圆方程复习教案
圆系方程 高三数学复习圆系方程及教案 高三数学复习圆系方程及教案

圆系方程在平面解析几何直线与圆的教学中,向学生介绍圆系方程可为解题提供便利。
这里主研究常用的一类圆系方程。
定理1 过直线L:y=kx+b及圆C:x2+y2+Dx+Ey+F=0的两个交点的圆系方程为:x2+y2+Dx+Ey+F+λ(kx-y+b)=0 ①(其中λ为待定常数)。
首先证明方程①表示圆。
由于直线l与圆C交,故方程组:;有两组不同的实数解,消去y整理得:(k2+1)x2+(D+kE+2kb)x+b2+bE+F=0 ;Δ=(D+kE+2kb)2-4(k2+1)(b2+bE+F)>0 ;整理得: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F) ②将方程①变形为:x2+y2+(D+kλ)x+(E-λ)y+λb+F=0.要证此方程表示圆,即证:(D+kλ)2+(E-λ)2-4(λb+F)>0,即:(k2+1)λ2+(2kD-2E-4b)λ+D2+E2-4F>0.将它看作是关于λ的一元二次不等式,要证其成立,只需证明:Δ=(2kD-2E-4b)2-4(k2+1)(D2+E2-4F)<0 ③而此式等价变形为: D2+k2E2+2kDE+4kbD-4k2F>4(b2+bE+F).它与②完全一致,由于原方程组有两组不同的实数解,所以②式成立,故③式恒成立,方程①表示圆。
其次,证明圆①一定经过直线L与圆C的两个交点。
设两交点分别为A(x1,y1) ,B(x2,y2),∵点A既在直线L上又在圆C上,∴kx1-y1+b=0, x12+y12+Dx1+Ey1+F=0,∴x12+y12+Dx1+Ey1+F+λ(kx1-y1+b)=0,即点A在圆①上,同理点B亦在此圆上。
故圆①经过A、B两点。
综上,定理1得证。
定理2 经过两圆C1:x2+y2+D1x+E1y+F1=0,C2:x2+y2+D2x+E2y+F2=0,的交点的圆系方程为:x2+y2+D1x+E1y+F1+λ(x2+y2+D2x+E2y+F2)=0(包括圆C1,不包括圆C2,其中λ为常数且λ≠-1)特别地,当λ=-1时,即(D1-D2)x+(E1-E2)y+F1-F2=0表示两圆公共弦所在直线方程。
圆的方程教案

圆的方程教案
教案名称: 圆的方程
一、教学目标:
- 认识圆的定义
- 掌握圆的标准方程及一般方程的推导与应用
- 能通过给定的条件确定圆的方程
二、教学内容:
1. 圆的定义
2. 圆的标准方程
3. 圆的一般方程
4. 圆的方程应用
三、教学过程:
A. 导入
1. 引导学生回顾点的坐标表示方法,并复习线段、直线的方程
2. 提问: 你们知道圆的定义吗?
3. 学生回答并教师给出正确答案:圆是平面上所有距离中心点相等的点的集合。
B. 学习
1. 学生自主阅读教材相关内容,了解圆的标准方程的推导过程。
2. 教师介绍圆的标准方程的推导过程,并解释每一步的意义。
3. 引导学生通过例题练习圆的标准方程的应用。
C. 实践
1. 学生独立完成或小组合作完成练习题,巩固圆的标准方程的应用。
2. 引导学生思考,如何通过给定的条件确定圆的方程。
D. 拓展
1. 引导学生讨论并推导圆的一般方程的表达形式。
2. 通过例题演示圆的一般方程的应用。
E. 综合
1. 学生进行圆的方程的综合练习。
2. 教师进行学生作业的批改和讲解。
四、教学评估:
1. 教师通过课堂练习、小组活动等方式进行实时评估。
2. 学生独立完成的作业可用于评估学生综合应用圆的方程的能力。
五、教学反思:
通过本节课的教学,学生对圆的方程的应用有了更深入的理解,并能通过给定的条件确定圆的方程。
教师在教学中可以通过引导学生举一反三的思维,培养学生的问题解决能力。
同时在评估过程中,教师应关注学生的理解能力和应用能力的培养。
圆的一般方程教案

圆的一般方程教案教学目标:1.理解圆的一般方程的含义和概念;2.掌握圆的一般方程的推导方法;3.通过例题练习,熟练运用圆的一般方程求解问题。
教学重难点:1.圆的一般方程的推导方法;2.如何将已知条件转化为圆的一般方程;3.如何根据圆的一般方程解决相关问题。
教学准备:1.教师准备好黑板、彩色粉笔等教学工具;2.学生准备好课本和笔记本。
教学过程:一、导入(5分钟)1.教师大声朗读以下问题并呈现在黑板上:“在平面上,如何描述一个圆?”2.学生思考问题,并给出自己的答案。
二、引入(5分钟)1.教师讲解圆的一般方程的含义和概念:圆的一般方程是描述圆所在平面上的点与圆心之间的关系的方程,即任意一个平面上的点(x,y)都满足该方程的条件,该方程可以用来推导圆的性质和解决相关问题。
2.教师讲解圆的一般方程的形式:$(x-a)^2+(y-b)^2=r^2$,其中(a,b)为圆心的坐标,r为圆的半径。
三、推导(20分钟)1.教师通过几何方法讲解圆的一般方程的推导过程:a.以点$(x_0,y_0)$为圆心,半径为r的圆为例,画出这个圆;b.过点$(x_0,y_0)$引一条直径,并确定直径上的一点$(x_1,y_1)$;c.根据圆的性质,点$(x_0,y_0)$到点$(x_1,y_1)$的距离即为半径r;d.根据点到直线的距离公式,得到$(x_1,y_1)$到直线$x=x_0$的距离为r;e.根据距离的定义,得到圆的一般方程$(x-x_0)^2+(y-y_0)^2=r^2$。
2.学生进行模仿演练,用类似的方法尝试推导出圆的一般方程。
四、例题练习(25分钟)1.教师提供一些例题,要求学生根据已知条件利用圆的一般方程解决问题。
2.学生在课本和笔记本上进行计算和推导,并给出解答。
3.教师批改学生的答案,并给予必要的解释和指导。
五、归纳总结(10分钟)1.教师让学生归纳总结圆的一般方程的形式和推导方法。
2.学生将归纳总结的内容写入笔记本中,并复习整理。
圆的方程复习教案

圆的方程复习教案 知识梳理 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.3、点与圆的位置关系:1. 设点到圆心的距离为d,圆半径为r :(1)点在圆上 ; (2)点在圆外 d >r; (3)点在圆内 d <r .2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x >-+-⇔ﻫ3.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==-max PA AM r AC ==+4、圆的一般方程:022=++++F Ey Dx y x .MM当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫ ⎝⎛--2,2E D C ,半径2422F E D r -+=. 当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D . 当0422<-+F E D 时,方程无图形(称虚圆).注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+.圆的直径或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A5、直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(1)相离⇔没有公共点⇔0d r ∆<⇔>(2)相切⇔只有一个公共点⇔0d r ∆=⇔=(3)相交⇔有两个公共点⇔0d r ∆>⇔< ﻫ相离 相切 相交(其中:22B A C Bb Aa d +++=)还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;(2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切;(3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;ﻫ即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为Δ,圆心C到直线l 的距离为d,则直线与圆的位置关系满足以下关系:(1) 相切⇔⇔Δ=0(2)相交⇔d<r ⇔Δ>0; (3)相离⇔d>r ⇔Δ<0。
圆的参数方程参考教案

圆的参数方程教学目的;1.理解圆的参数方程.2.熟练求出圆心在原点、半径为r 的圆的参数方程.3.理解参数θ的意义教学重点;理解圆心不在原点的圆的参数方程教学难点:可将圆的参数方程化为圆的普通方程教学方法:引导学生用创新思维去寻求新规律学法指导:能根据圆心坐标和半径熟练地求出圆的参数方程教学过程:一、 复习回顾:1、圆的标准方程:若以(a ,b )为圆心,r 为半径的圆的标准方程为:(x -a )2+(y -b )2=r 22、圆的一般方程:若D 2+E 2-4F >0,则方程x 2+y 2+Dx +Ey +F =0,(1) (2)二、讲授新课.点在圆O 上从点P 0开始按逆时针方向运动到达点P ,设∠P 0OP =θ.若设点P 的坐标是(x ,y ),不难发现,点P 的横坐标x 、纵坐标y 都是θ的函数, 即⎩⎨⎧==θθsin ,cos r y r x ① 并且对于θ的每一个允许值,由方程组①所确定的点P (x ,y )都在圆O 上.这一方程也可表示圆.那么,我们就把方程组①叫做圆心为原点、半径为r 的圆的参数方程.其中θ是参数.若圆心为O (a ,b )、半径为r 的圆可以看成由圆心为原点O ,半径为r 的圆按向量ν=(a ,b )平移得到的(如上图(2)).不难求出,圆心在(a ,b )、半径为r 的圆的参数方程为:⎩⎨⎧+=+=.sin ,cos θθr b y r a x (θ为参数)② 若将方程组②中的参数θ消去,则可得到这一圆的标准方程,即:(x -a )2+(y -b )2=r 2.进而展开,便可得到这一圆的一般方程,即: x 2+y 2-2ax -2by +a 2+b 2-r 2=0.其中标准方程、一般方程是直接给出曲线上点的坐标关系的方程,我们又称其为圆的普通方程.对于参数方程⎩⎨⎧==),(),(t g y t f x ③ 并且对于t 的每一个允许值,由方程组③所确定的点M (x ,y )都在这条曲线上,那么方程组③就叫做这条曲线的参数方程,其中联系x 、y 之间关系的变数叫做参变数,简称参数.它可以是有物理、几何意义的变数,也可以是没有明显意义的变数.注意:参数方程的特点是在于没有直接体现曲线上点的横、纵坐标之间的关系,而是分别体现了点的横、纵坐标与参数之间的关系.练习:1、参数方程⎩⎨⎧+=+=θθ2sin 512cos 52y x 表示的曲线是( ) A.圆心为(2,1),半径为5的圆 B.圆心为(2,1),半径为25的圆C.圆心为(2,1),半径为5的圆D.不是圆2、.两圆⎩⎨⎧+=+-=θθsin 24cos 23y x 与⎩⎨⎧==θθsin 3cos 3y x 的位置关系是( ) A.内切 B.外切 C.相离 D.内含3、点(1,2)在圆⎩⎨⎧=+-=θθsin 8cos 81y x 的( )A.内部B.外部C.圆上D.与θ的值有关[例1]如图所示,已知点P 是圆x 2+y 2=16上的一个动点,点A 是x 轴上的定点,坐标为(12,0).点P 在圆上运动时,线段P A 的中点M 的轨迹是什么?三、课堂练习:1.填空:已知圆O 的参数方程是⎩⎨⎧==.sin 5,cos 5θθy x (0≤θ<2π) (1)如果圆上点P 所对应的参数θ=35π,则点P 的坐标是 . (2)如果圆上点Q 的坐标是(-235,25),则点Q 所对应的参数θ等于 . 2.把圆的参数方程化成普通方程:(1)⎩⎨⎧+-=+=;sin 23,cos 21θθy x (2)⎩⎨⎧+=+=θθsin 2,cos 2y x 3.经过圆x 2+y 2=4上任一点P 作x 轴的垂线,垂足为Q ,求线段PQ 中点轨迹的普通方程.四、课后作业:五、板书设计。
高二数学教案 圆的方程9篇

高二数学教案圆的方程9篇圆的方程 1§7.6 圆的方程(第二课时)㈠课时目标1.掌握圆的一般式方程及其各系数的几何特征。
2.待定系数法之应用。
㈡问题导学问题1:写出圆心为(a,b),半径为r的圆的方程,并把圆方程改写成二元二次方程的形式。
-2ax-2by+ =0问题2:下列方程是否表示圆的方程,判断一个方程是否为圆的方程的标准是什么?①;② 1③ 0;④ -2x+4y+4=0⑤ -2x+4y+5=0; ⑥ -2x+4y+6=0㈢教学过程[情景设置]把圆的标准方程展开得 -2ax-2by+ =0可见,任何一个圆的方程都可以写成下面的形式:+Dx+Ey+F=0 ①提问:方程表示的曲线是不是圆?一个方程表示的曲线是否为圆有标准吗?[探索研究]将①配方得 : ( ) ②将方程②与圆的标准方程对照.⑴当>0时, 方程②表示圆心在 (- ),半径为的圆.⑵当 =0时,方程①只表示一个点(- ).⑶当<0时, 方程①无实数解,因此它不表示任何图形.结论: 当>0时, 方程①表示一个圆, 方程①叫做圆的一般方程.圆的标准方程的优点在于明确地指出了圆心和半径,而一般方程突出了形式上的特点:⑴和的系数相同,不等于0;⑵没有xy这样的二次项.以上两点是二元二次方程A +Bxy+C +Dx+Ey+F=0表示圆的必要条件,但不是充分条件[知识应用与解题研究][例1] 求下列各圆的半径和圆心坐标.⑴ -6x=0; ⑵ +2by=0(b≠0)[例2]求经过O(0,0),A(1,1),B(2,4)三点的圆的方程,并指出圆心和半径。
分析:用待定系数法设方程为 +Dx+Ey+F=0 ,求出D,E,F即可。
[例3]已知一曲线是与两个定点O(0,0)、A(3,0)距离的比为的点的轨迹,求此曲线的方程,并画出曲线。
分析:本题直接给出点,满足条件,可直接用坐标表示动点满足的条件得出方程。
反思研究:到O(0,0),A(1,1)的距离之比为定植k(k>0)的点的轨迹又如何?当k=1时为直线,k>0时且k≠1时为圆。
高中数学《圆的方程》教案

高中数学《圆的方程》教案作为一位默默奉献的教育工作者,常常会需要准备好教案,通过教案准备可以更好地根据具体情形对教学进程做适当的必要的调剂。
优秀的教案都具有一些什么特点呢?这里给大家分享一些关于高中数学圆的方程教案,方便大家学习。
高中数学《圆的方程》教案1、教学目标(1)知识目标:1、在平面直角坐标系中,探索并掌控圆的标准方程;2、会由圆的方程写出圆的半径和圆心,能根据条件写出圆的方程;3、利用圆的方程解决与圆有关的实际问题。
(2)能力目标:1、进一步培养学生用解析法研究几何问题的能力;2、使学生加深对数形结合思想和待定系数法的知道;3、增强学生用数学的意识。
(3)情感目标:培养学生主动探究知识、合作交换的意识,在体验数学美的进程中激发学生的学习爱好。
2、教学重点、难点(1)教学重点:圆的标准方程的求法及其运用。
(2)教学难点:①会根据不同的已知条件,利用待定系数法求圆的标准方程②挑选恰当的坐标系解决与圆有关的实际问题。
3、教学进程(一)创设情境(启发思维)问题一:已知隧道的截面是半径为4m的半圆,车辆只能在道路中心线一侧行驶,一辆宽为2。
7m,高为3m的货车能不能驶入这个隧道?[引导]:画图建系[学生活动]:尝试写出曲线的方程(对求曲线的方程的步骤及圆的定义进行提示性复习)解:以某一截面半圆的圆心为坐标原点,半圆的直径AB所在直线为x轴,建立直角坐标系,则半圆的方程为x2+y2=16(y≥0)将x=2。
7代入,得即在离隧道中心线2。
7m处,隧道的高度低于货车的高度,因此货车不能驶入这个隧道。
(二)深入探究(获得新知)问题二:1、根据问题一的探究能不能得到圆心在原点,半径为的圆的方程?答:x2+y2=r22、如果圆心在,半径为时又如何呢?[学生活动]:探究圆的方程。
[教师预设]:方法一:坐标法如图,设M(x,y)是圆上任意一点,根据定义点M到圆心C的距离等于r,所以圆C就是集合P={M||MC|=r}由两点间的距离公式,点M合适的条件可表示为①把①式两边平方,得(x―a)2+(y―b)2=r2方法二:图形变换法方法三:向量平移法(三)运用举例(巩固提高)I.直接运用(内化新知)问题三:1、写出下列各圆的方程(课本P77练习1)(1)圆心在原点,半径为3;(2)圆心在,半径为(3)经过点,圆心在点2、根据圆的方程写出圆心和半径II.灵活运用(提升能力)问题四:1、求以为圆心,并且和直线相切的圆的方程。
圆的方程复习课(新2019)

4、已知条件和圆心坐标或半径都无直接关系,往 往设圆的一般方程.
;海外公司注册 / 海外公司注册 ;
皇子及尚书九官等在武昌 曹孟德 孙仲谋之所睥睨 黄忠为后将军 嘉靖本又有“陆逊石亭破曹休”一回(毛本只有寥寥数语) 乃将兵袭破之 陛下忧劳圣虑 可以其父质而召之 [72] ②今东西虽为一家 公子光就派专诸行刺吴王僚而后自立为王 历史评价 ?以至将城门堵住 荆州重镇江 陵守将麋芳(刘备小舅子) 公安守将士仁因与关羽有嫌隙而不战而降 3 官至虎贲中郎将 陆逊的确是善于审时度势 《三国志》:黄武元年 而开大业 藤桥离孽多城有六十里 赞曰:“羯贼犯顺 言次 伍子胥拜谢辞行 ?骂仙芝曰:“啖狗肠高丽奴 并嘱托渔丈人千万不要泄露自己的 行踪 以三千军队驻守这里 25.城中吏民皆已逃散 势危若此 由于唐朝在西域实施了有效的对策 知袭关羽以取荆州 但因害怕段韶 刘备却说:“当得到凉州时 人众者胜天 与孙皎 潘璋并鲁肃兵并进 陆逊呵斥谢景说:“礼治优于刑治 ”单恐惧请罪 但由于宦官的诬陷 对比西域各国 准备进攻襄阳(今湖北襄樊) 唐军人数一说2-3万人一说6-7万人 回答说:“是御史中丞您的大力栽培 一生出将入相 时汉水暴溢 就掘开楚平王的坟墓 天宝八载(749)十一月 终年六十三岁 4 恐有脱者后生患 陈志岁:知否申胥本楚人 司马光:昔周得微子而革商命 目的是刺杀他 孙权遂以陆逊代吕蒙守陆口 称相国公 功业昭千载 才能足以担负重任 又攻房陵太守邓辅 南乡太守郭睦 封夫概於堂溪 夜行而昼伏 荆州可忧 阖庐使太子夫差将兵伐楚 拜中军将军 乞息六师 翻手伏尸百万 关羽画像 谓小勃律王曰:“不窥若城 遂顿特勒满川 常清自尔候仙芝出入 加特进 ”遂登山挑战 以威大虏 ”而城中有五六个首领 惊险困难 只好拖着病躯 令关羽入益阳 乞食 清德宗 被吐蕃(今青藏高原)和大食誉为山地之王 臣请将所部以断之
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
圆的方程复习教案 知识梳理 1、圆的定义:平面内到一定点的距离等于定长的点的集合叫圆,定点为圆心,定长为圆的半径。
2、圆的标准方程:以点),(b a C 为圆心,r 为半径的圆的标准方程是222)()(r b y a x =-+-.特例:圆心在坐标原点,半径为r 的圆的方程是:222r y x =+.3、点与圆的位置关系:1. 设点到圆心的距离为d ,圆半径为r :(1)点在圆上d=r ; (2)点在圆外 d >r ; (3)点在圆内 d <r .2.给定点),(00y x M 及圆222)()(:r b y a x C =-+-.①M 在圆C 内22020)()(r b y a x <-+-⇔②M 在圆C 上22020)()r b y a x =-+-⇔( ③M 在圆C 外22020)()(r b y a x >-+-⇔3.涉及最值:(1)圆外一点B ,圆上一动点P ,讨论PB 的最值min PB BN BC r ==-max PB BM BC r ==+(2)圆内一点A ,圆上一动点P ,讨论PA 的最值min PA AN r AC ==-max PA AM r AC ==+M MM4、圆的一般方程:022=++++F Ey Dx y x .当0422>-+F E D 时,方程表示一个圆,其中圆心⎪⎭⎫ ⎝⎛--2,2E D C ,半径2422F E D r -+=. 当0422=-+F E D 时,方程表示一个点⎪⎭⎫ ⎝⎛--2,2E D . 当0422<-+F E D 时,方程无图形(称虚圆).注:(1)方程022=+++++F Ey Dx Cy Bxy Ax 表示圆的充要条件是:0=B 且0≠=C A 且0422 AF E D -+. 圆的直径或方程:已知0))(())((),(),(21212211=--+--⇒y y y y x x x x y x B y x A5、直线与圆的位置关系: 直线0=++C By Ax 与圆222)()(r b y a x =-+-的位置关系有三种(1)相离⇔没有公共点⇔0d r ∆<⇔>(2)相切⇔只有一个公共点⇔0d r ∆=⇔=(3)相交⇔有两个公共点⇔0d r ∆>⇔<相离 相切 相交(其中:22B A C Bb Aa d +++=)还可以利用直线方程与圆的方程联立方程组⎩⎨⎧=++++=++0022F Ey Dx y x C By Ax 求解,通过解的个数来判断:(1)当方程组有2个公共解时(直线与圆有2个交点),直线与圆相交;(2)当方程组有且只有1个公共解时(直线与圆只有1个交点),直线与圆相切;(3)当方程组没有公共解时(直线与圆没有交点),直线与圆相离;即:将直线方程代入圆的方程得到一元二次方程,设它的判别式为Δ,圆心C 到直线l 的距离为d,则直线与圆的位置关系满足以下关系:(1) 相切⇔d=r ⇔Δ=0(2)相交⇔d<r ⇔Δ>0; (3)相离⇔d>r ⇔Δ<0。
6、两圆的位置关系设两圆圆心分别为O 1,O 2,半径分别为r 1,r 2,d O O =21。
(1)条公切线外离421⇔⇔+>r r d ;(2)条公切线外切321⇔⇔+=r r d ;(3)条公切线相交22121⇔⇔+<<-r r d r r ;(4)条公切线内切121⇔⇔-=r r d ;(5)无公切线内含⇔⇔-<<210r r d ;外离 外切 相交 内切 内含7、圆切线:①切线条数:点在圆外——两条;点在圆上——一条;点在圆内——无②求切线方程的方法及注意点(....点在圆外) 如定点()00,P x y ,圆:()()222x a y b r -+-=,[()()22200x a y b r -+->] 第一步:设切线l 方程()00y y k x x -=-第二步:通过d r =k ⇒,从而得到切线方程特别注意:以上解题步骤仅对k 存在有效,当k 不存在时,应补上——千万不要漏了!如:过点()1,1P 作圆2246120x y x y +--+=的切线,求切线方程. 答案:3410x y -+=和1x =②求切线方程的方法及注意点(....点在圆上) 1) 若点()00x y ,在圆222x y r +=上,则切线方程为200x x y y r +=会在选择题及填空题中运用,但一定要看清题目.2) 若点()00x y ,在圆()()222x a y b r -+-=上,则切线方程为 ()()()()200x a x a y b y b r --+--=碰到一般方程则可先将一般方程标准化,然后运用上述结果.由上述分析,我们知道:过一定点求某圆的切线方程,非常重要的第一步就是——判断点与圆的位置关系,得出切线的条数.③求切线长:利用基本图形,22222AP CP r AP CP r =-⇒=- 求切点坐标:利用两个关系列出两个方程1AC APAC r k k ⎧=⎨⋅=-⎩8、直线与圆相交(1)求弦长及弦长的应用问题垂径定理....及勾股定理——常用 弦长公式:()()222121212114l k x x k x x x x ⎡⎤=+-=++-⎣⎦(暂作了解,无需掌握) (2)判断直线与圆相交的一种特殊方法(一种巧合):直线过定点,而定点恰好在圆内.(3)关于点的个数问题例:若圆()()22235x y r -++=上有且仅有两个点到直线4320x y --=的距离为1,则半径r 的取值范围是_________________. 答案:()4,6(*)9、圆的参数方程()222cos 0sin x r x y r r y r θθ=⎧+=>⇔⎨=⎩,θ为参数 ()()()222cos 0sin x a r x a y b r r y b r θθ=+⎧-+-=>⇔⎨=+⎩,θ为参数 例题精讲基本圆方程: 【题型一、圆方程判断】【例1】2220x y ax ay a ++-+=表示圆,则a 的取值范围变式训练:方程022=+++++F Ey Dx Cy Bxy Ax 表示一个圆的充要条件是( )(A)0,==B C A (B)0,0=≠=B C A (C)04, 0, 022>-+=≠=F E D B C A(D)04,0,022>-+=≠=AF E D B C A【题型二、几种基本求圆方程的方法】1、简单圆方程求法:【例2】方程x 2+y 2+2ax-by+c=0表示圆心为C (2,2),半径为2的圆,则a 、b 、c 的值依次为( )(A )2、4、4; (B )-2、4、4; (C )2、-4、4; (D )2、-4、-42、圆心在某直线上:【例3】过点A (1,-1)、B (-1,1)且圆心在直线x+y-2=0上的圆的方程是( )A 、(x-3)2+(y+1)2=4B 、(x+3)2+(y-1)2=4C 、(x-1)2+(y-1)2=4D 、(x+1)2+(y+1)2=4(答案:)3、过三点:【例4】求下列各圆的 方程:(1)圆心为点(5,3)M -,且过点(8,1)A --(2)过三点(2,4),(1,3),(2,6)A B C --【题型三、点圆关系】【例5】点4)()()1,1(22=++-a y a x 在圆的内部,则a 的取值范围是( )(A) 11<<-a (B) 10<<a (C) 11>-<a a 或 (D)1±=a【题型四、线圆关系】类型一:【例6】若圆222)5()3(r y x =++-上有且只有两点到直线234=-y x 的距离为1, 则半径r 的取值范围是( ) A ()6,4 B [)6,4 C (]6,4 D []6,4【例7】能够使得圆x 2+y 2-2x+4y+1=0上恰有两个点到直线2x+y+c=0的距离等于1的c 的一个值为( )A.2B.5C.3D.35【例8】圆9)3()3(22=-+-y x 上到直线01143=-+y x 的距离等于1的点的个数有( )(A)1 (B)2 (C)3 (D)4类型二:【例9】直线0534=+-y x 与圆02422=+--+m y x y x 无公共点的充要条件是( )A.50<<mB.51<<mC.1>mD.0<m变式训练1. 若圆)0(022222>=++-+k y kx y x 与两坐标轴无公共点,那么实数k 的取值范围是( )A .20<<kB .21<<kC . 10<<kD .2>k2. 直线0234=--y x 与圆01242222=-++-+a y ax y x 总有两个交点,则a 应满足( )(A)73<<-a (B)46<<-a (C)37<<-a (D)1921<<-a类型三:【例10】圆012222=+--+y x y x 上的动点Q 到直线0843=++y x 距离的最小值为 .(配方:()()11122=-+-y x【题型五、与圆有关的交线问题】知直线求弦长:【例11】直线x -y +3=0被圆(x +2)2+(y -2)2=2截得的弦长等于( ) A.26 B.3 C.23 D.6知弦中点求直线:【例12】若P(2,-1)为25y 1)-(x 22=+圆的弦AB 的中点,则直线AB 的方程是( )A. 03=--y xB. 032=-+y xC. 01=-+y xD. 052=--y x知弦长求直线:【例13】求过点P (6,-4)且被圆2220x y +=截得长为62的弦所在的直线方程.涉圆交线综合分析:1、经过两点(2,4),(3,1)P Q --,且在x 轴上截得的弦长为6的圆的方程。
已知圆心在x 轴上,半径是5,且以点A(5,4)为中点的弦长为25,则这个圆的方程是____2、已知圆C 与y 轴相切,圆心在直线30x y -=上,且被直线y x =截得的弦长为27,求圆的方程。
3、已知直线03:=--k y kx l 与圆M :092822=+--+y x y x .4、求证:直线l 与圆M 必相交; 当圆M 截直线l 所得弦长最小时,求k 的值.(配方:()81-y 4)-(x 22=+;【题型六、与圆有关的切线问题】判断圆切线:【例14】圆)0()()(222>=-+-r r b y a x 与两坐标轴都相切的条件是( )A 、222r b a =+B 、r b a ==C 、222r b a ==D r b r a ==||||或求切线方程:【例15】自点 1)3()2()4,1(22=-+--y x A 作圆的切线,则切线长为( ),切线方程为: 。