单因素试验的方差分析共27页文档

合集下载

单因素方差分析

单因素方差分析
其中
ij 为试验误差,相互独立且服从正态分布
即 ij ~ N 0, 2


整个试验的均值
1 令 i , i 1, 2, a
, a,称其为因素A的总体平均值。
i i , 称为因素A的第 i 个水平 Ai 的效应。
则线性统计模型变成
X ij i ij , j 1, 2,..., r, i 1, 2,..., a.
例1 为了比较4种单层皱纹海运集装箱的抗压程度,从每种集装 箱中各随机选取6个进行最大抗压试验,得到数据如下表显示, 假设集装箱的抗压程度服从正态分布。问:不同种类的海运集 装箱的抗压强度是否有显著差别?若有差异,哪一种抗压程度 高?
集装箱类 型 最大抗压强度
655.5 788.3 734.3 721.6 679.4 699.4
1
... r
列和Ti X ij
j 1 r
T 1
T2
...
Ta 总和 Ti T
i 1
r
列平均X i Ti r
(水平组内平均值)
X1
X2
...
Xa
X
(总平均值)
T ar
例:五个水稻品种单位产量的观测值
品种
重复 1 2 3
A1
A2
A3
A4
A5
41 39 40
单因素试验的方差分析的数学模型
首先,我们作如下假设:
1. X i ~ N i , 2 , i 1, 2,...a 具有方差齐性。
2. X1 , X 2 ,... X a 相互独立,从而各子样也相互独立。
由于同一水平下重复试验的个体差异是随机误差, 所以设:

单因素试验的方差分析——概率论与数理统计(李长青版)

单因素试验的方差分析——概率论与数理统计(李长青版)

其次, 同一品种下数据表现出来的差异称为试验(随
机)误差, 这是由客观条件的偶然干扰造成, 与因素(品种) 无直接联系.
方差分析正是分析两类误差的有效工具.
本问题只考虑品种一种因素,故是单因素试验,即只有
一个因子,记为 A, 5个不同的品种就是该因子的5个不同 的水平,分别记为 A1 , A2 , A3 , A4 , A5 , 由于同一品种在不 同的田块上的亩产量不同,故可以认为一个品种的亩产 量 就是一个母体,在方差分析中,总是假定各母体相互独 立地服从同方差的正态分布,即第 j 个品种的亩产量是 一个随机变量,它服从正态分布:
nj
ns , 称为总平均,
它是从 s 个总体中抽得的样本的样本均值.
用样本值 xij 与总平均
x 之间的偏差平方和来反映
种子品种代 号 (水平)
重复试验序号及作物实测产量 1 128 125 148 2 126 137 132 3 139 125 139 4 130 117 125 5 142 106 151 133 122 139
A1 A2
A3
这里试验的指标是作物产量, 作物是因素, 三种种 子品种代表三个不同的水平. 首先,形成数据差异的直接原因是种子的不同品 种.因此, 每个品种下产量的均值差异检验是我们的主 要任务.这种由因素(种子品种)造成的差异称为条件(系 统)误差.
H 0 : 1 2 s 0, H1 : 1 , 2 , , s 不全为零.
(二) 离差平方和分解 引入记号
nj
1 xj nj
s
x
i 1
ij
( j 1, 2,
, s) 水平Aj下的样本均值,
称为组内平均(或列平均)

25.单因素试验的方差分析

25.单因素试验的方差分析

数学模型
j 与 2 均未知.
14
需要解决的问题
1.检验假设
H0 : 12 s , H1 : 1, 2 , , s不全相等.
2.估计未知参数1, 2 , , s , 2.
15
数学模型的等价形式
s
记n nj ,
j 1
1 n
s j 1
njj.
总平均
水平Aj的效 应, 表示水平 Aj下的总体 平均值与总 平均的差异.
i 1 nj
( Xij X• j )2
i 1
2
~ 2(nj 1).
23
又由于各 Xij 独立, 所以由 2 分布的可加性知
S E
2
~ 2
s
(nj
j 1
1),

S
E2~
2
(n
s),
s
其中n nj .
j1
根据 2 分布的性质可以得到,
SE 的自由度为n s; E(SE ) (n s) 2.
铝合金板的厚度
机器Ⅱ 0.257 0.253
机器Ⅲ 0.258 0.264
0.255 0.254
0.259 0.267
0.261
0.262
4
试验指标: 薄板的厚度 因素: 机器
水平:不同的三台机器是因素的三个不同的水平. 假定除机器这一因素外, 其他条件相同,
属于单因素试验. 试验目的: 考察各台机器所生产的薄板的厚度有 无显著的差异. 即考察机器这一因素对厚度有无 显著的影响. 结论: 如果厚度有显著差异, 表明机器这一因素对厚度的影响是显著的.
H0 : 1 23 ,
H1 : 1, 2 , 3不全相等.
进一步假设各总体均为正态变量, 且各总体的

单因素试验的方差分析-最新版

单因素试验的方差分析-最新版

1
2
试验指标——实验结果
一、基本概念
3 4Biblioteka 可控因素——在影响实验结果的众 多因素中,可认为控制的因素
水平——可控因素所处的各种不同的 状态,每个水平又称为实验的一个处 理 单因素实验——如果在一个实验中只 有一个因素改变,其他的可控因素不 变,则该类试验称为单因素实验
傻狍子
试验指标:聪明狍,可爱狍,智慧狍,傻狍子 因素:傻狍子的智商 傻狍子的专业 傻狍子的原料 傻狍子的艳遇 傻狍子的素质 傻狍子的狗屎运 傻狍子的…… 水平:(假设傻狍子的因素是专业)拉网线,修 水管,收破烂等等
单因素试验的方差 分析
主要内容
举例引入 A
例题说明
C
B
概念讲解
例题引入
例: 某试验室对钢锭模进行选材试验.其方法是将试件加热到700℃后,投入到20℃的水中急冷,这样 反复进行到试件断裂为止,试验次数越多,试件质量越好.试验结果如表9-1.
试验的目的是确定4种生铁试件的抗热疲劳性能是否有显著差异. 这里,试验的指标是钢锭模的热疲劳值,钢锭模的材质是因素,4种不同的材质表示钢锭模的4个水 平,这项试验叫做4水平单因素试验.
二、假设前提
二、假设前提
二、假设前提

三、偏差平方和及其分解
四、SE与SA的统计特性
五、检验方法
例题说明

单因素试验的方差分析

单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列

第二节 单因素试验资料的方差分析

第二节 单因素试验资料的方差分析

第二节单因素试验资料的方差分析在方差分析中,根据所研究试验因素的多少,可分为单因素、两因素和多因素试验资料的方差分析。

单因素试验资料的方差分析是其中最简单的一种,目的在于正确判断该试验因素各水平的优劣。

根据各处理内重复数是否相等,单因素方差分析又分为重复数相等和重复数不等两种情况。

上节讨论的是重复数相等的情况。

当重复数不等时,各项平方和与自由度的计算,多重比较中标准误的计算略有不同。

本节各举一例予以说明。

一、各处理重复数相等的方差分析【例6.3】抽测5个不同品种的若干头母猪的窝产仔数,结果见表6-12,试检验不同品种母猪平均窝产仔数的差异是否显著。

表6-12五个不同品种母猪的窝产仔数这是一个单因素试验,k=5,n=5。

现对此试验结果进行方差分析如下:1、计算各项平方和与自由度2、列出方差分析表,进行F检验表6-13不同品种母猪的窝产仔数的方差分析表根据df1=df t=4,df2=df e=20查临界F值得:F0.05(4,20)=2.87,F0.05(4,20)=4.43,因为F>F0.01(4,20),即P<0.01,表明品种间产仔数的差异达到1%显著水平。

3、多重比较采用新复极差法,各处理平均数多重比较表见表6-14。

表6-14不同品种母猪的平均窝产仔数多重比较表(SSR法)-8.2 -9.6因为MS e=3.14,n=5,所以为:根据df e=20,秩次距k=2,3,4,5由附表6查出α=0.05和α=0.01的各临界SSR 值,乘以=0.7925,即得各最小显著极差,所得结果列于表6-15。

表6-15SSR值及LSR值将表6-14中的差数与表6-15中相应的最小显著极差比较并标记检验结果。

检验结果表明:5号品种母猪的平均窝产仔数极显著高于2号品种母猪,显著高于4号和1号品种,但与3号品种差异不显著;3号品种母猪的平均窝产仔数极显著高于2号品种,与1号和4号品种差异不显著;1号、4号、2号品种母猪的平均窝产仔数间差异均不显著。

单因素方差分析

单因素方差分析

单因素方差分析定义:单因素方差分析测试某一个控制变量的不同水平是否给观察变量造成了显著差异和变动。

例如,培训是否给学生成绩造成了显著影响;不同地区的考生成绩是否有显著的差异等。

前提:1总体正态分布。

当有证据表明总体分布不是正态分布时,可以将数据做正态转化。

2变异的相互独立性。

3各实验处理内的方差要一致。

进行方差分析时,各实验组内部的方差批次无显著差异,这是最重要的一个假定,为满足这个假定,在做方差分析前要对各组内方差作齐性检验。

一、单因素方差分析1选择分析方法本题要判断控制变量“组别”是否对观察变量“成绩”有显著性影响,而控制变量只有一个,即“组别”,所以本题采用单因素分析法,但需要进行正态检验和方差齐性检验。

2在控制变量为“组别”,3正态检验(P>0.05,服从正态分布)正态检验操作过程:“分析”→“描述统计”→“探索”,出现“探索”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子列表”,将“人名”放入“标注个案”;点击“绘制”,出现“探索:图”窗口,选中“直方图”和“带检验的正态图”,点击“继续”;点击“探索”窗口的“确定”,输出结果。

因变量是用户所研究的目标变量。

因子变量是影响因变量的因素,例如分组变量。

标注个案是区分每个观测量的变量。

带检验的正态图(Normality plots with test,复选框):选择此项,将进行正态性检验,并生成正态Q-Q概率图和无趋势正态Q-Q概率图。

正态检验结果分析:p值都大于0.05,因而我们不能拒绝零假设,也就是说没有证据表明各组的数据不服从正态分布(检验中的零假设是数据服从正态分布)。

即p值≥0.05,数据服从正态分布。

4单因素方差分析操作过程“分析”→“比较均值”→“单因素ANOVA”,出现“单因素方差分析”窗口,将因变量“成绩”放入“因变量列表”,将自变量“组别”放入“因子”列表;点击“选项”选择“方差同质性检验”和“描述性”,点击“继续”,回到主对话框;点击“两两比较”选择“LSD”和“S-N-K”、“Dunnett’s C”,点击“继续”,回到主对话框;点击“对比”,选择“多项式”,点击“继续”,回到主对话框;点击“单因素方差分析”窗口的“确定”,输出结果。

单因素方差分析方法

单因素方差分析方法

实例解析单因素的方差分析方法首先在单因素试验结果的基础上,求出总方差V 、组内方差vw、组间方差vB。

总方差 v=()2ijx x -∑组内方差 v w =()2ij x x i-∑ 组间方差 v B=b ()2ix x -∑从公式可以看出,总方差衡量的是所有观测值xij对总均值x 的偏离程度,反映了抽样随机误差的大小,组内方差衡量的是所有观测值xij对组均值x 的偏离程度,而组间方差则衡量的是组均值x i对总均值x 的偏离程度,反映系统的误差。

在此基础上,还可以得到组间均方差和组内均方差: 组间均方差2Bs ∧=1B-a v组内均方差 2ws∧=aab vw-在方差相等的假定下,要检验n 个总体的均值是否相等,须首先给定原假设和备择假设。

原假设 H 0:均值相等即μ1=μ2=…=μn备择假设H 1:均值不完全不相等则可以应用F 统计量进行方差检验:F=)()(b ab a vv w--1B =22∧∧ss WB该统计量服从分子自由度a-1,分母自由度为ab-a 的F 分布。

给定显著性水平a ,如果根据样本计算出的F 统计量的值小于等于临界值)(a ab 1a F --,α,则说明原假设H 0不成立,总体均值不完全相等,差异并非仅由随机因素引起。

下面通过举例说明如何在Excel 中实现单因素方差分析。

例1:单因素方差分析某化肥生产商需要检验三种新产品的效果,在同一地区选取3块同样大小的农田进行试验,甲农田中使用甲化肥,在乙农田使用乙化肥,在丙地使用丙化肥,得到6次试验的结果如表2所示,试在0.05的显著性水平下分析甲乙丙化肥的肥效是否存在差异。

表2 三块农田的产量要检验三种化肥的肥效是否存在显著差异,等同于检验三者产量的均值是否相等:给定原假设H 0:三者产量均值相等;备择假设H 1:三者的产量均不相等,对于影响产量的因素仅化肥种类一项,因此可以采用单因素方差分析进行多总体样本均值检验。

⑴新建工作表“例1”,分别单击B3:D8单元格,输入表2的产量数值。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
单因素试验的方差分析

46、寓形宇内复几时,曷不委心任去 留。

47、采菊东篱下,悠然见南山。

48、啸增,日 有所长 。

50、环堵萧然,不蔽风日;短褐穿结 ,箪瓢 屡空, 晏如也 。
56、书不仅是生活,而且是现在、过 去和未 来文化 生活的 源泉。 ——库 法耶夫 57、生命不可能有两次,但许多人连一 次也不 善于度 过。— —吕凯 特 58、问渠哪得清如许,为有源头活水来 。—— 朱熹 59、我的努力求学没有得到别的好处, 只不过 是愈来 愈发觉 自己的 无知。 ——笛 卡儿

60、生活的道路一旦选定,就要勇敢地 走到底 ,决不 回头。 ——左
相关文档
最新文档