总变异 = 组内变异

组间变异
SS总 = SS组内

SS组间
这样,我们就可以采用一定的方法来比较组内变异和组间变 异的大小,如果后者远远大于前者,则说明处理因素的确存 在,如果两者相差无几,则说明该影响不存在,以上即方差 分析的基本思想。
方差分析入门
方差分析的原假设和备择假设为: H0:1=2=…=k H1:k个总体均数不同或者不全相同
内容提要
方差分析入门 单因素方差分析 均数两两比较的方法 小结
方差分析入门
前面提到的有关统计推断的方法,如单样本、两样本t检验 等,其所涉及的对象千变万化,但归根结底都可以视为两 组间的比较,如果是有一组的总体均数已知,则为单样本t
检验,如果两组都只有样本信息,则为两样本t检验。但是
如果遇到以下情形,该如何处理?
a,b
Mean Std. Deviation Absolute Positive Neg ative
10 8.0530 1.75228 .197 .197 -.123 .623 .832
这里仅取其中一组结果,表明该资料符合 分组正态性的条件。
使用Explore菜单
Analyze——Descriptive Statistics——Explore——将分析的 变量导入Dependent List变量列表中——将分组变量导入 Factor List框中——单击Plot按钮——选中Normality plots with test,并取消其他勾选——continue——OK
Sig . .341 .436 .913
*. This is a lower bound of the true significance. a. Lilliefors Significance Correction
相关文档
最新文档