单因素试验的方差分析

合集下载

单因素试验的方差分析——概率论与数理统计(李长青版)

单因素试验的方差分析——概率论与数理统计(李长青版)

其次, 同一品种下数据表现出来的差异称为试验(随
机)误差, 这是由客观条件的偶然干扰造成, 与因素(品种) 无直接联系.
方差分析正是分析两类误差的有效工具.
本问题只考虑品种一种因素,故是单因素试验,即只有
一个因子,记为 A, 5个不同的品种就是该因子的5个不同 的水平,分别记为 A1 , A2 , A3 , A4 , A5 , 由于同一品种在不 同的田块上的亩产量不同,故可以认为一个品种的亩产 量 就是一个母体,在方差分析中,总是假定各母体相互独 立地服从同方差的正态分布,即第 j 个品种的亩产量是 一个随机变量,它服从正态分布:
nj
ns , 称为总平均,
它是从 s 个总体中抽得的样本的样本均值.
用样本值 xij 与总平均
x 之间的偏差平方和来反映
种子品种代 号 (水平)
重复试验序号及作物实测产量 1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系 统)误差.
H 0 : 1 2 s 0, H1 : 1 , 2 , , s 不全为零.
(二) 离差平方和分解 引入记号
nj
1 xj nj
s
x
i 1
ij
( j 1, 2,
, s) 水平Aj下的样本均值,
称为组内平均(或列平均)

25.单因素试验的方差分析

25.单因素试验的方差分析

数学模型
j 与 2 均未知.
14
需要解决的问题
1.检验假设
H0 : 12 s , H1 : 1, 2 , , s不全相等.
2.估计未知参数1, 2 , , s , 2.
15
数学模型的等价形式
s
记n nj ,
j 1
1 n
s j 1
njj.
总平均
水平Aj的效 应, 表示水平 Aj下的总体 平均值与总 平均的差异.
i 1 nj
( Xij X• j )2
i 1
2
~ 2(nj 1).
23
又由于各 Xij 独立, 所以由 2 分布的可加性知
S E
2
~ 2
s
(nj
j 1
1),

S
E2~
2
(n
s),
s
其中n nj .
j1
根据 2 分布的性质可以得到,
SE 的自由度为n s; E(SE ) (n s) 2.
铝合金板的厚度
机器Ⅱ 0.257 0.253
机器Ⅲ 0.258 0.264
0.255 0.254
0.259 0.267
0.261
0.262
4
试验指标: 薄板的厚度 因素: 机器
水平:不同的三台机器是因素的三个不同的水平. 假定除机器这一因素外, 其他条件相同,
属于单因素试验. 试验目的: 考察各台机器所生产的薄板的厚度有 无显著的差异. 即考察机器这一因素对厚度有无 显著的影响. 结论: 如果厚度有显著差异, 表明机器这一因素对厚度的影响是显著的.
H0 : 1 23 ,
H1 : 1, 2 , 3不全相等.
进一步假设各总体均为正态变量, 且各总体的

单因素试验方差分析(试验数据处理)

单因素试验方差分析(试验数据处理)

SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:

Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,

单因素方差分析的计算步骤

单因素方差分析的计算步骤

单因素方差分析的计算步骤Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、 单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。

结果如下表:m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设()m j n i a N x j ij ,2,1;,2,1,,~2==σ。

可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。

因此检验因素A 的各水平之间是否有显着的差异,就相当于检验:μ====m a a a H 210:或者 具体的分析检验步骤是:(一)计算水平均值令j x 表示第j 种水平的样本均值,式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST 代表,则,其中,n x x ij ∑∑=它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE 表示,其计算公式为:其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA 表示,SSA 的计算公式为:用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。

可以看出,它所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在: 因为:在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,即 SSA SSE SST +=(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。

数据处理单因素方差分析

数据处理单因素方差分析

数据处理单因素方差分析1. 引言数据处理是科学研究中非常重要的一环,能够有效地获得有关实验数据的信息和结论。

其中,单因素方差分析是一种常用的统计方法,用于比较不同水平的因素对实验结果的影响。

2. 概念单因素方差分析是一种统计方法,用于比较三个或三个以上水平的因素在不同条件下其均值是否有显著差异。

它是通过比较组间变异与组内变异的大小来推断因素对实验结果的影响程度。

3. 步骤3.1 建立假设在进行单因素方差分析之前,首先需要建立相关的假设。

通常情况下,我们会假设各组样本的均值相等。

3.2 收集数据接下来,我们需要收集实验数据。

通常情况下,我们会收集每个水平下的多个样本,并计算其均值。

3.3 计算变异在单因素方差分析中,我们需要计算组间变异和组内变异的大小。

组间变异反映了不同水平的因素对实验结果的影响,而组内变异则反映了样本内部的随机误差。

3.4 计算方差比通过计算组间变异与组内变异的比值,可以得到方差比。

方差比越大,说明组间变异对总变异的贡献越大,也就意味着水平因素对实验结果的影响越显著。

3.5 推断结论最后,我们可以使用统计方法来推断水平因素对实验结果的影响是否显著。

通常情况下,我们会使用F检验来判断方差比是否显著大于1,从而决定是否拒绝原假设。

4. 数据处理的意义数据处理在科学研究中具有重要的意义。

通过进行单因素方差分析,我们可以推断不同水平的因素对实验结果的影响程度,帮助科学家们更好地理解实验结果,并为实验结论的科学性提供支持。

5. 应用案例5.1 药物疗效比较假设我们想要比较两种药物在治疗某种疾病上的疗效。

我们可以将患者分为两组,一组接受药物A治疗,另一组接受药物B治疗,然后收集两组患者的实验数据。

通过进行单因素方差分析,我们可以比较两种药物的疗效是否有显著差异。

5.2 品牌认知度比较假设我们想要比较两个品牌在消费者中的认知度。

我们可以对一定数量的消费者进行调查,询问他们对两个品牌的认知程度。

单因素方差分析

单因素方差分析

2.0
0.7
1.5
0.9
0.9
0.8
1.1
-0.3
-0.2
0.7
1.3
1.4
概率论与数理统计
3
❖ 前言 方差分析的思想
➢ 我们可以计算出各组的均值与方差,但是如何通过这些数据 结果来判断呢?这就需要进行方差分析.
➢ 在实际问题中, 影响一个数值型随机变量的因素一般会有很多, 例如影响农作物产量的因素就有种子品种,肥料、雨水等; 影 响化工产品的产出率的因素可能有原料成分、剂量、催化剂 、反应温度、机器设备和操作水平等;影响儿童识记效果的 因素有教学材料、教学方法等. 为了找出影响结果(效果)最显 著的因素, 并指出它们在什么状态下对结果最有利, 就要先做 试验, 方差分析就是对试验数据进行统计分析, 鉴别各个因素 对对我们要考察的指标(试验指标)影响程度的方法.
概率论与数理统计
7
❖ 1.单因素试验的方差 概念
➢ 推断三种治疗方案是否存在差异的问题,就是要辨别治 疗方案的差异主要是由随机误差造成的,还是由不同方 案造成的,这一问题可归结为三个总体是否有相同分布 的讨论.根据实际问题的情况,可认为血红蛋白的增加 值服从正态分布,且在安排试验时,除所关心的因素( 这里指的是这里方案)外,其它试验条件总是尽可能做 到一致,这就使我们可以近似的认为每个总体的方差相 同,即xi~N(μi,σ2) i = 1,2,3.
概率论与数理统计
❖2. 单因素方差分析的数学模型
➢ 单因素方差分析问题的一般提法为: ➢ 因素A有m个水平A1, A2, …, Am, 在Ai水平下, 总体Xi~N(μi,
σ2), i = 1, 2, …, m.其中μi和σ2均未知, 但方差相等, 希望 对不同水平下总体的均值进行比较. 设xij表示第i个总体的第j个观测值(j = 1, 2, …, ni, i = 1, 2, …, m), 由于Xij~N(μi, σ2), i = 1, 2, …, m.单因素方差分 析模型常可表示为:

单因素试验的方差分析

单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列

单因素试验的方差分析

单因素试验的方差分析

实验二 单因素试验的方差分析
实验目的:1.掌握单因素实验方差分析的方法与步骤;
2.正确分析输出结果中的各参数,并得出正确结论。

实验内容:
采用四种不同产地的原料萘,按同样的工艺条件合成β—萘酚,测定所得产品的
熔点如表1所示,问原料萘的产地是否显著影响产品的熔点?
表2.1 不同产地原料萘合成β—萘酚的熔点℃
操作步骤:
1.excel 的工作表中输入如表1.1所示的的样本数据, 2.点击“工具—数据分析—方差分析:单因素方差分析”,在弹出对话框的输入区域,拖动鼠标选择样本值A2:D5;分组方式,选择列;显著性水平α设置为0.1,如图
2.1所示。

图2.1 应用excel “数据分析”功能求单因素方差分析的有关参数
3.点击确定,输出参数的窗口如图2.2所示。

图2.2 应用excel“数据分析”功能求单因素方差分析的有关参数
结果分析:
(1)SUMMARY给出的是该因子各水平的扼要分析结果,包括各样本的容量、数据、样本均值和样本方差。

(2)在输出的方差分析表中,组间即“产地因子”;组内即指“误差”;SS 为平方和;df 是自由度;P-value 为P 值,即所达到的临界显著水平;F crit 是Fα(t-1,N-t)的值。

由于P
值为0.231767>0.1,所以萘的产地对萘酚熔点无显著影响。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
本例问题归结为检验假设 H0:1= 2= 3= 4 是否成立
.
单因素试验的方差分析
设 A 表示欲考察的因素,它的 r 个不同水平,对
应的指标视作 r 个总体 X1, X2,...Xr. 每个水平下,我
们作若干次重复试验:n1, n2,...nr.(可等重复也可不
等重复),同一水平的 n
个结果,就是这个总体
试验指标——试验结果。
可控因素——在影响试验结果的众多因素中,可人为 控制的因素。
水平——可控因素所处的各种各种不同的状态。每个 水平又称为试验的一个处理。
单因素试验——如果在一项试验中只有一个因素改变, 其它的可控因素不变,则该类试验称为 单因素试验。
.
引例
例1 (灯丝的配料方案优选)某灯泡厂用四种配料方案制成的灯 丝生产了四批灯泡,在每批灯泡中作随机抽样,测量其使用寿 命(单位:小时),数据如下:
2r
2
XiX ni ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij . j1
r ni
2 r ni
2
SSE
X ijXi
iji
i 1j 1
i 1j 1
组内平方和
反映的是重复试验种随机误差的大小。误差平方和
这里
1 r ni
ni1 j1
ij,
ni
i ij
j1
i 表示水平Ai的随机误差; 表示整个试验的随机误差
.
若假设 H 0:a 1a 2...a r0成立,则
Xij ~N,2 (各子样同分布)
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
4 0 3 5 3 6 3 8 3 3 xij 1536.4 i1 j1
纵向个体间的差异称为随机误差(组内差异),由试验造
成;横向个体间的差异称为系统误差(组间差异),由因素的
不同水平造成。
.
单因素试验的方差分析的数学模型
首先,我们作如下假设:
1 .X i~ Ni, 2,i 1 ,2 ,...r具有方差齐性。
...
... ... ... ...
ni
ni
列和Ti Xij j 1
X1n1 X2n2 ... T 1 T 2 ...
列平均Xi Ti ni X 1 X2 ...
(水平组内平均值)
Xrnr
r
T r 总 和 T i i1
Xr
X
1 n
r i1
ni X i
(总平均值)
r
n 其中诸 i 可以不. 一样,n n i i1
灯泡
寿命
1 2 3 4 5 678
灯丝
甲 1600 1610 1650 1680 1700 1720 1800
乙 1580 1640 1640 1700 1750
丙 1460 1550 1600 1620 1640 1740 1660 1820
丁 1510 1520 1530 . 1570 1680 1600
2. X1,X2,...Xr 相互独立,从而各子样也相互独立。
由于同一水平下重复试验的个体差异是随机误差, 所以设:
X iji ij,j 1 ,2 ,...n i,i 1 ,2 ,...r线性统计模型
其中 i j 为试验误差,相互独立且服从正态分布

ij ~N0,2 .
整个试验的均值

引例
灯泡的使用寿命——试验指标
灯丝的配料方案——试验因素(唯一的一个)
四种配料方案(甲乙丙丁)——四个水平
因此,本例是一个四水平的单因素试验。
用X1,X2,X3,X4分别表示四种灯泡的使用寿命,即为 四个总体。假设X1,X2,X3,X4相互独立,且服从方差 相同的正态分布,即Xi~N(i,2)(i=1,2,3,4)

SST
2
,
SSA
2
,
SSE
2
的自由度分别记作 dfT,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(记 S S Ad fA M S A ,S S Ed fE M S E ,称作均方和)
.
则 FSSA dfA~Fr1,nr M S A
SSE dfE
M SE
(记 S S Ad fA M S A ,S S Ed fE M S E ,称作均方和)
对给定的检验水平 ,由 P F F r 1 ,n r
得H0 的拒绝域为:FFr1,nr F 单侧检验
思考:为什么此处只做单侧检验?
.
引言
在工农业生产和科研活动中,我们经常遇到这样 的问题:影响产品产量、质量的因素很多,例如影 响农作物的单位面积产量有品种、施肥种类、施肥 量等许多因素。我们要了解这些因素中哪些因素对 产量有显著影响,就要先做试验,然后对测试结果 进行分析,作出判断。方差分析就是分析测试结果 的一种方法。
.
基本概念
等价于检验假设: H 0: 12 ...r0 .
若H0成立,则 X ij ij,j 1 ,2 ,...n i,i 1 ,2 ,...r
r
考察统计量 SST
ni
2
Xij X
总离差平方和
i1 j1
经恒等变形,可分解为: SSTSSASSE 见书P168
其中
r ni
S S A
i
X
i
的一个样本:Xi1, Xi2,...Xini .
因此, Xi1,Xi2,...Xini 相互独立,且与 X i 同分布。
我们的目的是通过试验数据来判断因素 A 的不 同水平对试验指标是否有影响。
.
单因素试验资料表
水平
重复 试验结果 A 1 A 2 ... A r
1
X11 X21 ... Xr1
例:五个水稻品种单位产量的观测值——P165
品种 重复
A 1 A j1
xi
41 33 38 37 31
39 37 35 39 34
40 35 35 38 34
53
1 2 01 0 51 0 81 1 49 9 xij 546 i 1 j 1
53
1 ni r1nii ,(其中
r
n ni )称为一般平均值。
i1
i i , 称为因素A的第 i个水平 Ai的效应。
r
r
r
显然有: nii nii niin0
i 1
i 1
i 1
则线性统计模型变成
X i j i i j,j 1 ,2 ,...n i,i 1 ,2 ,...r
于是检验假设: H 0:12...r
相关文档
最新文档