数列的综合应用教案

合集下载

数列的综合应用教学设计

数列的综合应用教学设计

数列的综合应用教学设计数列的综合应用一、教学内容分析本节内容安排在《普通高中课程标准实验教科书数学必修5》(人教A版),第二章内容结束之后的综合练习。

在课本中没有专设章节。

内容从教材习题2.5中A组的第4题中体现。

本章五节内容分别讲授了等差数列、等比数列以及这两种数列的性质、通项公式、前N项和等基础内容。

让学生在此基础之上,了解高考中出现频率较多的一些特殊数列。

在实际教学中,本节内容应该分为五个阶段:第一阶段学生要充分掌握基本数列的知识点,可用提问的方式进行复习回顾。

第二阶段,对于特殊数列有关例题首先要引导学生观察,找到与基本数列的相似处,从而决定构造为基本数列中的等差数列或等比数列,大胆提出猜想。

第三阶段从猜想入手,开始构造。

运用基本数列的形式和性质得到新的数列。

构造出的新数列必须满足基本数列成立的条件。

验证猜想的正确性。

第四阶段根据题目要求从构造出的新数列找出所求项。

第五阶段,老师和学生一起归纳题型。

学生在老师的引导下结题,提高主动性,学习的灵活性。

从而提高对本节知识的兴趣。

二、学情分析对于高一年级的学生来说。

之前的学习中已经接触到了函数内容。

以及在本节内容的学习之前,已经有了数列的基础。

学生已经具备了一定的分析能力,函数构造基础等。

对于本节授课内容来说,学生在一般很难自己分析出来,有一定的难度。

所以需要老师的正确引导,但是在复习的基础上不宜直接灌输解题方法。

应该带领学生一起观察、分析、猜想、证明。

从而加深学生对本节内容的理解,也可让学生自己尝试找到新的解法,建立自己的思维模式。

三、设计思想在授课中,必须要求学生掌握基本数列(等差数列和等比数列)的内容。

以此引导学生,分析特殊数列。

并且根据之前学习三角函数时用到的“构造”理念。

将特殊数列构造为基本数列,再运用基本数列的知识点来解题。

课堂中,以例题分析为主,让学生学会观察特殊数列的结构,分析如何构造出适合的基本数列的形式。

讲课过程中,以启发性为主,让学生主动分析。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案第一章:数列的概念与应用1.1 数列的定义与表示方法引导学生了解数列的概念,理解数列的表示方法,如通项公式、列表法等。

通过实际例子,让学生掌握数列的性质,如项数、公差、公比等。

1.2 数列的求和公式介绍等差数列和等比数列的求和公式,让学生理解其推导过程。

通过例题,让学生学会运用求和公式解决实际问题,如计算数列的前n项和等。

第二章:数列的性质与应用2.1 数列的单调性引导学生了解数列的单调性,包括递增和递减。

通过实际例子,让学生学会判断数列的单调性,并运用其解决相关问题。

2.2 数列的周期性介绍数列的周期性概念,让学生理解周期数列的性质。

通过例题,让学生学会运用周期性解决实际问题,如解数列的方程等。

第三章:数列的极限与应用3.1 数列极限的概念引导学生了解数列极限的概念,理解数列极限的含义。

通过实际例子,让学生掌握数列极限的性质,如保号性、夹逼性等。

3.2 数列极限的计算方法介绍数列极限的计算方法,如夹逼定理、单调有界定理等。

通过例题,让学生学会运用极限计算方法解决实际问题,如求数列的极限值等。

第四章:数列的级数与应用4.1 数列级数的概念引导学生了解数列级数的概念,理解级数的特点和分类。

通过实际例子,让学生掌握级数的基本性质,如收敛性和发散性等。

4.2 数列级数的计算方法介绍数列级数的计算方法,如比较法、比值法、根值法等。

通过例题,让学生学会运用级数计算方法解决实际问题,如判断级数的收敛性等。

第五章:数列的应用举例5.1 数列在数学建模中的应用引导学生了解数列在数学建模中的应用,如人口增长模型、存货管理模型等。

通过实际例子,让学生学会运用数列建立数学模型,并解决实际问题。

5.2 数列在物理学中的应用介绍数列在物理学中的应用,如振动序列、量子力学中的能级等。

通过例题,让学生学会运用数列解决物理学中的问题,如计算振动序列的周期等。

第六章:数列在经济管理中的应用6.1 数列在投资组合中的应用引导学生了解数列在投资组合中的作用,如资产收益的序列分析。

数列综合应用数列求和教案

数列综合应用数列求和教案

授课人: 史宏刚班级11104班课题数列综合应用(一)数列求和教 学 目 标1.知识与能力:培养学生观察分析应用能力。

2.过程与方法:通过课堂分析演练,总结解题技巧。

3.情感态度价值观:提高学生刻苦专研学习态度。

重点、难点、关键公式法、裂项相消、错位相减. 、倒序相加法 求和裂项相消、错位相减法 认清问题实质选择解题方法程序与内容 一、组织教学师生问好,检查出席二、目标展示 1、情境创设复习提问:回顾重要知识点,为本节应用做准备数列前n 项和的定义:S n =a 1+a 2+a 3+…+a n引入课堂 2、明确目标公式法、裂项相消、错位相减. 、倒序相加法求数列前n 项和1.公式法:(1)直接法:直接由等差、等比数列的求和公式求和,等比数列求和时注意对公比 q =1,q ≠1的讨论;11()(1)22n n n a a n n S na d +-==+⎪⎩⎪⎨⎧≠≠--=--==)10(11)1()1(111q q q qa a q q a q na S n n n 且(2)特殊公式:所给数列的通项是关于n 的多项式,此时求和可采用公式法求和,常用的公式有:(3)拆项求和法:把数列的每一项分成几项,使其转化为几个等差、等比数列,再求和.2.错位相减法:主要用于一个等差数列与一个等比数列对应项相乘得的新数列求和,即为等比数列求和公式的推导方法.3.裂项相消法:把数列的通项拆成两项之差,正负相消剩下首尾若干项再求和.4.倒序相加法:如果一个数列{an },与首末两项等距的两项之和等于首末两项之和,可采用把正着写和与倒着写和的两个和式相加,就得到一个常数列的和,这一求和的方法称为倒序相加法. 即等差数列求和公式的推导.三、目标教学、练习例1.求下列数列前n 项的和S n : 1×4,2×5,3×6,…n (n +3)… 解: ∵a n =n(n+3)=n 2+3n设 计 意 图充分发挥学生学习的能动性,以学生为主体,展开课堂教学通过学生对几种常见的求和方法的归纳、总结,结合具体的实例、简单回忆各方法的应用背景.把遗忘的知识点形成了一个完整的知识体系。

数列综合题和应用性问题教案

数列综合题和应用性问题教案

数列综合题和应用性问题教案章节一:数列的概念和性质教学目标:1. 理解数列的定义及其基本性质。

2. 能够识别和表示不同类型的数列。

3. 掌握数列的通项公式和求和公式。

教学内容:1. 数列的定义及表示方法。

2. 数列的性质,如单调性、周期性等。

3. 数列的通项公式和求和公式。

教学活动:1. 通过实例介绍数列的定义和表示方法。

2. 引导学生探索数列的性质,如单调性、周期性等。

3. 讲解数列的通项公式和求和公式,并通过例题进行解释。

章节二:等差数列和等比数列教学目标:1. 理解等差数列和等比数列的定义及其性质。

2. 能够识别和表示等差数列和等比数列。

3. 掌握等差数列和等比数列的通项公式和求和公式。

教学内容:1. 等差数列和等比数列的定义及表示方法。

2. 等差数列和等比数列的性质,如单调性、周期性等。

3. 等差数列和等比数列的通项公式和求和公式。

教学活动:1. 通过实例介绍等差数列和等比数列的定义和表示方法。

2. 引导学生探索等差数列和等比数列的性质,如单调性、周期性等。

3. 讲解等差数列和等比数列的通项公式和求和公式,并通过例题进行解释。

章节三:数列的极限教学目标:1. 理解数列极限的概念及其性质。

2. 能够求解数列极限的问题。

3. 掌握数列极限的运算规则。

教学内容:1. 数列极限的定义及其性质。

2. 数列极限的求解方法。

3. 数列极限的运算规则。

教学活动:1. 通过实例介绍数列极限的定义和性质。

2. 引导学生学习数列极限的求解方法,如直接求解、夹逼定理等。

3. 讲解数列极限的运算规则,并通过例题进行解释。

章节四:数列的综合题型教学目标:1. 理解数列综合题型的概念及其解题方法。

2. 能够解决数列综合题型的问题。

3. 掌握数列综合题型的解题策略。

教学内容:1. 数列综合题型的概念及其解题方法。

2. 数列综合题型的常见类型和解题技巧。

3. 数列综合题型的解题策略。

教学活动:1. 通过实例介绍数列综合题型的概念和解题方法。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标:1. 让学生掌握数列的基本概念和性质,包括等差数列、等比数列等。

2. 培养学生运用数列知识解决实际问题的能力,提高学生的数学应用意识。

3. 通过对数列的综合应用举例,使学生理解数列在数学和自然科学领域中的重要性。

二、教学内容:1. 等差数列的应用举例:例如计算工资、利息等问题。

2. 等比数列的应用举例:例如计算复利、人口增长等问题。

3. 数列的求和公式及应用:例如求等差数列、等比数列的前n项和等问题。

4. 数列的通项公式的应用:例如求等差数列、等比数列的第n项等问题。

5. 数列在函数中的应用:例如数列与函数的关系、数列的函数性质等问题。

三、教学重点与难点:1. 教学重点:数列的基本概念、性质和求和公式。

2. 教学难点:数列的通项公式的理解和应用。

四、教学方法:1. 采用问题驱动的教学方法,引导学生通过解决实际问题来学习数列知识。

2. 利用多媒体课件,直观展示数列的应用实例,提高学生的学习兴趣。

3. 组织小组讨论,培养学生的合作能力和思维能力。

五、教学安排:1. 第一课时:等差数列的应用举例。

2. 第二课时:等比数列的应用举例。

3. 第三课时:数列的求和公式及应用。

4. 第四课时:数列的通项公式的应用。

5. 第五课时:数列在函数中的应用。

6. 剩余课时:进行课堂练习和课后作业的辅导。

六、教学目标:1. 深化学生对数列求和公式的理解,能够熟练运用求和公式解决复杂数列问题。

2. 培养学生运用数列知识进行数据分析的能力,提高学生的数学素养。

3. 通过对数列图像的观察,使学生理解数列与函数之间的关系。

七、教学内容:1. 数列图像的绘制与分析:学习如何绘制数列图像,并通过图像观察数列的特点。

2. 数列与函数的联系:探讨数列与函数之间的关系,理解数列可以看作是函数的特殊形式。

3. 数列在数据分析中的应用:例如,利用数列分析数据的变化趋势,预测未来的数据。

八、教学重点与难点:1. 教学重点:数列图像的绘制方法,数列与函数的关系,数列在数据分析中的应用。

数列的综合应用教案

数列的综合应用教案

高中数学专题复习——数列的综合应用一、考点、热点回顾如何解数列应用题(1)解数列应用题一般要经历:设——列——解——答四个环节. (2)建立数列模型时,应明确是什么模型,还要确定要求是什么. (3)建立数学模型的一般方法步骤:①认真审题,准确理解题意,达到如下要求:明确问题属于哪类应用问题;弄清题目中的主要已知事项;明确所求的结论是什么.②抓住数学关系,联想数学知识和数学方法,恰当引入参数变量或建立坐标系,将文字语言翻译成数学语言,将数学关系用数学式子表达.③将实际问题抽象为数学问题,将已知与所求联系起来,据题意引出满足题意的数学关系式(如函数、方程、不等式、数列等).二:典型例题题型一:等差、等比数列的综合应用 例1:已知数列{a n }的前n 项和21()2n S n kn k N *=-+∈,且S n 的最大值为8. (1)确定常数k ,求a n ;(2)求数列92{}2nna -的前n 项和T n 。

解: (1)当n k N *=∈时,212n S n kn =-+取最大值,即22211822k k k =-+=,故4k =,从而19(2)2n n n a S S n n -=-=-≥,又1172a S ==,所以92n a n =-(1) 因为19222n n n n a n b --==,1222123112222n nn n n nT b b b ---=+++=+++++ 所以21211111222144222222n n n n n n n n n n n T T T -----+=-=++++-=--=-题型二:数列与函数的综合应用 例2:函数2()23f x x x =--。

定义数列{}n x 如下:112,n x x +=是过两点(4,5),(,(n n nP Q x f x 的直线n PQ 与x 轴交点的横坐标。

(1)证明:123n n x x +≤<<; (2)求数列{}n x 的通项公式。

数列的应用的教学设计

数列的应用的教学设计

数列的应用的教学设计篇一:数列的实际应用教案数列实际应用举例教学目标:(1)知识与技能:初步掌握利用数列的基础知识来解决实际问题的方法。

培养学生搜集资料、分析资料的良好习惯,提高分析问题、解决问题的能力及人际交往与协作能力。

(2)过程与方法:经历数列实际问题的解决过程,发展学生的思维,领悟解决数列实际问题的方法,获得教学活动的经验。

(3)情感、态度与价值观:通过情境创设,活动参与,体会数列在社会生活中的广泛应用,提高学习数学的兴趣,并初步培养与他人合作交流的意识;培养学生探索的精神,并使数学能够为实际生产生活服务,为学生的专业学习打下良好的基础。

教学重、难点:重点:数列的综合应用举例。

难点:1.数列的实际应用举例。

2.用数学建模思想解决数列的实际问题。

教学方法:启发法、讨论法、情境教学法教学手段:多媒体、黑板教学过程:一、创设情境,激发兴趣教师活动:多媒体演示:数学史小故事《棋盘上的麦粒》古印度舍罕王打算奖赏国际象棋的发明人――宰相达依尔。

宰相说:“请您在棋盘的第1个小格里,赏给我1粒麦子,在第2个小格里给我2粒,第3个小格给4粒,以后每一小格都比前一小格加一倍。

请您把棋盘上64格的麦粒,都赏给您的仆人吧!”国王觉得这个要求太容易满足了,就命令给她这些麦粒。

结果发现:就是把全国的麦粒全拿来,也满足不了宰相的要求。

原来宰相要求的麦粒总数为:人们推算发现当时全国所有的麦粒加在一起的总和也没有这么多! ?18446744073709551615(粒)板书课题:数列实际应用举例学生活动:1. 观看媒体演示,倾听老师完整的叙述故事2. 观察数列,找到该等比数列的首项、公比,并会利用公式计算二、互动交流,问题探究探究一:数列在生活中的.应用我校机电专业近期计划购进一批新型的制冷压缩机,总价值20万元,以分期付款的方式购买。

由于机电专业向学校申请的是内部无息贷款,故还款时并不涉及利息问题,有如下两种付款方式:第一种:首付款15500元,从第二年起每年比前一年多付1000元;教师活动:问题1:此种付款方式我们需要几年能够还清贷款?学生活动:1:学生按小组活动,分小组进行思考、讨论并解答。

《数列综合应用举例》教案

《数列综合应用举例》教案

《数列综合应用举例》教案一、教学目标1. 理解数列的概念及其性质2. 掌握数列的通项公式和求和公式3. 能够运用数列解决实际问题二、教学内容1. 数列的概念及其性质2. 数列的通项公式和求和公式3. 数列在实际问题中的应用三、教学重点与难点1. 教学重点:数列的概念、性质、通项公式和求和公式2. 教学难点:数列在实际问题中的应用四、教学方法1. 采用讲解法,引导学生理解数列的概念和性质2. 采用示例法,教授数列的通项公式和求和公式3. 采用案例分析法,让学生学会运用数列解决实际问题五、教学过程1. 引入:通过生活中的实例,如等差数列“每月工资”、“每分钟心跳次数”等,引导学生认识数列的概念和性质。

2. 讲解:讲解数列的概念、性质、通项公式和求和公式,通过示例让学生理解并掌握这些知识点。

3. 练习:布置一些练习题,让学生运用所学的数列知识解决问题,巩固所学内容。

4. 案例分析:选取一些实际问题,如“等差数列投资”、“数列在数据处理中的应用”等,让学生学会运用数列知识解决实际问题。

5. 总结:对本节课的内容进行总结,强调数列在实际中的应用价值。

六、教学评价1. 课堂表现评价:观察学生在课堂上的参与程度、提问回答等情况,评估学生对数列概念和性质的理解程度。

2. 练习题评价:通过学生完成的练习题,检查学生对数列通项公式和求和公式的掌握情况。

3. 案例分析评价:评估学生在案例分析中的表现,判断其能否将数列知识应用于实际问题中。

七、教学拓展1. 数列在数学其他领域的应用:介绍数列在代数、几何、概率等领域中的应用,激发学生的学习兴趣。

2. 数列与其他学科的交叉:探讨数列在其他学科如物理、化学、生物等方面的应用,拓宽学生的知识视野。

八、教学反思在课后,教师应反思本节课的教学效果,包括学生的学习兴趣、教学方法的适用性、学生对数列知识的掌握程度等,以便对后续教学进行调整和改进。

九、课后作业布置一些有关数列的练习题,包括填空题、选择题和解答题,让学生巩固所学知识,提高解题能力。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数列的综合应用教案-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN
11 =+
1、等差数列{}n a 中,若124a a +=, 91036a a +=,则10S =______.
2. 设公差为d 的等差数列{}n a 的前n 项和为n S ,若
11a =,21179
d -<<-, 则当n S 取最大值时,n 的值为_ __. 3.在等差数列{}n a 中,S n 是它的前n 项的和,且8776,S S S S ><,给出下列命题:①此数列公差0<d ;②69S S <;③7a 是各项中最大的一项;④7S 是S n 中的最大项⑤{}n a 是递增数列。

其中真命题的序号是 。

4.等差数列{}n a 前n 项和为n s ,若5359a a =,则95
s s =____________. 5.办公大楼共23层,现每层派一人集中到第k 层开会,要使这23位参加会议的人员上下楼梯所走路程的总和最少,则k 的值 。

6.若数列x ,a 1,a 2,y 成等差数列,x ,b 1,b 2,y 成等比数列,则2
12
21)(b b a a ⋅+的取值范围是____________. 7.设等差数列{n a }的前n 项和为n S ,公比是正数的等比数列{n b }的前n 项和为n T ,已知1133331,3,17,12,{},{}n n a b a b T S a b ==+=-=求的通项公式
8.已知在数列{a n }中,11=a ,d a a qa a n n n n +==+-212122,(q, d ∈R, q ≠0)
(1)若q=2,d=-1,求a 3,a 4并猜测a 2006;
(2)若{}12-n a 是等比数列,且{}n a 2是等差数列,求q ,d 满足的条件。

相关文档
最新文档