t检验与单因素方差分析

合集下载

T检验 F检验 单因素分析

T检验 F检验 单因素分析

《》配对t检验的目的是检验两个样本均数所代表的未知总体均数是否有差别1,T检验和F检验的由来一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。

倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。

相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没能确定。

F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。

统计显著性(sig)就是出现目前样本这结果的机率。

2,统计学意义(P值或sig值)结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。

专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联是总体中各变量关联的可靠指标。

p值是将观察结果认为有效即具有总体代表性的犯错概率。

如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成的。

即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。

(这并不是说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。

)在许多研究领域,0.05的p值通常被认为是可接受错误的边界水平。

3,T检验和F检验至於具体要检定的内容,须看你是在做哪一个统计程序。

举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。

t检验与方差分析

t检验与方差分析

第六章数值变量资料的统计分析数值变量资料又称计量资料,通常是指每个观察单位某项指标量的大小,一般具有计量单位。

这类资料按分析的内容一般可分为两种:一种是比较几种处理之间的效应,简单地讲就是比较各处理组观察值均数、方差的大小;另一种是寻找指标间的关系,即某个(或某些)指标的取值是否受其它指标的影响。

本章主要介绍不同设计类型的数值变量资料的比较。

§样本均数与总体均数比较的t 检验t检验亦称student's t 检验,主要用于下列三种情况:(1)样本均数与总体均数比较;(2)配对数值变量资料的比较;(3)两样本均数的比较。

Stata用于样本均数与总体均数比较的t 检验的命令是:ttest 变量名= #val这里,#val 表示总体均数。

命令中可以选用if 语句和in 语句对要分析的内容加一些条件限制。

对已知样本含量、均数和标准差的资料,欲将其与某总体均数进行比较,Stata 还提供了更为简洁的命令是:】ttesti #obs #mean #sd #val这里,#obs 表示样本含量,#mean 表示样本均数,#sd 表示样本标准差, #val 表示总体均数。

§两样本均数比较的t检验一、配对设计t检验医学研究中常将受试对象配成对子,对每对中的两个受试对象分别给予两种不同的处理,观察两种处理的结果是否一致,称为配对(设计)研究。

有时以同一个受试对象先后给予两种不同的处理,观察两种处理的结果是否相同,这种配对称为自身配对。

配对设计的优点是能消除或部分消除个体间的差异,使比较的结果更能真实地反映处理的效应。

配对t检验首先计算每对结果之差值,再将差值均数与0作比较。

如两种处理的效应相同,则差值与0没有显著性差异。

检验假设H0为:两种处理的效应是相同,或总体差值均数为0。

stata用于配对样本t检验的命令是:\Ttest 变量1 = 变量2这里,这里“变量1”和“变量2”是成对输入的配对样本。

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区

t检验和方差分析的前提条件及应用误区集团标准化工作小组 #Q8QGGQT-GX8G08Q8-GNQGJ8-MHHGN#t检验和方差分析的前提条件及应用误区用于比较均值的t检验可以分成三类,第一类是针对单组设计定量资料的;第二类是针对配对设计定量资料的;第三类则是针对成组设计定量资料的。

后两种设计类型的区别在于事先是否将两组研究对象按照某一个或几个方面的特征相似配成对子。

无论哪种类型的t检验,都必须在满足特定的前提条件下应用才是合理的。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计,每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。

之所以需要这些前提条件,是因为必须在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

值得注意的是,方差分析与成组设计t检验的前提条件是相同的,即正态性和方差齐性。

t检验是目前医学研究中使用频率最高,医学论文中最常见到的处理定量资料的假设检验方法。

t检验得到如此广泛的应用,究其原因,不外乎以下几点:现有的医学期刊多在统计学方面作出了要求,研究结论需要统计学支持;传统的医学统计教学都把t检验作为假设检验的入门方法进行介绍,使之成为广大医学研究人员最熟悉的方法;t检验方法简单,其结果便于解释。

简单、熟悉加上外界的要求,促成了t检验的流行。

但是,由于某些人对该方法理解得不全面,导致在应用过程中出现不少问题,有些甚至是非常严重的错误,直接影响到结论的可靠性。

将这些问题归类,可大致概括为以下两种情况:不考虑t检验的应用前提,对两组的比较一律用t检验;将各种实验设计类型一律视为多个单因素两水平设计,多次用t检验进行均值之间的两两比较。

以上两种情况,均不同程度地增加了得出错误结论的风险。

而且,在实验因素的个数大于等于2时,无法研究实验因素之间的交互作用的大小。

统计学0715单因素方差分析

统计学0715单因素方差分析

18名员
μ1=总体1的平均考分
μ2=总体2的平均考分
μ3=总体3的平均考分
尽管并不知道μ1、μ2、μ3的实际值,但仍可通过样本资料来检验如下假设:
H0:μ1=μ2=μ3
H1:μ1,μ2,μ3不全相等
如果检验结果发现三个样本均值的差异足够大,这时就有理由拒绝原假设,接受备择假设,即认为三个分厂的平均考分不相同,也就是说三个分厂的全面质量管理效果不一样。

从例1中可以看出,进行方差分析需要满足以下三个假定:
1、对每个总体而言,各变量因素服从正态分布。

具体到此例题,要求三个分厂的考试分数服从正态分布。

2、要求各变量因素的方差对所有总体都相同。

3、观察值是独立的。

如此例,意味着每个员工的考分都与其他员工的考分独立。

均值是否相等时的假
分析数据的一种重要后通过比较这些平方验方法。

标。

影响试验指标的因素A有r个不同水平试验中如果只有一差分析。

如果多于一因素方差分析。

若在。

有多少员工了解全面量意识考核。

18名员。

管理者想利用这些
,三个分厂的位置就员工,总体3为广州分
厂的考试分数服从正立。


接受备择假设,即认。

t检验与方差分析

t检验与方差分析
– 枪支类型和靶子类型对射击成绩的影响 – 2(枪支类型,手枪与步枪)*2(靶子类型,
移动靶与固定靶)实验设计
• 注意
– 变量的定义(define) – 交互作用不显著只报告主效应的结果就可以
• 本来应该显著,但是没有显著
–β过大 –Observed power (1- β),0.8
• 五类地区教师工资收入差距,省会地区教 师的工资比非省会地区的教师工资高,但 是差异不显著。县城地区教师的工资高于 乡镇的,乡镇与村庄没有差别。同时省会 和非省会地区的工资高于县城、乡镇和村 庄三地区的,且差异显著。
几种方差分析的区别
• 组间,被试间
– ANOVA
• 单因素方差分析,如只有两个水平也可以做t检验
-Univariate
• 单因素或多因素方差分析 • 如交互作用显著,做简单效应比较
• 组内(被试内)混合实验设计
– Repeated measures
Post hoc
• 当某个因素的水平多于2个时,做事后多重 比较
内设计
• 方差齐性检验
– 方差即离散程度 – Levene's Test for Equality of Variances
独立样本单因素和多因素方差分析
• ANOVA和Univariate • 方差分析也称F检验 • 适用条件
– 正态 – 独立性(可加性) – 变异同质(方差齐性)Homogeneity tests
• 运动多少有没有性别差异?
– 组间方差分析,独立样本t检验
• 阴天时的心情和晴天时的心情会不同吗?
– 重复测量方差分析,相关样本t检验
• 漂亮的人朋友越多吗?
– 组间方差分析,如果漂亮是连续变量可以做相关

t检验和方差

t检验和方差

炼的中学生心脏功能是否与一般的中学生相同,现收集了某地区中学常年
参加体育锻炼的16名男生的心率资料,问能否认为常年参加体育锻炼的男 生心率次数低于一般男生?(xinlv.sav)
29
综合练习
4.18名黑热病兼贫血患者被随机分成两组各9名,分别用葡萄糖锑钠(A) 和复方葡萄糖锑钠(B)治疗,观察治疗前后血色素(%)的变化,测定 结果如下。试评价①这两种药是否都有效。②A,B两药的疗效是否有差
分变量
分组变量
19
三、两独立样本t检验 Independent-Samples T Test 过程
结果解释
结果分为两部分,第一部分为Levene’s方差齐性检验结果,用于判断两总体方差是否 齐。本例, F=0.440 , P=0.514 ,方差齐;第二部分则分别给出两组所在总体方差齐和不齐
时的t检验结果:第一行代表方差齐的结果,第二行代表方差不齐时的t’检验结果。
病人
健康人
2.90 5.41 5.48 4.60 4.03 5.10 4.97 4.24 4.36 2.72 2.37 2.09 7.10 5.92
5.18
8.79
3.14
6.46
3.72
6.64
5.60
4.57
7.71
4.99
4.01
18
三、两独立样本t检验 Independent-Samples T Test 过程
36
一、单因素方差分析 One-Way ANOVA
1、Statistics复选框: Descriptive:输出常用统计描述指标
Homogeneity of variance test:方差齐性检验
2、Means plot:用各组均数作均数图

T检验及单因素方差分析

T检验及单因素方差分析

T检验及单因素方差分析T检验是一种用于比较两个样本均值是否具有统计学意义的方法,而单因素方差分析则是一种用于比较三个或更多个样本均值是否具有统计学意义的方法。

本文将详细介绍T检验和单因素方差分析的基本原理、假设条件、计算公式以及实际应用。

一、T检验的基本原理T检验是由英国统计学家威廉·塞吉威德·高斯特及学生威廉·赖斯·格斯特发展而来的。

T检验基于样本均值与总体均值的比较,通过计算差异的标准误差来判断这种差异是否具有统计学意义。

T检验的基本原理是假设样本的均值服从正态分布,通过计算样本均值与总体均值之间的标准差来估计差异的大小。

二、T检验的假设条件T检验的假设条件包括正态分布假设、独立性假设和方差齐性假设。

1.正态分布假设:样本来自正态分布总体或样本容量足够大时,可以近似看作来自正态分布总体。

2.独立性假设:样本之间是相互独立的,即一个样本的观察值与另一个样本的观察值之间没有关联。

3.方差齐性假设:不同样本的方差相等,即总体的方差是相同的。

三、T检验的计算公式T检验的计算公式包括两种情况:独立样本T检验和配对样本T检验。

1.独立样本T检验:适用于两个独立的样本均值比较。

计算公式为:t = (X1 - X2) / se其中,X1和X2分别为两个样本的均值,se为标准误差,t为检验统计量。

2.配对样本T检验:适用于两个相关的样本均值比较。

计算公式为:t=(X1-X2)/(s/√n)其中,X1和X2分别为两个样本的均值,s为差异的标准差,n为样本容量,t为检验统计量。

四、单因素方差分析的基本原理单因素方差分析是用于比较三个或更多个样本均值是否具有统计学意义的方法。

它基于样本之间的差异和样本内的差异,通过计算组间方差和组内方差的比值来判断这种差异是否显著。

单因素方差分析的基本原理是假设总体均值相等,通过计算组间方差和组内方差的比值来检验这一假设。

五、单因素方差分析的假设条件单因素方差分析的假设条件包括正态分布假设、独立性假设和方差齐性假设。

STATA第四章t检验和单因素方差分析命令输出结果说明

STATA第四章t检验和单因素方差分析命令输出结果说明

第四章 t检验和单因素方差分析命令与输出结果说明·单因素方差分析单因素方差分析又称为Oneway ANOVA,用于比较多组样本的均数是否相同,并假定:每组的数据服从正态分布,具有相同的方差,且相互独立,则无效假设。

原假设:H0:各组总体均数相同。

在STATA中可用命令:oneway 观察变量分组变量[, means bonferroni]其中子命令bonferroni是用于多组样本均数的两两比较检验。

例:测定健康男子各年龄组的淋巴细胞转化率(%),结果见表,问:各组的淋巴细胞转化率的均数之间的差别有无显著性?健康男子各年龄组淋巴细胞转化率(%)的测定结果:11-20 岁组:58 61 61 62 63 68 70 70 74 7841-50 岁组:54 57 57 58 60 60 63 64 6661-75 岁组:43 52 55 56 60用变量x 表示这些淋巴细胞转化率以及用分组变量group=1,2,3分别表示11-20岁组,41-50岁组和61-75岁组,即:数据表示为:x 58 61 61 62 63 68 70 70 74 78 54 57 group 1 1 1 1 1 1 1 1 1 1 2 2x 57 58 60 60 63 64 66 43 52 55 56 60 group 2 2 2 2 2 2 2 3 3 3 3 3则用 STATA 命令:oneway x group, mean bonferroni| Summary of xgroup | Mean ①-------------+------------1 | 66.52 | 59.8888893 | 53.2------+------------Total | 61.25 ②Analysis of VarianceSource SS df MS F Prob > F-------------------------------------------------------------------------------Between groups 616.311111③ 2 ④ 308.155556⑤ 9.77⑥ 0.0010⑦Within groups 662.188889⑧ 21⑨ 31.5328042⑴-------------------------------------------------------------------------------Total 1278.50 23 55.586956(2)Bartlett's test for equal variances:chi2(2) = 2.1977 (3)Prob>chi2=0.333Comparison of x by group(Bonferroni)Row Mean- |Col Mean | 1 2-------------- --|--------------------------------------2 | -6.61111 (4)| 0.054 (5)|3 | -13.3 (6) -6.68889(8)| 0.001 (7) 0.134 (9)①对应三个年龄组的淋巴细胞转化率的均数;②三组合并在一起的总的样本均数;③组间离均差平方和;④组间离均差平方和的自由度;⑤组间均方和(即:⑤=③/④);⑧组内离均差平方和;⑨组内离均差平方和的自由度;(1)组内均方和(即:(1)=⑧/⑨);⑥为F 统计值(即为⑤/(1));⑦为相应的p值;(2)为方差齐性的Bartlett检验;(3)方差齐性检验相应的p值;(4)第二组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(5)第二和第一组均数差的显著性检验所对应p 值;(6)第三组的淋巴细胞转化率样本均数—第一组的淋巴细胞转化率的样本均数的差;(7)第三和第一组均数差的显著性检验所对应的 p 值;(8)第三组的淋巴细胞转化率样本均数—第二组的淋巴细胞转化率的样本均数的差;(9)第三和第二组均数差的显著性检验所对应的p 值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

t检验(t test)是以t分布为理论
基础,对一个或两个样本的数值变 量资料进行假设检验常用的方法, 属于参数检验。
正态分布的公式
总体均数
f ( X ) 1 e , ( X -)2 / 2 2 ∞ X ∞
2
总体标准差
μ和σ是正态分布的两个参数,μ和σ决定了x 的概率分布;习惯上用 N (μ, σ2)表示均数为μ,标 准差为σ的正态分布。
季聪华 2012.10.18
假设检验步骤
• 1.建立假设、确定检验水准
(1)零假设或无效假设: H0:μ=μ0,即两 总体均数相同。
➢(2)备择假设或有统计学意义假设H1:
μ≠μ0,即两总体均数不同。根据专业知
识及数据特征,备择假设H1 也有单侧形式:
μ<μ0 ,μ>μ0 。
➢选择双侧检验,还是单侧检验需依据数据 特征和专业知识进行确定。
• 2.选择检验方法、计算统计量
假设检验的方法应针对不同研究目的、设 计及资料的类型选定,并计算相应的检验 统计量。
如在总体方差已知的情况下,进行两均数 的比较用z检验或u检验;在总体方差未知 情况下,进行两均数的比较用 t 检验等。
• 3.确定P值、作出推论
根据计算的检验统计量,确定P值,P值是 在H0成立的情况下随机抽样,获得大于及 等于或(和)小于及等于现有样本资料求得的 检验统计量的概率。
• t检验(n较小时)的计算公式:
• U检验(n较大时)的计算公式:
【例1】已知一般无肝肾疾患的健康人群血尿素氮 均值为 4.882 (mmol/L),10名脂肪肝患者的血尿素 氮 (mmol/L)测定值为 6.24,4.26,5.36,8.13, 6.96,11.8,5.74,4.37,5.18,8.68。 问:脂肪肝患者血尿素氮含量是否不同于健康人?
应的总体方差相等(方差齐性) u 检验:1.大样本
2.样本小,但总体标准差已知
t检验 • 样本均数与总体均数比较的t检验 • 配对设计资料比较的t检验 • 两独立样本均数比较的t检验 方差分析 • 完全随机设计的单因素方差分析 • 多个样本均数间的多重比较
样本均数与总体均数的比较的t检验,亦 称单样本t检验(one sample t test) 。
• 第二步:将10个数据依次 录入SPSS,形成10行1列的 数据集。
• 第三步:选择分析→比较均值→单样本T检验
• 第四步:在单样本T检验对话框中,检验变 量处移入血尿素氮,检验值处填上4.882。
• 第五步:点确定后产生结果,结果解读。
• 结果解读1
• N:总的样本例数=10 • 均值:算术平均数=6.6720 • 标准差:标准差=2.32515 • 均值的标准误:标准误=0.73528
1. 位置参数:μ
当σ固定不变时,μ越大,曲线沿横轴 越向右移动;反之, μ越小,则曲线沿横轴越向左移 动,所以μ叫正态曲线N(μ, σ2)的位置参数, 。
正态分布位置随参数μ变换示意图
2. 形状参数:σ
当μ固定不变时,σ越大,曲线越平阔; σ越小,曲线越尖峭,σ 叫正态曲线N(μ, σ2)的形 状参数。
单因素方差分析,理论上若不满足方差齐性及正态分布(哪怕有一 条不符合也算),则用秩和检验。
正态分布的检验,首先先将资料进行分组处理 ,然后-非参数检验-旧对话框-1-样本 (看最后
出来的p>0.05则为正态分布) 但一般来说,多直接只看方差齐性,不用看是
否满足正态分布
医学统计学(04) ——t检验与单因素方差分析
f(X)
0.9
0.8
σ=1
0.7
0.6
0.5
0.4
0.3
σ=1.5
0.2
0.1 0
σ=2
-6 -5 -4 -3 -2 -1 0 1 2 3 4 5 8 1.96
t 检验和 u 检验
应用条件: t 检验:1.单因素设计的小样本(n<50)计
量资料 2.样本来自正态(近似正态)分布总体 3.总体标准差未知 4.两样本均数比较时,要求两样本相
假设检验的分类
➢根据是否正态分布:分参数检验和非参数 检验
➢根据处理因素:分单因素分析和多因素分 析
➢根据比较类型:分优效性、等效性和非劣 效性。
常用假设检验方法的选择(1)
两均数 比较
多组均 数比较
样本与总体比较
两样本 比较
配对 资料
非配对 资料
完全随机设计资 料
配伍组设计资料
拉丁方设计资料 正交设计
用于从正态总体中获得含量为n的样本, 算得均数和标准差,判断其总体均数μ 是否与某个已知总体均数μ0相同。
➢已知的总体均数一般为公认的理论数值、 经验数值、期望数值或经过大量观察所得 的稳定值,如人的正常生理指标(红细胞数、 身高、血压等)。
➢样本均数与总体均数比较的 t 检验,其应用 条件是资料服从正态分布或近似正态分布。
t检验 • 样本均数与总体均数比较的t检验 • 配对设计资料比较的t检验 • 两独立样本均数比较的t检验 方差分析 • 完全随机设计的单因素方差分析 • 多个样本均数间的多重比较
t检验 • 样本均数与总体均数比较的t检验 • 配对设计资料比较的t检验 • 两独立样本均数比较的t检验 方差分析 • 完全随机设计的单因素方差分析 • 多个样本均数间的多重比较
查表,t与自由度为9(10-1)时的t界值进行 比较,得到0.01<p<0.05。
• P=2*[1-CDF.T(2.434,9)]
CDF.T(quant, df)。数值。返回 t 分布(指定自由度为 df)中的 值将小于 quant 的累积概率。
SPSS软件操作
• 第一步:以“血尿素氮” 为变量名,建立变量
• 结果解读2
• t:统计量t=2.434 • Sig(双侧):p值=0.038 • 均值差值:两个均数的差值=1.79 • 差值的95%CI:0.1267~3.4533
样本均数与总体均数比较的t检验 配对t检验
符号秩和检验 两独立样本比较的t检验
两组资料的秩和检验 中位数检验
单因素方差分析 H检验,多个样本两两比较的秩和检验
两因素方差分析 M检验
三向方差分析 多向方差分析
《中华医学杂志》对来稿统计学处理的有关要求
《中华医学杂志》对来稿统计学处理的有关要求
单因素均数比较
相关文档
最新文档