数列的综合应用

合集下载

数列的综合运用范文

数列的综合运用范文

数列的综合运用范文数列是数学中一种重要的概念,它是由一组按照一定规律排列的数所组成的序列。

在数学中,数列的综合运用十分广泛,涉及到数列的求和、递推关系、数列的性质和应用等方面。

本文将从上述几个方面综合运用数列进行详细探讨。

首先,数列的求和是数列的基本操作,它包括求等差数列的和、等比数列的和以及一些特殊的数列的和。

对于等差数列来说,求和可以通过求首项与末项的平均数乘以项数来得到,也可以通过求首项与末项之和乘以项数的一半得到。

对于等比数列来说,求和可以通过首项乘以公比的幂次减1再除以公比减1得到。

此外,还可以利用数列的递推关系求得求和的公式,例如斐波那契数列的求和公式即为斐波那契数列的通项公式的一个特殊情况。

其次,数列的递推关系指的是后一项与前一项之间的关系,它描述了数列的演化过程。

数列的递推关系可以通过观察数列的前几项来得到,并根据这种规律来确定后面的项。

例如等差数列的递推关系为后一项等于前一项加上公差,等比数列的递推关系为后一项等于前一项乘以公比。

利用数列的递推关系可以解决一些实际生活中的问题,如利用斐波那契数列的递推关系可以解决兔子繁殖问题。

第三,数列的性质是指数列在运算中所具有的一些特点。

其中常见的性质有有界性、单调性和周期性等。

数列的有界性指的是数列的所有项都存在一个上界和一个下界,即数列的所有项都位于这个区间内。

数列的单调性指的是数列的所有项是递增的或者递减的,即数列的项之间存在一种明显的大小关系。

数列的周期性指的是数列的项按照一定的规律重复出现,即数列的第n项与第n+k项相等。

利用数列的性质可以研究数列的极限、范围和周期等问题。

最后,数列的应用广泛存在于实际生活和各个学科中。

在实际生活中,数列的应用可以帮助我们解决一些数学和经济等问题,如利用利率的等比数列可以计算存款的本息和。

在学科中,数列的应用可以帮助我们研究和解决一些科学问题,如利用斐波那契数列可以表达自然界中一些规律和现象。

另外,数列的应用还可以帮助我们提高思维能力和解决问题的能力,如数列的递推关系与递归问题的求解有密切的关系。

数列的综合应用与实际应用

数列的综合应用与实际应用
⑴求动点p行进路线的极限; ⑵动点p与坐标平面上哪一点无限接近。
2007年12月
中学数学研究·代数
7
数列的综合应用与实际应用 高考题型⑵
解:⑴动点p行进路线依次为 所以
2007年12月
中学数学研究·代数
8
数列的综合应用与实际应用 高考题型⑵
⑵设动点p与平面上
点无限接近,则
故动点p与平面上点
无限接近。
量的10%,那么经过几年后,鱼的总重量开始下 降?
2007年12月
中学数学研究·代数
14
课堂思考
解: ⑴设每年底鱼的重量为 ,则
故四年后,鱼的总重量预计是原来的11.25倍。
2007年12月
中学数学研究·代数
15
课堂思考
⑵设预计损失后每年底鱼的重量为
2007年12月
中学数学研究·代数
16
课堂思考
2007年12月
中学数学研究·代数
2
数列的综合应用与实际应用 高考题型⑴
例1 某种汽车购买时的费用为10万元,每年应交保 险费、养路费及汽油费合计9千元,汽车的维修费 平均为第一年2千元,第二年4千元,第三年6千 元,依次成等差数列递增,问这种汽车使用多少 年后报废最合算?(即年平均费用最少?)
2007年12月
2007年12月
中学数学研究·代数
12
数列的综合应用与实际应用 高考题型⑶
⑵当
时,若发生水土流失,则森林木材存量
必需小于

经8年该地区就开始水土流失。
2007年12月
中学数学研究·代数
13
课堂思考
据统计测算,某养鱼场第一年鱼的总重量增长率为 200%,以后每年的增长率为前一年的一半。

第五节 数列的综合应用 课件(共24张PPT)

第五节 数列的综合应用 课件(共24张PPT)
所以3an=3n,即an=n.又因为函数f(x)=2x,所以f (an)=2n,
所以数列{bn}的前n项和b1+b2+…+bn=log4[f(a1)·
f(a2)·…·f(an)]=log4(2×22×…×2n)= log421+2+…+n=12×(1+2+…+n)=n(n4+1).
答案:n(n4+1)
得2,f(a1),f(a2),…,f(an),2n+4成等差数
列,则数列{an}的前n项和Sn=
.
解析:(1)因为F(x)=f x+12-1是R上的奇函数, 所以F(-x)=-F(x), 故f 12-x+f 12+x=2(x∈R),(*) 令x=0,得f 12=1. 令t=12-x,则12+x=1-t(t∈R), (*)式可化为f(t)+f(1-t)=2(t∈R).
因此{an}的通项公式为an=3n-2 1.
(2)由(1)知a1n=3n-2 1. 因为当n≥2时,3n-1≥2×3n-1, 所以3n-1 1≤2×13n-1. 于是a11+a12+…+a1n≤1+13+…+3n1-1=321-31n<32. 所以a11+a12+…+a1n<32.
考点2 数列与函数的综合应用
[例2] (1)已知F(x)=f x+12 -1是R上的奇函
数,an=f(0)+f n1+f n2+…+f n-n 1+f(1)(n∈
N*),则数列{an}的通项公式为( )
A.an=n-1
B.an=n
C.an=n+1
D.an=n2
(2)已知函数f(x)=log2 x,若数列{an}的各项使
1.已知等差数列{an}的前n项和为Sn,公差d>0,a6和
a8是函数f(x)=
15 4
ln
x+

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。

通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。

1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。

通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。

第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。

通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。

2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。

通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。

第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。

通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。

3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。

通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。

第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。

通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。

4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。

通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。

第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。

通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。

5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。

通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。

第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。

数列的综合应用

数列的综合应用

高三数学(人教版)
第六章 ·专题研究二
专 题 讲
nf(n+1) 1 (3)由题知,bn= f n =3n,

1 n(n+1) n(n+1)
1
11

则Tn=3×
2

6

∴பைடு நூலகம்n=
6(n-n+
). 1

111
1
1111 1
11
训 练

T1+T2+
T3+…
+Tn

6(1-
2+2-
3+3

4+…
+n-n+
) 1

1 a=2,f(x)=
(12)x.
高三数学(人教版)
第六章 ·专题研究二
专 题
又点(n-1,
an n2
)(n∈ N*)(在函数f(x)= ax的图象上,
讲 解

而ann2=21n-
1,即
an=
n2 2n-
1.
专 题
(n+ 1)2 n2 2n+ 1 (2)由 bn= 2n -2n= 2n 得,


111
1
Tn,试比较T1+T2+T3+…+Tn与 6的大小.
高三数学(人教版)
第六章 ·专题研究二
专 题
∴f(n+ 1)=
1 3
f(n)(n∈ N*),∴数列{f(n)}(n∈ N*)是以


1
1
f(1)=3为首项,3为公比的等比数列,
专 题
∴f(n)=13×(13)n- 1,即f(n)=(13)n(n∈ N*).
=6(1- 1 ). n+ 1

n∈

高中数学-数列综合应用

高中数学-数列综合应用

数列综合应用知识精要一、数列求和数列求和的常用方法1、公式法(1)直接利用等差数列、等比数列的前n 项公式求和;①等差数列的前n 项和公式:②等比数列的前n 项和公式:(2)一些常见的数列的前n 项和:○1(1)12342n n n ++++++=; ○22222(1)(21)1236n n n n ++++++=; ○32462(1)n n n ++++=+; ○4213521n n ++++-=; ○52233332(1)(1)123[]24n n n n n ++++++==。

2、倒序相加法如果一个数列{}n a ,首末两端等“距离”的两项的和相等或等于同一个常数,那么求这个数列的前n 项和即可用倒序相加法,如等差数列的前n 项和即是用此法推导的。

3、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应之积构成的,那么这个数列的前n 项和即可用此法来求,如等比数列的前n 项和就是用此法推导的;4、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和;注:用裂项相消法求数列前n 项和的前提是:数列中的每一项均能分裂成一正一负两项,这是用裂项相消法的前提。

5、分组求和法一个数列的通项公式是由若干个等差或等比或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减;6、并项求和法一个数列的前n 项和中,可两两结合求解,则称之为并项求和。

形如(1)()n n a f n =-类型,可采用两项合并求解。

二、数列的综合应用1、解答数列应用题的步骤:(1)审题——仔细阅读材料,认真理解题意;(2)建模——将已知条件翻译成数学(数列)语言,将实际问题转化成数学问题,弄清该数列的特征、要求是什么;(3)求解——求出该问题的数学解;(4)还原——将所求结果还原到实际问题中。

2、数列应用题常见模型(1)等差模型:如果增加(或减少)的量是一个固定量时,该模型是等差模型,增加(或减少)的量就是公差;(2)等比数列:如果后一个量与前一个量的比是一个固定的数时,该模型是等比数列模型,这个固定的数就是公比。

数列的综合应用

数列的综合应用1、数列的通项的求法:⑴公式法:①等差数列通项公式;②等比数列通项公式。

⑵已知n S (即12()n a a a f n +++= )求n a ,用作差法:{11,(1),(2)n n n S n a S S n -==-≥。

⑶已知12()n a a a f n = 求n a ,用作商法:(1),(1)(),(2)(1)n f n f n a n f n =⎧⎪=⎨≥⎪-⎩。

⑷若1()n n a a f n +-=求n a 用累加法:11221()()()n n n n n a a a a a a a ---=-+-++- 1a +(2)n ≥。

⑸已知1()n n a f n a +=求n a ,用累乘法:121121n n n n n a a aa a a a a ---=⋅⋅⋅⋅L (2)n ≥。

⑹已知递推关系求n a ,用构造法(构造等差、等比数列)。

特别地,(1)形如1n n a ka b -=+、1n n n a ka b -=+(,k b 为常数)的递推数列都可以用待定系数法转化为公比为k 的等比数列后,再求n a 。

(2)形如11n n n a a ka b --=+的递推数列都可以用倒数法求通项。

注意:(1)用1--=n n n S S a 求数列的通项公式时,你注意到此等式成立的条件了吗?(2n ≥,当1n =时,11S a =);(2)一般地当已知条件中含有n a 与n S 的混合关系时,常需运用关系式1--=n n n S S a ,先将已知条件转化为只含n a 或n S 的关系式,然后再求解。

2、数列求和的常用方法:(1)公式法:①等差数列求和公式; ②等比数列求和公式,特别声明:运用等比数列求和公式,务必检查其公比与1的关系,必要时需分类讨论.; ③常用公式:1123(1)2n n n ++++=+L222112(1)(21)6n n n n +++=++L ,33332n(n+1)1+2+3++n =[]2L .(2)分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.(3)倒序相加法:若和式中到首尾距离相等的两项和有其共性 ,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前n 和公式的推导方法).(4)错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法(这也是等比数列前n 和公式的推导方法).(5)裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和.常用裂项形式有:①111(1)1n n n n =-++; ②1111()()n n k k n n k =-++; ③2211111()1211k k k k <=---+,211111111(1)(1)1k k k k k k k k k-=<<=-++--; ④1111[](1)(2)2(1)(1)(2)n n n n n n n =-+++++ ; ⑤2122(1)2(1)11n n n n n n n n n +-=<<=--+++-.(6)通项转换法:先对通项进行变形,发现其内在特征,再运用分组求和法求和。

数列的综合运用新

A.若{an}>M,则数列{an}的各项均大于等于M B.若{an}>M,{bn}>M,则{an+bn}>2M C.若{an}>M,则{a}>M2 D.若{an}>M,则{2an+1}>2M+1
解析:对于A,即若{an}>M,an与an+1中至少有一个 不小于M,则数列{an}的各项不一定都大于M,错误;对于 B,若{an}>M,an与an+1中至少有一个不小于M,{bn}>M, bn与bn+1中至少有一个不小于M,但它们不一定是同一个n 值,则{an+bn}>2M不成立;对于C,若{an}>M,数列各项 的正负及M的正负不确定,则{a}>M2不成立;则只有D成立,
(4)数列的实际应用:现实生活中涉及利率,产品利润, 工作效率,人口增长,常常考虑用数列知识加以解决.
1.某种细菌在培养过程中,每20分钟分裂一次(1个分
裂成2个),经过3小时,这种细菌由1个可以繁殖成 ( )
A.511个
B.512个
C.1023个
D.1024个
解析:由题意知,细菌繁殖过程可以看作一个首项为
1,公比为2的等比数列模型,所以a10=a1q9=29=512.故应 选B.
答案:B
2 . 数 列 {an} 的 通 项 公 式 是 关 于 x 的 不 等 式 x2 -
x<nx(n∈N*)的解集中的整数个数,则数列{an}的前n项和Sn

()
A.n2
B.n(n+1)
C.
D.(n+1)(n+2)
解析:由x2-x<nx,得0<x<n+1(n∈N*), 因此an=n, Sn=
故选D.
答案:D
1.在解决数列综合问题时要注意以下方面 (1)用函数的观点和思想认识数列,将数列的通项公式 与求和公式都看作自变量为正整数的函数. (2)用方程思想去处理数列问题,把通项公式与求和公 式 看作列方程的等量关系. (3)用转化思想去处理数学问题,将实际问题转化为等 差数列或等比数列问题. (4)用猜想与递推的思想去解决数学问题.

数列的综合应用

数列的综合应用数列是数学中重要的概念之一,它在各个领域中都有着广泛的应用。

数列的综合是数列中各个数值的求和运算,可以帮助我们解决很多实际问题。

本文将探讨数列的综合应用,从数学角度分析其在现实生活中的具体应用。

一、数列的定义和性质在介绍数列的综合应用之前,我们首先需要了解数列的基本定义和性质。

数列是按照一定规律排列的一组数,其中每个数称为数列的项。

根据数列的性质,我们可以将数列分为等差数列和等比数列两种常见类型。

1. 等差数列:等差数列中的任意两个相邻项之差都相等,这个固定的差值称为公差。

等差数列的一般形式为an = a1 + (n-1)d,其中an表示第n项,a1表示首项,d表示公差。

2. 等比数列:等比数列中的任意两个相邻项之比都相等,这个固定的比值称为公比。

等比数列的一般形式为an = a1 * r^(n-1),其中an表示第n项,a1表示首项,r表示公比。

二、数列的综合应用数列的综合应用广泛存在于日常生活和各个学科领域中,下面将从几个具体问题场景中介绍数列的应用。

1. 汽车里程计算假设一辆汽车从起点出发,每小时行驶的里程数分别是12公里、15公里、18公里、21公里...... 如果想知道5个小时内总共行驶了多少公里,我们可以使用等差数列的综合公式来计算。

首先确定首项a1=12,公差d=3(每小时增加3公里),然后带入数列综合公式Sn =(n/2)[2a1+(n-1)d],代入n=5进行计算得出结果为75公里。

因此,这辆汽车在5个小时内共行驶了75公里。

2. 学生成绩评估假设某学生在数学考试中的成绩分别是80分、85分、90分、95分......,如果想知道前10次考试的总分,我们可以使用等差数列的综合公式进行计算。

首先确定首项a1=80,公差d=5(每次考试分数增加5分),然后带入数列综合公式Sn = (n/2)[2a1+(n-1)d],代入n=10进行计算得出结果为875分。

因此,这名学生前10次数学考试的总分为875分。

6.5 数列的综合应用


n( n 1) ×50=25n2+225n≥4 750. 2 (2)an>0.85bn,bn=400×1.08n-1.
问题:Sn=250n+ 解
(1)设中低价房的面积形成的数列为{an},
由题意可知{an}是等差数列, 其中a1=250,d=50, 则an=250+(n-1)·50=50n+200
是 等 比 数 列 , 其 中 b1=400,q=1.08, 则 bn=400·(1.08)n-1.
由题意可知an>0.85bn,
即50n+200>400·(1.08)n-1·0.85. 当n=5时,a5<0.85b5,
当n=6时,a6>0.85b6,
因此满足上述不等式的最小正整数n为6. 因此到2013年底,当年建造的中低价房的面积占该年 建造住房面积的比例首次大于85%.
∵等差数列{bn}的各项为正,∴d>0,
n( n 1) ∴d=2,b1=3,∴Tn=3n+ ×2=n2+2n. 2
探究提高
对等差、等比数列的综合问题的分析,
应重点分析等差、等比数列的通项及前n项和;分析
等差、等比数列项之间的关系.往往用到转化与化归
的思想方法. 知能迁移1 (2009·全国Ⅰ文,17)设等差数列{an}
题型二
数列与函数的综合应用Fra bibliotek【例2】 (12分)已知f(x)=logax(a>0且a≠1),设 f(a1),f(a2),„,f(an) (n∈N*)是首项为4,公差为
2的等差数列.
(1)设a为常数,求证:{an}是等比数列; (2)若bn=anf(an),{bn}的前n项和是Sn,当a= 2 时, 求Sn. 思维启迪 利用函数的有关知识得出an 的表达式,
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的综合应用导学目标: 1.通过构造等差、等比数列模型,运用数列的公式、性质解决简单的实际问题.2.对数列与其他知识综合性的考查也高于考试说明的要求,另外还要注重数列在生产、生活中的应用.自主梳理1.数列的综合应用数列的综合应用一是指综合运用数列的各种知识和方法求解问题,二是数列与其他数学内容相联系的综合问题.解决此类问题应注意数学思想及方法的运用与体会.(1)数列是一种特殊的函数,解数列题要注意运用方程与函数的思想与方法.(2)转化与化归思想是解数列有关问题的基本思想方法,复杂的数列问题经常转化为等差、等比数列或常见的特殊数列问题.(3)由特殊到一般及由一般到特殊的思想是解决数列问题的重要思想.已知数列的前若干项求通项,由有限的特殊事例推测出一般性的结论,都是利用此法实现的.(4)分类讨论思想在数列问题中常会遇到,如等比数列中,经常要对公比进行讨论;由S n求a n 时,要对______________进行分类讨论.2.数列的实际应用数列的应用问题是中学数学教学与研究的一个重要内容,解答应用问题的核心是建立数学模型.(1)建立数学模型时,应明确是等差数列模型、等比数列模型,还是递推数列模型,是求a n 还是求S n .(2)分期付款中的有关规定①在分期付款中,每月的利息均按复利计算; ②在分期付款中规定每期所付款额相同;③在分期付款时,商品售价和每期所付款额在贷款全部付清前会随时间的推移而不断增值;④各期付款连同在最后一次付款时所生的利息之和,等于商品售价及从购买时到最后一次付款的利息之和.自我检测 1.(原创题)若S n 是等差数列{a n }的前n 项和,且S 8-S 3=10,则S 11的值为 ( ) A .12 B .18 C .22 D .442.(2017·汕头模拟)在等比数列{a n }中,a n >a n +1,且a 7·a 11=6,a 4+a 14=5,则a 6a 16等于( )A.23B.32C .-16D .-563.若{a n }是首项为1,公比为3的等比数列,把{a n }的每一项都减去2后,得到一个新数列{b n },设{b n }的前n 项和为S n ,对于任意的n ∈N *,下列结论正确的是 ( )A .b n +1=3b n ,且S n =12(3n -1)B .b n +1=3b n -2,且S n =12(3n -1)C .b n +1=3b n +4,且S n =12(3n -1)-2nD .b n +1=3b n -4,且S n =12(3n -1)-2n4.“嫦娥奔月,举国欢庆”,据科学计算,运载“神六”的“长征二号”系列火箭,在点火第一秒钟通过的路程为2 km ,以后每秒钟通过的路程都增加2 km ,在达到离地面240 km 的高度时,火箭与飞船分离,则这一过程需要的时间大约是 ( )A .10秒钟B .13秒钟C .15秒钟D .20秒钟5.(2017·台州月考)已知数列{a n }的通项为a n =nn 2+58,则数列{a n }的最大项为 ( )A .第7项B .第8项C .第7项或第8项D .不存在 6.(2017·南京模拟)设数列{a n },{b n }都是正项等比数列,S n ,T n 分别为数列{lg a n }与{lgb n }的前n 项和,且S n T n =n2n +1,则log b 5a 5=________.探究点一 等差、等比数列的综合问题例1 设{a n }是公比大于1的等比数列,S n 为数列{a n }的前n 项和.已知S 3=7,且a 1+3,3a 2,a 3+4构成等差数列.(1)求数列{a n }的通项;(2)令b n =ln a 3n +1,n =1,2,…,求数列{b n }的前n 项和T n .变式迁移1 假设a 1,a 2,a 3,a 4是一个等差数列,且满足0<a 1<2,a 3=4.若b n =2a n (n =1,2,3,4).给出以下命题:①数列{b n }是等比数列;②b 2>4;③b 4>32;④b 2b 4=256.其中正确命题的个数是 ( ) A .1 B .2 C .3 D .4 探究点二 数列与方程、函数、不等式的综合问题例2 (2017·温州月考)已知函数f (x )=2x +33x ,数列{a n }满足a 1=1,a n +1=f ⎝⎛⎭⎫1a n ,n ∈N *, (1)求数列{a n }的通项公式;(2)令T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1,求T n ;(3)令b n =1a n -1a n(n ≥2),b 1=3,S n =b 1+b 2+…+b n ,若S n <m -2 0012对一切n ∈N *成立,求最小正整数m .变式迁移2 已知单调递增的等比数列{a n }满足:a 2+a 3+a 4=28,且a 3+2是a 2,a 4的等差中项.(1)求数列{a n }的通项公式;(2)若b n =a n log 12a n ,S n =b 1+b 2+…+b n ,对任意正整数n ,S n +(n +m )a n +1<0恒成立,试求m 的取值范围.探究点三 数列在实际问题中的应用 例3 (2017·福州模拟)有一个下岗职工,1月份向银行贷款10 000元,作为启动资金开店,每月月底获得的利润是该月月初投入资金的20%,每月月底需缴纳所得税为该月月利润的10%,每月的生活费为300元,余款作为资金全部投入下个月的经营,如此继续,问到这年年底这个职工有多少资金?若贷款年利息为25%,问这个职工还清银行贷款后纯收入多少元?变式迁移3 假设某市2017年新建住房400万平方米,其中有250万平方米是中低价房,预计在今后的若干年内,该市每年新建住房面积平均比上一年增长8%.另外,每年新建住房中,中低价房的面积均比上一年增加50万平方米.那么,到哪一年底,(1)该市历年所建中低价房的累计面积(以2017年为累计的第一年)将首次不少于4 750万平方米?(2)当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%?(参考数据:1.084≈1.36,1.085≈1.47,1.086≈1.59)1.数列实际应用问题:(1)数学应用问题已成为中学数学教学与研究的一个重要内容,解答数学应用问题的核心是建立数学模型,有关平均增长率、利率(复利)以及等值增减等实际问题,需利用数列知识建立数学模型.(2)在试题中常用的数学模型有①构造等差、等比数列的模型,然后再去应用数列的通项公式求解;②通过归纳得到结论,用数列知识求解.2.解决数列综合问题应体会以下思想及方法:(1)数列与函数方程相结合时主要考查函数的思想及函数的性质(多为单调性).(2)数列与不等式结合时需注意放缩.(3)数列与解析几何结合时要注意递推思想.(满分:75分)一、选择题(每小题5分,共25分)1.(2017·湖北)已知等比数列{}a n 中,各项都是正数,且a 1,12a 3,2a 2成等差数列,则a 9+a 10a 7+a 8的值为 ( )A .1+ 2B .1- 2C .3+2 2D .3-2 2 2.(2017·漳州模拟)数列{a n }是各项均为正数的等比数列,{b n }是等差数列,且a 6=b 7,则有 ( )A .a 3+a 9≤b 4+b 10B .a 3+a 9≥b 4+b 10C .a 3+a 9≠b 4+b 10D .a 3+a 9与b 4+b 10的大小不确定3.有限数列A :a 1,a 2,…,a n ,S n 为其前n 项和,定义S 1+S 2+…+S nn为A 的“凯森和”,若有99项的数列a 1,a 2,…,a 99的“凯森和”为1 000,则有100项的数列1,a 1,a 2,…,a 99的“凯森和”为 ( )A .1 001B .991C .999D .990 4.有一种细菌和一种病毒,每个细菌在每秒钟末能在杀死一个病毒的同时将自身分裂为2个,现在有一个这样的细菌和100个这样的病毒,问细菌将病毒全部杀死至少需要 ( )A .6秒B .7秒C .8秒D .9秒5.已知数列{a n },{b n }满足a 1=1,且a n ,a n +1是函数f (x )=x 2-b n x +2n 的两个零点,则b 10等于 ( )6.(2017·丽水月考)若数列{a n }的通项公式a n =5⎝⎛⎭⎫252n -2-4⎝⎛⎭⎫25n -1,数列{a n }的最大项为第x 项,最小项为第y 项,则x +y =________.7.(2017·江苏)函数y =x 2(x >0)的图象在点(a k ,a 2k )处的切线与x 轴的交点的横坐标为a k +1,其中k ∈N *,a 1=16,则a 1+a 3+a 5=________.8.把正整数按一定的规则排成了如图所示的三角形数表.设a ij (i ,j ∈N *)是位于这个三角形数表中从上往下数第i 行、从左往右数第j 个数,如a 42=8.若a ij =2 009,则i 与j 的和为________.1 2 4 3 5 7 6 8 10 12 9 11 13 15 17 14 16 18 20 22 24 ……………………………………三、解答题(共38分)9.(12分)(2017·湘潭模拟)已知点(1,13)是函数f (x )=a x (a >0,且a ≠1)的图象上一点,等比数列{a n }的前n 项和为f (n )-c ,数列{b n }(b n >0)的首项为c ,且前n 项和S n 满足S n -S n -1=S n +S n -1(n ≥2).(1)求数列{a n }和{b n }的通项公式;(2)若数列{1b n b n +1}的前n 项和为T n ,问满足T n >1 0002 009的最小正整数n 是多少?10.(12分)沿海地区甲公司响应国家开发西部的号召,对西部地区乙企业进行扶持性技术改造.乙企业的经营现状是:每月收入为45万元,但因设备老化,从下月开始需付设备维修费,第一个月为3万元,以后每月递增2万元.甲公司决定投资400万元扶持改造乙企业.据预测,改造后乙企业第一个月收入为16万元,在以后的4个月中,每月收入都比上个月增长50%,而后每个月收入都稳定在第5个月的水平上.若设备改造时间可忽略不计,那么从下个月开始至少经过多少个月,改造后的乙企业的累计总收益多于仍按现状生产所带来的总收益?11.(14分)(2017·广东执信中学模拟)已知函数f (x )满足f (x +y )=f (x )·f (y )且f (1)=12.(1)当n ∈N *时,求f (n )的表达式; (2)设a n =n ·f (n ),n ∈N *,求证:a 1+a 2+a 3+…+a n <2;(3)设b n =(9-n )f (n +1)f (n ),n ∈N *,S n 为{b n }的前n 项和,当S n 最大时,求n 的值.答案 自主梳理 1.(4)n =1或n ≥2自我检测1.C 2.B 3.C 4.C 5.B 6.919课堂活动区例1 解题导引 1.等差数列与等比数列相结合的综合问题是高考考查的重点,特别是等差、等比数列的通项公式、前n 项和公式以及等差中项、等比中项问题是历年命题的热点.2.利用等比数列前n 项和公式时注意公比q 的取值.同时对两种数列的性质,要熟悉它们的推导过程,利用好性质,可降低题目的思维难度,解题时有时还需利用条件联立方程求解.解 (1)由已知得⎩⎪⎨⎪⎧a 1+a 2+a 3=7(a 1+3)+(a 3+4)2=3a 2,解得a 2=2. 设数列{a n }的公比为q ,由a 2=2,可得a 1=2q,a 3=2q .又S 3=7,可知2q+2+2q =7,即2q 2-5q +2=0.解得q 1=2,q 2=12.由题意得q >1,∴q =2,∴a 1=1.故数列{a n }的通项为a n =2n -1. (2)由(1)得a 3n +1=23n ,∴b n =ln a 3n +1=ln 23n =3n ln 2.又b n +1-b n =3ln 2,∴{b n }是等差数列, ∴T n =b 1+b 2+…+b n =n (b 1+b n )2=3n (n +1)2·ln 2.故T n =3n (n +1)2ln 2.变式迁移1 D [设a 1,a 2,a 3,a 4的公差为d ,则a 1+2d =4,又0<a 1<2,所以1<d <2.易知数列{b n }是等比数列,故(1)正确;a 2=a 3-d ∈(2,3),所以b 2=2a 2>4,故(2)正确;a 4=a 3+d >5,所以b 4=2a 4>32,故(3)正确;又a 2+a 4=2a 3=8,所以b 2b 4=2a 2+a 4=28=256,故(4)正确.]例2 解题导引 这是一道数列、函数、不等式的综合题,利用函数关系式求通项a n ,观察T n 特点,求出T n .由a n 再求b n 从而求S n ,最后利用不等式知识求出m .解 (1)∵a n +1=f ⎝⎛⎭⎫1a n =2a n +33a n=2+3a n 3=a n+23, ∴{a n }是以23为公差的等差数列.又a 1=1,∴a n =23n +13.(2)T n =a 1a 2-a 2a 3+a 3a 4-a 4a 5+…-a 2n a 2n +1 =a 2(a 1-a 3)+a 4(a 3-a 5)+…+a 2n (a 2n -1-a 2n +1)=-43(a 2+a 4+…+a 2n )=-43·n ⎝⎛⎭⎫53+4n 3+132=-49(2n 2+3n ).(3)当n ≥2时,b n =1a n -1a n =1⎝⎛⎭⎫23n -13⎝⎛⎭⎫23n +13=92⎝⎛⎭⎫12n -1-12n +1, 又b 1=3=92×⎝⎛⎭⎫1-13, ∴S n =b 1+b 2+…+b n=92×⎝⎛⎭⎫1-13+13-15+…+12n -1-12n +1 =92⎝⎛⎭⎫1-12n +1=9n2n +1, ∵S n <m -2 0012对一切n ∈N *成立.即9n 2n +1<m -2 0012,又∵9n 2n +1=92⎝⎛⎭⎫1-12n +1递增,且9n 2n +1<92.∴m -2 0012≥92,即m ≥2 010.∴最小正整数m =2 010.变式迁移2 解 (1)设等比数列{a n }的首项为a 1,公比为q . 依题意,有2(a 3+2)=a 2+a 4, 代入a 2+a 3+a 4=28,得a 3=8.∴a 2+a 4=20.∴⎩⎪⎨⎪⎧a 1q +a 1q 3=20,a 3=a 1q 2=8, 解之,得⎩⎪⎨⎪⎧q =2,a 1=2或⎩⎪⎨⎪⎧q =12,a 1=32.又{a n }单调递增,∴⎩⎪⎨⎪⎧q =2,a 1=2.∴a n =2n .(2)b n =2n ·log 122n =-n ·2n ,∴-S n =1×2+2×22+3×23+…+n ×2n .①∴-2S n =1×22+2×23+3×24+…+(n -1)×2n +n ×2n +1.②∴①-②,得S n =2+22+23+…+2n -n ·2n +1 =2(1-2n )1-2-n ·2n +1=2n +1-n ·2n +1-2.由S n +(n +m )a n +1<0,即2n +1-n ·2n +1-2+n ·2n +1+m ·2n +1<0对任意正整数n 恒成立,∴m ·2n +1<2-2n +1对任意正整数n ,m <12n -1恒成立.∵12n -1>-1,∴m ≤-1, 即m 的取值范围是(-∞,-1].例3 解 依题意,第1个月月余款为a 1=10 000(1+20%)-10 000×20%×10%-300 =11 500,第2个月月底余款为a 2=a 1(1+20%)-a 1×20%×10%-300, 依此类推下去,设第n 个月月底的余款为a n 元,第n +1个月月底的余款为a n +1元,则a n +1=a n (1+20%)-a n ×20%×10%-300=1.18a n-300.下面构造一等比数列. 设a n +1+x a n +x=1.18,则a n +1+x =1.18a n +1.18x , ∴a n +1=1.18a n +0.18x . ∴0.18x =-300.∴x =-5 0003,即a n +1-5 0003a n -5 0003=1.18.∴数列{a n -5 0003}是一个等比数列,公比为1.18,首项a 1-5 0003=11 500-5 0003=29 5003. ∴a n -5 0003=29 5003×1.18n -1,∴a 12-5 0003=29 5003×1.1811,∴a 12=5 0003+29 5003×1.1811≈62 396.6(元),即到年底该职工共有资金62 396.6元. 纯收入有a 12-10 000(1+25%)=62 396.6-12 500=49 896.6(元).变式迁移3 解 (1)设中低价房的面积形成的数列为{a n }, 由题意可知{a n }是等差数列,其中a 1=250,d =50, 则a n =250+(n -1)·50=50n +200,S n =250n +n (n -1)2×50=25n 2+225n ,令25n 2+225n ≥4 750,即n 2+9n -190≥0,而n 是正整数,∴n ≥10.∴到2020年底,该市历年所建中低价房的累计面积将首次不少于4 750万平方米. (2)设新建住房面积形成数列{b n },由题意可知{b n }是等比数列,其中b 1=400,q =1.08,则b n =400·(1.08)n -1. 由题意可知a n >0.85b n ,即50n +200>400·(1.08)n -1·0.85. 当n =5时,a 5<0.85b 5, 当n =6时,a 6>0.85b 6,∴满足上述不等式的最小正整数n 为6.∴到2017年底,当年建造的中低价房的面积占该年建造住房面积的比例首次大于85%. 课后练习区1.C 2.B 3.B 4.B 5.D 6.3 7.21 8.1079.解 (1)∵f (1)=a =13,∴f (x )=⎝⎛⎭⎫13x .…………………………………………………(1分) a 1=f (1)-c =13-c ,a 2=[f (2)-c ]-[f (1)-c ]=-29,a 3=[f (3)-c ]-[f (2)-c ]=-227; 又数列{a n }成等比数列,a 1=a 22a 3=481-227=-23=13-c ,∴c =1;……………………………………………………………………………………(2分)公比q =a 2a 1=13,a n =-23×⎝⎛⎭⎫13n -1=-2×⎝⎛⎭⎫13n ,n ∈N *;………………………………(3分) ∵S n -S n -1=()S n -S n -1()S n +S n -1=S n +S n -1(n >2),……………………………………………………………………(4分)又b n >0,S n >0,∴S n -S n -1=1.数列{S n }构成一个首项为1、公差为1的等差数列, S n =1+(n -1)×1=n ,S n =n 2.当n ≥2,b n =S n -S n -1=n 2-(n -1)2=2n -1; 又当n =1时,也适合上式,∴b n =2n -1,n ∈N *.……………………………………………………………………(6分)(2)T n =1b 1b 2+1b 2b 3+1b 3b 4+…+1b n b n +1=11×3+13×5+15×7+…+1(2n -1)×(2n +1)=12⎝⎛⎭⎫1-13+12⎝⎛⎭⎫13-15+12⎝⎛⎭⎫15-17+…+ 12⎝⎛⎭⎫12n -1-12n +1=12⎝⎛⎭⎫1-12n +1=n 2n +1.……………………………………………(10分)由T n =n 2n +1>1 0002 009,得n >1 0009,∴满足T n >1 0002 009的最小正整数为112.…………………………………………………(12分)10.解 设乙企业仍按现状生产至第n 个月所带来的总收益为A n (万元),技术改造后生产至第n 个月所带来的总收益为B n (万元).依题意得A n =45n -[3+5+…+(2n +1)]=43n -n 2,………………………………………………………………………………(4分)当n ≥5时,B n =16⎣⎡⎦⎤⎝⎛⎭⎫325-132-1+16⎝⎛⎭⎫324(n -5)-400=81n -594,…………………………………………………………(8分) ∴当n ≥5时,B n -A n =n 2+38n -594,令n 2+38n -594>0,即(n +19)2>955,解得n ≥12,∴至少经过12个月,改造后的乙企业的累计总收益多于仍按现状生产所带来的总收益.……………………………………………………………………………………………(12分)11.解 (1)令x =n ,y =1,得到f (n +1)=f (n )·f (1)=12f (n ),……………………………………………………………(2分)∴{f (n )}是首项为12,公比为12的等比数列,即f (n )=(12)n .………………………………………………………………………………(5分)(2)记S n =a 1+a 2+a 3+…+a n ,∵a n =n ·f (n )=n ·(12)n ,……………………………………………………………………(6分)∴S n =12+2×(12)2+3×(12)3+…+n ×(12)n ,12S n =(12)2+2×(12)3+3×(12)4+…+(n -1)×(12)n +n ×(12)n +1, 两式相减得12S n =12+(12)2+…+(12)n -n ×(12)n +1,整理得S n =2-(12)n -1-n (12)n <2.…………………………………………………………(9分)(3)∵f (n )=(12)n ,而b n =(9-n )f (n +1)f (n )=(9-n )(12)n +1(12)n =9-n2.…………………………………………………………………(11分)当n ≤8时,b n >0; 当n =9时,b n =0; 当n >9时,b n <0,∴n =8或9时,S n 取到最大值.……………………………………………………(14分)。

相关文档
最新文档