单因素方差分析的计算步骤

合集下载

单因素方差分析公式研究单因素方差分析的公式

单因素方差分析公式研究单因素方差分析的公式

单因素方差分析公式研究单因素方差分析的公式单因素方差分析公式研究在统计学中,单因素方差分析是用于比较两个或多个组之间差异的一种方法。

它可以帮助我们确定因素对观测值的影响程度,并判断这种影响是否具有统计学上的显著性。

本文将对单因素方差分析的公式进行研究和解析,以帮助读者更好地理解和应用该方法。

一、方差的概念和计算公式方差是描述数据分散程度的统计量,用于衡量观测值与其均值之间的偏离程度。

对于一个样本数据集,方差的计算公式如下:\[S^2 = \frac{\sum{(X_i - \bar{X})^2}}{n-1}\]其中,\(S^2\)表示样本方差,\(\sum{(X_i - \bar{X})^2}\)表示所有观测值与均值之差的平方和,\(n\)表示样本容量。

二、单因素方差分析的公式在单因素方差分析中,我们将观测值按照某个因素分成两个或多个组,并比较这些组之间的差异。

单因素方差分析的计算公式如下:\[F = \frac{SSB}{SSW}\]其中,\(F\)表示方差分析的统计量,\(SSB\)表示组间平方和,\(SSW\)表示组内平方和。

三、组间平方和的计算方法组间平方和是一种衡量不同组之间差异的统计量,它的计算方法如下:\[SSB = \sum{\frac{T_i^2}{n_i}} - \frac{T^2}{N}\]其中,\(T_i\)表示第\(i\)组的总和,\(n_i\)表示第\(i\)组的样本容量,\(T\)表示所有观测值的总和,\(N\)表示总样本容量。

四、组内平方和的计算方法组内平方和是一种衡量同一组内观测值之间差异的统计量,它的计算方法如下:\[SSW = \sum{(X_{ij} - \bar{X_i})^2}\]其中,\(X_{ij}\)表示第\(i\)组的第\(j\)个观测值,\(\bar{X_i}\)表示第\(i\)组的均值。

五、方差分析的统计显著性检验通过计算得到方差分析的统计量\(F\)后,需要进行显著性检验来判断因素对观测值的影响是否具有统计学上的显著性。

单因素试验方差分析(试验数据处理)

单因素试验方差分析(试验数据处理)

SST ( X ij X ) 2
j 1 i 1
r nj
r
nj
SSA ( X j X ) 2
j 1 i 1
n j ( X j X )2
j 1
s
SSA反映了在每个水平下的样本均值与样本总均 值的差异,它是由因子A 取不同水平引起的,所以, 称SA是因子A的效应(组间)平方和.
单因素试验——在一项试验中只有一个因素改变.
多因素试验——在一项试验中有多个因素在改变.
例1 下表列出了随机选取的、用于计算器的四种 类型的电路的响应时间(以毫秒计). 表1 电路的响应时间 类型Ⅰ 类型Ⅱ 类型Ⅲ 类型Ⅳ 19 20 16 18 22 21 15 22 20 33 18 19 18 27 26 试验指标:电路的响应时间 因素:电路类型 水平: 四种电路类型为因素的四个不同的水平 单因素试验 试验目的:考察电路类型这一因素对响应时间有无 显著的影响.(从哪些值来看是否有影响呢?)
F值 31.10
显著性
934.73
2
6
467.36
**
组内 总和
90.17
1024.89
15.03
8
不同的饲料对猪的体重有非常显著的影响。
三、单因素试验方差分析的简化计算
由于方差分析的计算量比较大,所以引入一种离 差平方和的简单算法:

Ti —Ai 水平时,ni个试验值之和 Qi —Ai 水平时,ni个试验值的平方和 T—n个试验值之和 Q—n个试验值的平方和
r
列平均X i Ti ni
(组内平均值)
X1
X2
...
r i 1
Xr
n n i 其中诸 ni 可以不一样,

单因素方差分析的计算步骤

单因素方差分析的计算步骤

单因素方差分析的计算步骤Document serial number【NL89WT-NY98YT-NC8CB-NNUUT-NUT108】一、 单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。

结果如下表:m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设()m j n i a N x j ij ,2,1;,2,1,,~2==σ。

可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。

因此检验因素A 的各水平之间是否有显着的差异,就相当于检验:μ====m a a a H 210:或者 具体的分析检验步骤是:(一)计算水平均值令j x 表示第j 种水平的样本均值,式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数(二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST 代表,则,其中,n x x ij ∑∑=它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE 表示,其计算公式为:其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA 表示,SSA 的计算公式为:用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。

可以看出,它所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在: 因为:在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有,即 SSA SSE SST +=(三)计算平均平方用离差平方和除以各自自由度即可得到平均平方。

单因素方差分析的计算步骤

单因素方差分析的计算步骤

一、 单因素方差分析的计算步骤假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值()m j n i ,2,1;,2,1==。

结果如下表3.1: 表3.1 单因素方差分析数据结构表为了考察因素A 对实验结果是否有显著性影响,我们把因素A 的m 个水平m A A A ,,21看成是m 个正态总体,而()m j n i x ij ,2,1;,2,1==看成是取自第j 总体的第i 个样品,因此,可设()m j n i a N x j ij ,2,1;,2,1,,~2==σ。

可以认为j j j a εεμ,+=是因素A 的第j 个水平j A 所引起的差异。

因此检验因素A 的各水平之间是否有显著的差异,就相当于检验:μ====m a a a H 210:或者 0:210====m H εεε具体的分析检验步骤是: (一) 计算水平均值令j x 表示第j 种水平的样本均值,jn i ijj n xx j∑==1式中,ij x 是第j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数 (二)计算离差平方和在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST 代表,则,2)(∑∑-=x x SST ij其中,nxx ij∑∑=它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE 表示,其计算公式为:()∑∑⎥⎦⎤⎢⎣⎡-=j i j ij x x SSE 2其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA 表示,SSA 的计算公式为:()()22∑∑∑-=-=x x n x x SSA j j j用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。

单因素试验的方差分析

单因素试验的方差分析

其中
r n i
2r
2
S S A X iX n i ii
i 1j 1
i 1
组间平方和(系
如果H0 成立,则SSA 较小。 统离差平方和)
反映的是各水平平均值偏离总平均值的偏离程度。
其中
1 r ni
ni1 j1
ij,
ni
i ij
j1
r ni
2 r ni
2
由P106定理5.1可推得:
S S 2 T~2 n 1 ,S S 2 A ~2 r 1 ,S S 2 E ~2 n r
将 分别SS记2T 作, SS2A
,
SSE
2
的自d由fT度,dfA,dfE
则 FSSA dfA~Fr1,nr
SSE dfE
(,称记作均S S 方A 和d f)A M S A ,S S Ed fE M S E
j1
i1
同一水平 下观测值 之和
所以观测 值之和
例2 P195 2 以 A、B、C 三种饲料喂猪,得一个月后每猪 所增体重(单位:500g)于下表,试作方差分析。
饲料
增重
A
51
40
43
48
B
23
ቤተ መጻሕፍቲ ባይዱ25
26
C
23
28
解:T1 51404348182, T2 232526 74, T3 232851
F0.012,610.92
1 5 .0 3
总和 1024.89 8
不同的饲料对猪的体重的影响极有统计意义。
例2的上机实现步骤
输入原始数 据列,并存 到A,B,C 列;
各水平数据放同一列
各水平数据 放在不同列

单因素的方差分析和LSR法多重比较Excel表格计算

单因素的方差分析和LSR法多重比较Excel表格计算

1、划分变异原因总变异=处理间变异+区组间变异+误差变异2、列出试验结果并初步计算,求处理和T,区组和T ,和总和T。

3、分解并计算各项平方和、自由度(1)求平方和n (区组)=4k (处理)=6矫正数39609.37501257.631099.3855.46102.79(2)求各项自由度235使用说明:①使用前请详细阅读文档为娱乐学习之用,处理及区组均为10个,作中的蓝字为使用者填入,其他如工作表、格式及果给予重视,如为“不能反映处理间效应”或“一、单因素随机化完全区组设计的方差分析2=nkT C =k 2i i=11n A SS C T ∙==∑-==∑=C SS T B -n 1j 2j .k 1=--=SS SS SS SS B A T e ==1-nk T f =-=1f k A =-=1n f B --=)1)(1(n k f e n n 2ij i=1j=1x T SS C ==∑∑-3155、进行F检验64(2)求F值32.092.70(3)查F表(4)检验由表中F值和F临界值相比较得知:①否定H01,差异极显著2②接受H02,区组间差异不显著1结论:该项试验结果能极显著反映处理间的效应。

已知k=65种 , n=41.30893 3.16 4.351.3089 4.14 5.69②4 3.25 4.461.3089 4.25 5.84③5 3.31 4.551.3089 4.33 5.95④6 3.36 4.611.3089 4.40 6.03⑤0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑥二、邓肯(Duncan)多重极差法(LSR法),a有2、3……等(1)求LSR(1)H 01:α1=α2=…=αH 02;β1=β2=…=β=1-nk T f =-=1f k A =-=1n f B =--=)1)(1(n k f e ==22/e A A S S F 22e /=B B F S S =X S =0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑦0#VALUE!#VALUE! 1.3089#VALUE!#VALUE!⑧细阅读统计学有关资料,按照相关要求进行完善,同时建议按照统计学示例进行验算;②本之用,处理及区组均为10个,作者不承担由使用该文档而产生的法律责任,如不赞同,请删除;③文者填入,其他如工作表、格式及公式等内容请勿非专业改动或删除;④在输入数据后请对方差分析结为“不能反映处理间效应”或“不能接受”,多重比较已无意义,请核对原始数据。

方差分析公式单因素方差分析多因素方差分析的计算公式

方差分析公式单因素方差分析多因素方差分析的计算公式

方差分析公式单因素方差分析多因素方差分析的计算公式方差分析公式计算单因素和多因素方差分析的方法是统计学中常用的数据分析技术。

方差分析可以用来比较两个或多个组之间的均值是否存在显著差异。

在本文中,将介绍单因素方差分析和多因素方差分析的计算公式和步骤。

一、单因素方差分析的计算公式单因素方差分析适用于只有一个自变量(因素)的情况下比较多个组的均值是否存在差异。

在进行单因素方差分析时,需要计算以下几个统计量。

1. 总平方和(SST):总平方和表示各组数据与整体均值之间的偏差总和。

其计算公式如下:SST = Σ(xi - x)²其中,xi为每个观察值,x为所有观察值的均值。

2. 组内平方和(SSW):组内平方和表示各组数据与各组均值之间的偏差总和。

其计算公式如下:SSW = Σ(xi - x i)²其中,xi为每个观察值,x i为各组观察值的均值。

3. 组间平方和(SSB):组间平方和表示各组均值与整体均值之间的偏差总和。

其计算公式如下:SSB = Σ(ni * (x i - x)²)其中,ni为每个组的观察次数,x i为各组观察值的均值,x为所有观察值的均值。

4. 平均平方和(MSW和MSB):平均平方和表示各组之间的平均差异程度。

其计算公式如下:MSW = SSW / (n - k)MSB = SSB / (k - 1)其中,n为总观察次数,k为组的个数。

5. F统计量:F统计量用于检验组间均值是否存在显著差异。

其计算公式如下:F = MSB / MSW二、多因素方差分析的计算公式多因素方差分析适用于两个或更多个自变量(因素)的情况下比较多个组的均值是否存在差异,并确定各因素之间的交互影响。

在进行多因素方差分析时,需要计算以下几个统计量。

1. 总平方和(SST):总平方和的计算方式与单因素方差分析相同。

2. 组内平方和(SSW):组内平方和的计算方式与单因素方差分析相同。

单因素方差分析范文

单因素方差分析范文

单因素方差分析范文单因素方差分析(One-way Analysis of Variance,简称ANOVA)是统计学中一种常用的方法,用于比较三个或三个以上的组的均值是否存在显著差异。

本篇文章将从原理、假设、步骤和应用等方面进行介绍。

一、原理二、假设在进行单因素方差分析时,需要假设组间均值是否存在显著差异。

具体的假设如下:H0:各组均值相等(即组间均值差异不显著)H1:至少有两组均值不相等(即组间均值差异显著)三、步骤进行单因素方差分析的步骤如下:1.根据研究目的和问题选择合适的统计方法;2.收集数据,涉及到多个组的测量值;3. 计算总平方和(SS_total),表示总变异性大小;4. 计算组间平方和(SS_between),表示组间变异性大小;5. 计算组内平方和(SS_within),表示组内变异性大小;6. 根据以上计算结果,计算组间均方(MS_between)和组内均方(MS_within);7. 计算F值,即F=MS_between/MS_within;8.根据设定的显著性水平(通常为0.05),查表或计算得到临界值;9.比较计算得到的F值与临界值,判断是否达到显著性水平。

四、应用1.医学研究:比较不同药物对疾病治疗效果的影响;2.教育研究:比较不同教学方法对学生学习成绩的影响;3.市场调查:比较不同广告对产品销量的影响;4.农业实验:比较不同施肥方式对作物产量的影响。

五、总结单因素方差分析是一种常用的统计方法,通过比较三个或三个以上组的均值差异来判断各组之间是否存在显著差异。

它的优点是可以同时比较多个组均值的差异,从而提高实验效率和减少误判,应用广泛且实用。

因此,研究者在进行多组均值比较时,可以选择单因素方差分析方法进行分析。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、 单因素方差分析的计算步骤
假定实验或观察中只有一个因素(因子)A ,且A 有m 个水平,分别记为,,,21m A A A 在每一种水平下,做n 次实验,在每一次试验后可得一实验值,记做ij x 表示在第j 个水平下的第i 个试验值
()m j n i ,2,1;,2,1==。

结果如下表3.1:
表3.1 单因素方差分析数据结构表
为了考察因素
A 对实验结果是否有显著性影响,我们把因素A 的m 个水平m A A A ,,21看成是m 个正态总
体,而()m j n i x ij ,2,1;,2,1==看成是取自第
j 总体的第i 个样品,因此,可设
()m j n i a N x j ij ,2,1;,2,1,,~2==σ。

可以认为j j j a εεμ,+=
是因素A 的第j 个水平j A 所引起的差异。

因此检验因素A 的各水平之间是否
有显著的差异,就相当于检验:
μ====m a a a H 210:或者
具体的分析检验步骤是: (一) 计算水平均值 令j x 表示第j 种水平的样本均值,
式中,ij x 是第
j 种水平下的第i 个观察值,j n 表示第j 种水平的观察值次数
(二)计算离差平方和
在单因素方差分析中,离差平方和有三个,它们分别是总离差平方和,组内离差平方和以及组间平方和。

首先,总离差平方和,用SST 代表,则,
其中,n
x x ij
∑∑=
它反映了离差平方和的总体情况。

其次,组内离差平方和,用SSE 表示,其计算公式为:
其中j x 反映的是水平内部或组内观察值的离散状况,即反映了随机因素带来的影响。

最后,组间平方和,用SSA 表示,SSA 的计算公式为:
用各组均值减去总均值的离差的平方,乘以各组观察值个数,然后加总,即得到SSA 。

可以看出,它
所表现的是组间差异。

其中既包括随机因素,也包括系统因素。

根据证明,SSA SSE SST ,,之间存在着一定的联系,这种联系表现在: 因为:
在各组同为正态分布,等方差的条件下,等式右边最后一项为零,故有, 即 SSA SSE SST +=
(三)计算平均平方
用离差平方和除以各自自由度即可得到平均平方。

对SST 来说,其自由度为1-n ,因为它只有一个约束条件,即
0)(=-∑∑x x
ij。

对SSA 来说,其自由度是1-m ,这里m 表示水平的个数,SSA 反映
的是组间的差异,它也有一个约束条件,即要求:
对SSE 来说,其自由度为m n -,因为对每一种水平而言,其观察值个数为j n ,该水平下的自由度为
1-j n ,总共有m 个水平,因此拥有自由度的个数为m n n m j -=-)1(。

与离差平方和一样,SSE SSA SST ,,之间的自由度也存在着关系,即 这样对SSA ,其平均平方MSA 为: 对于SSE ,平均平方MSE 为: (四)方差分析表
由F 分布知,F 值的计算公式为:
为了将方差分析的主要过程表现的更加清楚,通常把有关计算结果列成方差分析表如下表3.2: 表3.2 方差分析表
(五)作出统计判断
对于给定的显著性水平α,由F 分布表查出自由度为),1(m n m --的临界值αF ,如果αF F >,则拒绝原假设,说明因素对指标起显著影响;如果αF F ≤,则接受原假设,说明因素的不同水平对试验结果影响不显著。

相关文档
最新文档