中考数学《二次函数:平行四边形、菱形、正方形的存在性问题》

合集下载

二次函数背景下的特殊四边形存在性判定(解析版)

二次函数背景下的特殊四边形存在性判定(解析版)

备战2020年中考数学压轴题之二次函数专题06 二次函数背景下的特殊四边形存在性判定【方法综述】知识准备:特殊四边形包括平行四边形、菱形、矩形和正方形。

它们的判定方法如下:平行四边形的判定方法:两组对边分别平行的四边形是平行四边形;两组对角分别相等的四边形是平行四边形两组对边分别相等的四边形是平行四边形;一组对边平行且相等的四边形是平行四边形两条对角线互相平分的四边形是平行四边形;矩形判的定方法有一个角是直角的平行四边形是矩形;对角线相等的平行四边形是矩形有三个角是直角的四边形是矩形菱形判定方法有一组邻边相等的平行四边形是菱形;对角线互相垂直的平行四边形是菱形四条边相等的四边形是矩形正方形的判定方法平行四边形+矩形的特性;平行四边形+菱形的特性解答时常用的技巧:(1).根据平行四边形的对角线互相平分这条性质,应用中点坐标公式,可以采用如下方法:已知点A、B、C三点坐标已知,点P在某函数图像上,是否存在以点A、B、C、P为顶点的四边形为平行四边形,求点P的坐标。

如,当AP、BC为平行四边形对角线时,由中点坐标公式,可得a+m=c+e,n+b=d+f则m= c+e-a;n= d+f-b,点P坐标可知,将其带入到函数关系式进行验证,如果满足函数关系式,即为所求P点,同理,根据分类讨论可以得到其它情况的解答方法。

(2).菱形在折叠的情况下,可以看成是等腰三角形以底边所在直线折叠所得,因此,菱形的存在性讨论,亦可以看做等腰三角形的存在性讨论。

(3).矩形中的直角证明出来常规直角的探究外,还有主要是否由隐形圆的直径所对圆周角得到。

【典例示范】类型一平行四边形的存在性探究例1:如图,在平面直角坐标系中,已知抛物线经过A(-4,0),B(0,-4),C(2,0)三点.(1)求抛物线的解析式;(2)若点M为第三象限内抛物线上一动点,点M的横坐标为m,△AMB的面积为S,求S关于m的函数关系式,并求出S的最大值;(3)若点P是抛物线上的动点,点Q是直线y=-x上的动点,判断有几个位置能使以点P,Q,B,O为顶点的四边形为平行四边形(要求PQ∥OB),直接写出相应的点Q的坐标.【答案】(1)y=12x2+x-4;(2)当m=-2时,S有最大值,S最大=4;(3)满足题意的Q点的坐标有三个,分别是(-2+2-,(-2-2+,(-4,4).【思路引导】(1)已知抛物线与x轴的两个交点的横坐标,一般选用两点式,利用待定系数法求解即可;(2)利用抛物线的解析式表示出点M 的纵坐标,从而得到点M 到x 轴的距离,然后根据三角形面积公式表示并整理即可得解,根据抛物线的性质求出第三象限内二次函数的最值,然后即可得解;(3)利用直线与抛物线的解析式表示出点P 、Q 的坐标,然后求出PQ 的长度,再根据平行四边形的对边相等列出算式,然后解关于x 的一元二次方程即可得解.【解析】(1)设抛物线的解析式为y=a (x+4)(x -2),把B (0,-4)代入得,-4=a×(0+4)(0-2),解得a=12, ∴抛物线的解析式为:y=12(x+4)(x -2),即y=12x 2+x -4; (2)过点M 作MD ⊥x 轴于点D ,设M 点的坐标为(m ,n ), 则AD=m+4,MD=-n ,n=12m 2+m -4, ∴S=S △AMD +S 梯形DMBO -S △ABO =111(4)()(4)()44222m n n m +-+-+--⨯⨯= -2n -2m -8=-2×(12m 2+m -4)-2m -8=-m 2-4m =-(m+2)2+4(-4<m <0);∴S 最大值=4.(3)设P (x ,12x 2+x -4). ①如图1,当OB 为边时,根据平行四边形的性质知PQ ∥OB ,∴Q 的横坐标等于P 的横坐标,又∵直线的解析式为y=-x ,则Q (x ,-x ).由PQ=OB ,得|-x -(12x 2+x -4)|=4,解得x=0,-4,-x=0不合题意,舍去.由此可得Q (-4,4)或(-2--2-;②如图2,当BO 为对角线时,知A 与P 应该重合,OP=4.四边形PBQO 为平行四边形则BQ=OP=4,Q 横坐标为4,代入y=-x 得出Q 为(4,-4).故满足题意的Q 点的坐标有四个,分别是(-4,4),(4,-4),(-,2-,(-2-.【方法总结】本题是二次函数综合题,交点式求解析式,二次函数与三角形面积最值问题的公共底的辅助线的做法要注意,二次函数中存在平行四边形的方法,要分别对已知边的分别为平行四边形的边或是对角线进行分类讨论.针对训练1.如图,二次函数的图象与x 轴交于A 、B 两点,与y 轴交于点C ,已知点A (﹣4,0).(1)求抛物线与直线AC 的函数解析式;(2)若点D (m ,n )是抛物线在第二象限的部分上的一动点,四边形OCDA 的面积为S ,求S 关于m 的函数关系式;(3)若点E 为抛物线上任意一点,点F 为x 轴上任意一点,当以A 、C 、E 、F 为顶点的四边形是平行四边形时,请求出满足条件的所有点E 的坐标.【答案】(1)(2)S=﹣m 2﹣4m+4(﹣4<m <0)(3)(﹣3,2)、(,﹣2)、(,﹣2)【解析】 (1)∵A (﹣4,0)在二次函数y=ax 2﹣x+2(a≠0)的图象上, ∴0=16a+6+2,解得a=﹣, ∴抛物线的函数解析式为y=﹣x 2﹣x+2; ∴点C 的坐标为(0,2),设直线AC 的解析式为y=kx+b ,则, 232(0)2y ax x a =-+≠122y x =+32--32-3212123204{2k b b=-+=解得,∴直线AC 的函数解析式为:;(2)∵点D (m ,n )是抛物线在第二象限的部分上的一动点,∴D (m ,﹣m 2﹣m+2),过点D 作DH ⊥x 轴于点H ,则DH=﹣m 2﹣m+2,AH=m+4,HO=﹣m ,∵四边形OCDA 的面积=△ADH 的面积+四边形OCDH 的面积,∴S=(m+4)×(﹣m 2﹣m+2)+(﹣m 2﹣m+2+2)×(﹣m ),化简,得S=﹣m 2﹣4m+4(﹣4<m <0);(3)①若AC 为平行四边形的一边,则C 、E 到AF 的距离相等,∴|y E |=|y C |=2,∴y E =±2.当y E =2时,解方程﹣x 2﹣x+2=2得,x 1=0,x 2=﹣3,∴点E 的坐标为(﹣3,2);当y E =﹣2时,解方程﹣x 2﹣x+2=﹣2得,x 1=,x 2=,∴点E 的坐标为(,﹣2)或(,﹣2);②若AC 为平行四边形的一条对角线,则CE ∥AF ,∴y E =y C =2,∴点E 的坐标为(﹣3,2).综上所述,满足条件的点E 的坐标为(﹣3,2)、(,﹣2)、(,﹣2).1{22k b ==122y x =+123212321212321212321232123232-32-+32-32-32--32-+2.(云南省弥勒市2019届九年级上学期期末考试数学试题)如图,抛物线y =x 2−2x −3与x 轴交A 、B 两点(A 点在B 点左侧),直线l 与抛物线交于A 、C 两点,其中C 点的横坐标为2.(1)求A 、B 两点的坐标及直线AC 的函数表达式;(2)P 是线段AC 上的一个动点,过P 点作y 轴的平行线交抛物线于E 点,求线段PE 长度的最大值;(3)点G 是抛物线上的动点,在x 轴上是否存在点F ,使A 、C 、F 、G 四个点为顶点的四边形是平行四边形?如果存在,写出所有满足条件的F 点坐标(请直接写出点的坐标,不要求写过程);如果不存在,请说明理由.【答案】(1)A(−1,0),B(3,0),y =−x −1。

专题02二次函数中四边形的存在性问题-2023年中考数学毕业班二轮热点题型归纳与变式演练 (原卷版)

专题02二次函数中四边形的存在性问题-2023年中考数学毕业班二轮热点题型归纳与变式演练 (原卷版)

专题02 二次函数中四边形的存在性问题目录最新模考题热点题型归纳【题型一】 梯形存在性【题型二】 平行四边形存在性【题型一】 梯形存在性【典例分析】(2023杨浦区一模)如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+c过点A(﹣1,0)、B(3,0).C(2,3)三点,且与y轴交于点D.(1)求该抛物线的表达式,并写出该抛物线的对称轴;(2)分别联结AD、DC,CB,直线y=4x+m与线段DC交于点E,当此直线将四边形ABCD的面积平分时,求m的值;(3)设点F A、B、C、F为顶点的四边形是梯形时,请直接写出所有满足条件的点F的坐标.【提分秘籍】梯形是相对限制较少的一类四边形,要使得一个四边形是梯形,只需要有其中一组对边平行,另一组对边不平行即可。

所以,在此类问题中,要么对点有较高的限制 (在某一直线上),要么对梯形形状有较高要求(等腰或直角)。

综合利用各个条件,才能求出最后的结果【变式演练】1.(2023青浦区一模)在平面直角坐标系xOy中(如图),已知抛物线y=x2﹣2x,其顶点为A.(1)写出这条抛物线的开口方向、顶点A的坐标;(2)我们把一条抛物线上横坐标与纵坐标相等的点叫做这条抛物线的“不动点”.①试求抛物线y=x22﹣x的“不动点”的坐标;②向左或向右平移抛物线y=x22﹣x,使所得新抛物线的顶点B是该抛物线的“不动点”,其对称轴与x轴交于点C,且四边形OABC是梯形,求新抛物线的表达式.2.【2021年青浦二模】(12分)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,对称轴是直线x=1,顶点是点D.(1)求该抛物线的解析式和顶点D的坐标;(2)点P为该抛物线第三象限上的一点,当四边形PBDC为梯形时,求点P的坐标;(3)在(2)的条件下,点E为x轴正半轴上的一点,当tan(∠PBO+∠PEO)=时,求OE的长.【题型二】 平行四边形存在性【典例分析】(2022•宝山区二模)已知抛物线y=ax2+bx﹣2(a≠0)经过点A(1,0)、B(2,0),与y轴交于点C.(1)求抛物线的表达式;(2)将抛物线向左平移m个单位(m>2),平移后点A、B、C的对应点分别记作A1、B1、C1,过点C1作C1D⊥x轴,垂足为点D,点E在y轴负半轴上,使得以O、E、B1为顶点的三角形与△A1C1D相似,①求点E的坐标;(用含m的代数式表示)②如果平移后的抛物线上存在点F,使得四边形A1FEB1为平行四边形,求m的值.【提分秘籍】解平行四边形的存在性问题一般分三步:第一步寻找分类标准,第二步画图,第三步计算.难点在于寻找分类标准,分类标准寻找的恰当,可以使得解的个数不重复不遗漏,也可以使计算又好又快.已知定点的个数不同,选用的方法也不同,通常有以下两种情况:1、如果已知三个定点,探寻平行四边形的第四个顶点,符合条件的有3个点:以已知三个定点为三角形的顶点,过每个点画对边的平行线,三条直线两两相交,产生3个交点.2、如果已知两个定点,一般是把确定的一条线段按照边或对角线分为两种情况.【变式演练】﹣与x轴1.【2021年杨浦二模】如图,已知在平面直角坐标系xOy中,直线y=x5相交于点A,与y轴相交于点B,抛物线y=ax2+6x+c经过A、B两点.(1)求这条抛物线的表达式;(2)设抛物线与x轴的另一个交点为C,点P是抛物线上一点,点Q是直线AB上一点,当四边形BCPQ是平行四边形时,求点Q的坐标;(3)在第(2)小题的条件下,联结QC,在∠QCB内作射线CD与抛物线的对称轴相交于点D,使得∠QCD=∠ABC,求线段DQ的长.2.(2021·上海宝山区·九年级一模)已知抛物线()20=+¹经过y ax bx a()1,3B-两点,抛物线的对称轴与x轴交于点C,点 D与点B关于抛A,()4,0物线的对称轴对称,联结BC、BD.(1)求该抛物线的表达式以及对称轴;(2)点E在线段BC上,当CED OBDÐÐ时,求点 E的坐标;=(3)点M在对称轴上,点N在抛物线上,当以点O、A、M、N为顶点的四边形是平行四边形时,求这个平行四边形的面积.﹣经过点A(﹣3.【2021年崇明二模】(12分)已知抛物线y=ax2+bx41,0),B(4,0),与y轴交于点C,点D是该抛物线上一点,且在第四象限内,联结AC、BC、CD、BD.(1)求抛物线的函数解析式,并写出对称轴;(2)当S△BCD=4S△AOC时,求点D的坐标;(3)在(2)的条件下,如果点E是x轴上的一点,点F是抛物线上一点,当点A、D、E、F为顶点的四边形是平行四边形,请直接写出点E的坐标.【题型三】 矩形的存在性【典例分析】【提分秘籍】二次函数中的矩形存在性问题相交于平行四边形的存在性问题而言,其难度更大。

2023年中考数学复习存在性问题系列菱形的存在性问题专题探究

2023年中考数学复习存在性问题系列菱形的存在性问题专题探究

2023年中考复习存在性问题系列菱形的存在性问题专题探究函数和菱形存在性问题作为压轴题目,结合了“分类讨论思想”,“方程思想”“菱形的判定方法”,势必要比单纯的菱形判定思考难度要大得多,因此我在研究了近些年中考真题之后尝试性地总结一下菱形存在性问题的通用解法,以供大家参考.解题攻略1.【基本概念】菱形作为一种特殊的平行四边形,可以从以下几种方式得到:(1)有一组邻边相等的平行四边形菱形;(2)对角线互相垂直的平行四边形是菱形;(3)四边都相等的四边形是菱形2.【基本题型】因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:(1)2个定点+1个半动点+1个全动点(2)1个定点+3个半动3.【解题思路】解决问题的方法也可有如下两种:思路1:先平四,再菱形设点坐标,根据平四存在性要求列出“A +C =B +D ”(AC 、BD 为对角线),再结合一组邻边相等,得到方程组.思路2:先等腰,再菱形在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,平移再确定第4个点.典例剖析1. 两定两动:坐标轴+平面例1.如图,在平面直角坐标系中,抛物线2(0)y ax x c a =-+≠与x 轴交于点A 、B 两点(点A 在点B 左侧),与y 轴交于点C .OA 、OB 的长是不等式组243522x x x x +>⎧⎪⎨-⎪⎩的整数解()OA OB <,点(2,)D m 在抛物线上.(1)求抛物线的解析式及的值;(2)轴上的点使和的值最小,则 ;(3)将抛物线向上平移,使点落在点处.当时,抛物线向上平移了 个单位;(4)点在在轴上,平面直角坐标系内存在点使以点、、、为顶点的四边形为菱形,请直接写出点的坐标.【答案】(1)-4(2)2(3)9(4)、、、.【详解】:(1)所给不等式组的解集为,其整数解为2,3,、的长是所给不等式组的整数解,且,,,则,,点、在抛物线上,, m y E AE DE OE =C F //AD FB M y N A B M NN 1(5,4)N --2(5,4)N -321)N 4(5,21)N 24x <OA OB OA OB <2OA ∴=3OB =(2,0)A -(3,0)B A B ∴420930a c a c ++=⎧⎨-+=⎩解得, 所求的抛物线的解析式为,点在抛物线上,;(2)如图1所示,连接交轴于点,则此时最小,设直线的解析式为,点,在直线上,, 解得, 直线的函数解析式为,当时,,即.,, 16a c =⎧⎨=-⎩∴26y x x =--(2,)D m 22264m ∴=--=-AD y E AE ED+AD (0)y kx b k =+≠(2,0)A -(2,4)D -AD ∴2024k b k b -+=⎧⎨+=-⎩12k b =-⎧⎨=-⎩∴AD 2y x =--0x =2y =-(0E 2)-|2|2OE ∴=-=故答案为:2;(3)如图1,,,, ,,,,,抛物线向上平移9个单位,故答案为:9;(4)以、、、为顶点的四边形是菱形,对角线互相垂直且平分,由,与不能作为一组对角线,分两种情况:①以与为对角线时,如图2①和图2②, //AD FB AEO BFO ∴∆∆∽∴OE OA OF OB=2OE OA ==3OF OB ∴==(0,6)C -|6|6OC ∴=-=639CF CO OF ∴=+=+=∴A B M N OA OB ≠AB ∴MN ∴AM BN如图2①,,四边形是菱形,轴,,在中,,,,如图2②,同理可得:,②以与为对角线时,如图2③和图2④,如图2③,菱形的边长仍为5,轴,,,235AB OA OB =+=+=ABMN ////MN AB x ∴5MN MB AB ===Rt MBO ∆2222534OM MB OB --=(0,4)M ∴(5,4)N ∴-(5,4)N --ANBM //MN x 22225221MO AM OA =--=21)M ∴,如图2④,同理可得:,综上所述,①②两种情况,符合条件的点的坐标为:、、、.2.两定两动:对称轴+平面例2.如图,在平面直角坐标系中,四边形ABCD 为正方形,点A ,B 在x 轴上,抛物线y =x 2+bx +c 经过点B ,D (﹣4,5)两点,且与直线DC 交于另一点E .(1)求抛物线的解析式;(2)F 为抛物线对称轴上一点,Q 为平面直角坐标系中的一点,是否存在以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形.若存在,请求出点F 的坐标;若不存在,请说明理由;(3)P 为y 轴上一点,过点P 作抛物线对称轴的垂线,垂足为M ,连接ME ,BP ,探究EM +MP +PB 是否存在最小值.若存在,请求出这个最小值及点M 的坐标;若不存在,请说明理由.【分析】(1)求出点B 的坐标为(1,0),再用待定系数法即可求解;(2)以点Q ,F ,E ,B 为顶点的四边形是以BE 为边的菱形,故点B 向右平移1个单位向上平移5个单位得到点E ,则Q (F )向右平移1个单位向上平移5个单位得到点F (Q ),21)N ∴(5,21)N -N 1(5,4)N --2(5,4)N -321)N 4(5,21)N-且BE=EF(BE=EQ),即可求解;(3)由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,进而求解.【解析】(1)由点D的纵坐标知,正方形ABCD的边长为5,则OB=AB﹣AO=5﹣4=1,故点B的坐标为(1,0),则,解得,故抛物线的表达式为y=x2+2x﹣3;(2)存在,理由:∵点D、E关于抛物线对称轴对称,故点E的坐标为(2,5),由抛物线的表达式知,其对称轴为直线x=﹣1,故设点F的坐标为(﹣1,m),由点B、E的坐标得,BE2=(2﹣1)2+(5﹣0)2=26,设点Q的坐标为(s,t),∵以点Q,F,E,B为顶点的四边形是以BE为边的菱形,故点B向右平移1个单位向上平移5个单位得到点E,则Q(F)向右平移1个单位向上平移5个单位得到点F(Q),且BE=EF(BE=EQ),则或,解得或,故点F的坐标为(﹣1,5+)或(﹣1,5﹣)或(﹣1,)或(﹣1,﹣);(3)存在,理由:由题意抛物线的对称轴交x轴于点B′(﹣1,0),将点B′向左平移1个单位得到点B″(﹣2,0),连接B″E,交函数的对称轴于点M,过点M作MP⊥y轴,则点P、M为所求点,此时EM+MP+PB为最小,理由:∵B′B″=PM=1,且B′B″∥PM,故四边形B″B′PM为平行四边形,则B″M=B′P=BP,则EM+MP+PB=EM+1+MB″=B″E+1为最小,由点B″、E的坐标得,直线B″E的表达式为y=(x+2),当x=﹣1时,y=(x+2)=,故点M的坐标为(﹣1,),则EM+MP+PB的最小值B″E+1=1+=+1.3.两定两动:斜线+抛物线例3.(2021•山西)综合与探究如图,抛物线y=x2+2x﹣6与x轴交于A,B两点(点A在点B的左侧),与y轴交于点C,连接AC,BC.(1)求A、B,C三点的坐标并直接写出直线AC,BC的函数表达式.(2)点P是直线AC下方抛物线上的一个动点,过点P作BC的平行线l,交线段AC于点D.①试探究:在直线l上是否存在点E,使得以点D,C,B,E为顶点的四边形为菱形,若存在,求出点E的坐标,若不存在,请说明理由;②设抛物线的对称轴与直线l交于点M,与直线AC交于点N.当S△DMN=S△AOC时,请直接写出DM的长.【分析】(1)解方程x2+2x﹣6=0,可求得A、B的坐标,令x=0,可求得点C的坐标,即可得直线AC,BC的函数表达式;(2)①设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,可得BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,分两种情况画出图形,根据菱形的性质即可求解;②设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,由直线l∥BC可设直线BC的解析式为y=3k+b,由点D的坐标可得b=﹣4m﹣6,则M(﹣2,﹣4m﹣12),根据AC的函数表达式可得N(﹣2,﹣4),求出MN,根据S△DMN=S△AOC可求得m,求出点D,点M 的坐标,即可得DM的长.【解析】(1)当y=0时,x2+2x﹣6=0,解得x1=﹣6,x2=2,∴A(﹣6,0),B(2,0),当x=0时,y=﹣6,∴C(0,﹣6),∵A(﹣6,0),C(0,﹣6),∴直线AC的函数表达式为y=﹣x﹣6,∵B(2,0),C(0,﹣6),∴直线BC的函数表达式为y=3x﹣6;(2)①存在:设点D的坐标为(m,﹣m﹣6),其中﹣6<m<0,∵B(2,0),C(0,﹣6),∴BD2=(m﹣2)2+(m+6)2,BC2=22+62=40,DC2=m2+(﹣m﹣6+6)2=2m2,∵DE∥BC,∴当DE=BC时,以点D,C,B,E为顶点的四边形为平行四边形,分两种情况:如图,当BD=BC时,四边形BDEC为菱形,∴BD2=BC2,∴(m﹣2)2+(m+6)2=40,解得:m1=﹣4,m2=0(舍去),∴点D的坐标为(﹣4,﹣2),∵点D向左移动2各单位长度,向下移动6个单位长度得到点E,∴点E的坐标为(﹣6,﹣8);如图,当CD=CB时,四边形CBED为菱形,∴CD2=CB2,∴2m2=40,解得:m1=﹣2,m2=2(舍去),∴点D的坐标为(﹣2,2﹣6),∵点D向右移动2各单位长度,向上移动6个单位长度得到点E,∴点E的坐标为(2﹣2,2);综上,存在点E,使得以点D,C,B,E为顶点的四边形为菱形,点E的坐标为(﹣6,﹣8)或(2﹣2,2);②设点D 的坐标为(m ,﹣m ﹣6),其中﹣6<m <0,∵A (﹣6,0),B (2,0),∴抛物线的对称轴为直线x =﹣2,∵直线BC 的函数表达式为y =3x ﹣6,直线l ∥BC ,∴设直线l 的解析式为y =3x +b ,∵点D 的坐标(m ,﹣m ﹣6),∴b =﹣4m ﹣6,∴M (﹣2,﹣4m ﹣12),∵抛物线的对称轴与直线AC 交于点N .∴N (﹣2,﹣4),∴MN =﹣4m ﹣12+4=﹣4m ﹣8,∵S △DMN =S △AOC ,∴(﹣4m ﹣8)(﹣2﹣m )=×6×6,整理得:m 2+4m ﹣5=0,解得:m 1=﹣5,m 2=1(舍去),∴点D 的坐标为(﹣5,﹣1),∴点M 的坐标为(﹣2,8),∴DM ==3, 答:DM 的长为3. 变式练习1.如图,在平面直角坐标系中,抛物线2y x bx c =++与直线AB 交于A ,B 两点,其中01A (,),(4,1)B -.(1)求该抛物线的函数表达式;(2)点P ,Q 为直线AB 下方抛物线上任意两点,且满足点P 的横坐标为m ,点Q 的横坐标为1m +,过点P 和点Q 分别作y 轴的平行线交直线AB 于C 点和D 点,连接PQ ,求四边形PQDC 面积的最大值;(3)在(2)的条件下,将抛物线2y x bx c =++沿射线AB 平移51y ,点E 为点P 的对应点,点F 为1y 的对称轴上任意一点,点G 为平面直角坐标系内一点,当点B E F G ,,,构成以EF 为边的菱形时,直接写出所有符合条件的点G 的坐标.【答案】(1)2912y x x =-+; (2)154; (3)1315(,)44-、193394(4--、193394(4-.【分析】(1)用待定系数法求解即可;(2)根据题意,求得直线AB 解析式,以及P Q C D 、、、四点坐标,得到PC 、DQ 长度,利用二次函数的性质求解即可;(3)根据平移的性质,求得1y 的表达式,分两种情况,讨论求解即可.【详解】(1)解:将01A (,),(4,1)B -代入二次函数解析式,可得16411b c c ++=-⎧⎨=⎩,解得921b c ⎧=-⎪⎨⎪=⎩ 即2912y x x =-+;(2)设直线AB 解析式y kx n =+,代入01A (,),(4,1)B -,可得411k n n +=-⎧⎨=⎩,解得121k n ⎧=-⎪⎨⎪=⎩ 即112y x =-+, 则29(,1)2P m m m -+,1(,1)2C m m -+,29(1,(1)(1)1)2Q m m m ++-++,1(1,(1)1)2D m m +-++ 22191(1)422PC m m m m m =-+--+=-+, 2219(1)1[(1)(1)1)2322QD m m m m m =-++-+-++=-++, 2213315()13()2224PQDC S PC QD m m m =⨯+⨯=-++=--+四边形, 即当32m =时,PQDC S 四边形最大,为154; (3)由(2)可知37(,)22P -, 直线AB 为112y x =-+与x 轴的交点为(2,0),与y 轴的交点为(0,1),5 沿射线AB 平移54个单位,向下移动了2个单位, ∴1111(,)22E -, 则2912y x x =-+平移后2125332y x x =-+, 抛物线1y 的对称轴为254x =, 设25(,)4F t , 当BE BF =时,如图:则22221111251111(4)(1)()()22422t -+-+=-++, 解得22339t -±=, ∴2522339(4F --或2522339(4F -+, 当2522339(4F -+时,E 平移到B ,F 平移到G , ∴193394(4G -, 当2522339()4F --时,E 平移到B ,F 平移到G , ∴193394()4G --,当BF EF =时,如下图:222225251111(4)(1)()()4422t t -++=-++,解得114t =-,F平移到B,E平移到G,可得1315 (,)44G-,综上点G的坐标为1315(,)44-、193394(4--、193394(4-.【点睛】本题考查二次函数综合应用,涉及待定系数法,四边形面积、菱形的性质及应用等知识解题的关键是用含字母的代数式表示相关点坐标和相关线段的长度.2.如图,已知直线y=43x+4与x轴交于点A,与y轴交于点C,抛物线y=ax2+bx+c经过A,C两点,且与x轴的另一个交点为B,对称轴为直线x=﹣1.(1)求抛物线的表达式;(2)D是第二象限内抛物线上的动点,设点D的横坐标为m,求四边形ABCD面积S的最大值及此时D点的坐标;(3)若点P在抛物线对称轴上,是否存在点P,Q,使以点A,C,P,Q为顶点的四边形是以AC为对角线的菱形?若存在,请求出P,Q两点的坐标;若不存在,请说明理由.【答案】(1)y=﹣43x2﹣83x+4(2)S最大=252,D(﹣32,5)(3)存在,Q(﹣2,198)【分析】(1)先求得A,C,B三点的坐标,将抛物线设为交点式,进一步求得结果;(2)作DF∴AB于F,交AC于E,根据点D和点E坐标可表示出DE的长,进而表示出三角形ADC的面积,进而表示出S的函数关系式,进一步求得结果;(3)根据菱形性质可得P A =PC ,进而求得点P 的坐标,根据菱形性质,进一步求得点Q 坐标.【详解】(1)解:当x =0时,y =4,∴C (0,4),当y =0时,43x +4=0, ∴x =﹣3,∴A (﹣3,0),∴对称轴为直线x =﹣1,∴B (1,0),∴设抛物线的表达式:y =a (x ﹣1)•(x +3),∴4=﹣3a ,∴a =﹣43, ∴抛物线的表达式为:y =﹣43(x ﹣1)•(x +3)=﹣43x 2﹣83x +4; (2)如图1,作DF ∴AB 于F ,交AC 于E ,∴D (m ,﹣243m ﹣83m +4),E (m ,﹣43m +4), ∴DE =﹣243m ﹣83m +4﹣(43m +4)=﹣43m 2﹣4m , ∴S △ADC =12DE OA =32•(﹣43m 2﹣4m )=﹣2m 2﹣6m ,∴S△ABC=12AB OC⋅=1442⨯⨯=8,∴S=﹣2m2﹣6m+8=﹣2(m+32)2+252,∴当m=﹣32时,S最大=252,当m=﹣32时,y=﹣433(1)(3)322⨯--⨯-+=5,∴D(﹣32,5);(3)设P(﹣1,n),∴以A,C,P,Q为顶点的四边形是以AC为对角线的菱形,∴P A=PC,即:P A2=PC2,∴(﹣1+3)2+n2=1+(n﹣4)2,∴n=138,∴P(﹣1,138),∴xP+xQ=xA+xC,yP+yQ=yA+yC∴xQ=﹣3﹣(﹣1)=﹣2,yQ=4﹣138=198,∴Q(﹣2,198).【点睛】本题考查了二次函数及其图象性质,勾股定理,菱形性质等知识,解决问题的关键是熟练掌握相关二次函数和菱形性质菱形作为特殊的平行四边形其存在性问题亦是分类讨论中的一大难点.此类题目多以直角坐标平面为背景.题干中一般会给出两个顶点,第三个点在某个可求的函数图像上,在另一个函数的图像上或直角坐标平面内,求能与之前的三个点构成菱形的第四个点的坐标.此类题目的一大难度在于如何合理分类的问题.若题干中已知两定点的话,可以把这两定点连成的线段是菱形的一边或者对角线进行分类讨论,再利用菱形的性质确定出其他的顶点的位置.。

人教版初三数学上册二次函数中的平行四边形存在性问题两定两动型.doc

人教版初三数学上册二次函数中的平行四边形存在性问题两定两动型.doc

二次函数中的平行四边形存在性问题(两定两动型)教学设计旬阳县城关一中黄涛目标:1、通过典型例题及其变式训练,进一步巩固二次函数中的平行四边形及特殊平行四边形存在性问题的解题思路和方法,体会数形结合和分类讨论思想的应用过程。

2 、通过本节课的学习,感受一题多解的过程及方法,提高学生分析问题和解决问题的能力。

重点:解决平行四边形存在性问题的一般方法及思路。

难点:根据条件求平行四边形的顶点中动点坐标的求解。

过程:一、典型例题如图,抛物线经过A(﹣1,0),B(5,0),C(0, 5)三点.2(1)求抛物线的解析式;(2)点M为x 轴上一动点,在抛物线上是否存在一点N,使以A,C,M,N四点构成的四边形为平行四边形?若存在,求点N的坐标;若不存在,请说明理由.问题1:如何用待定系数法确定适当的解析式形式?①抛物线上已知三点,可用一般式y=ax2+bx+c;②因为在已知的三点中,A、B两点为抛物线与x 轴交点,则可用交点式y=a(x-x 1)(x-x 2) 。

问题2:如何借助一定的方法通过画图的方式找到M、N点?先确认已知点A、C,连接A C,根据四边形顶点的无序性利用分类讨论思想分别以AC为边和以AC 为对角线两种情况进行作图讨论,作图依据平行四边形对边平行且相等的性质进行。

问题3:通过怎样的方法和手段获取点N的坐标?可利用以下四种方法或依据得出符合条件点N的坐标。

①依据对称性求点N坐标②利用三角形全等及数形结合思想求点N坐标③依据平行四边形对边平行且相等利用平移求点N坐标④依据抛物线解析式设点N坐标为(m,12m 2﹣2m﹣52),利用数形结合思想借助N点与C 点纵坐标相等的原则列得绝对值方程,将所有符合条件的点N 及其坐标完全覆盖得解,注意取舍(这是本题最简方法)。

解:(1)解法1:设抛物线的解析式为y=a(x+1)(x-5) (a≠0),将C(0, 52)代入得:a(0+1)(0-5)= 52解得:a= 1 2∴二次函数的解析式为:y= 1(x+1)(x-5) 即y=2 1x22﹣2x﹣52解法2:设抛物线的解析式为y=ax2+bx+c(a≠0),∵A(﹣1,0),B(5,0),C(0,5- )三点在抛物线上,2∴,解得.∴抛物线的解析式为:y= 12x2﹣2x﹣2﹣2x﹣52(2) 解法1:存在,理由如下:①以A C为边时,当N点位于x 轴下方时,若四边形ACNM为平行四边形,则 C N∥AM ∴N与C纵坐标相等∴点N与点C关于抛物线对称轴直线x=2 对称∴N(4, 52)当点N在x 轴上方时,如图,过点N2作N2D⊥x 轴于点D,在△AN2D与△M2CO中,∴△AN2D≌△M2CO(ASA),∴N2D=OC= 525 ,即N2点的纵坐标为2.∴1252m﹣2m﹣=252,解得x=2+ 或x=2﹣,∴N 2(2+ ,52 ),N 3(2﹣,52).②当AC为对角线时,根据 C N∥AM,过C点作x轴平行线与抛物线交点和N1 重合。

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究

中考数学复习⑦ 平行四边形及矩形、菱形、正方形存在性问题探究在平行四边形的存在性问题中,常会遇到两类探究性的问题。

第一类问题是已知三点的位置,在二次函数上或在坐标平面内找一动点,使这四点构成平行四边形(简称“三定一动”)。

第二类问题是已知两个点的位置,在二次函数上或在坐标平面内找两个动点,使这四点构成平行四边形(简称“两定两动”)。

平行四边形的这四个点有可能是定序的,也有可能没有定序。

在解决这些问题时,容易出现遗漏或方法不当或错解的情况。

因此,需要分清题型并分类讨论且作图,利用几何特征计算,并灵活运用平移坐标法等解题技巧。

可以把存在性问题的基本思路叫做“三步曲”:一“分”二“作”三“算”。

对于“三定一动”,要找出平行四边形第四个顶点,则符合条件的有3个点。

这三个点的找法是以三个定点为顶点画三角形,过每个顶点画对边的平行线,三条直线两两相交,产生所要求的3个点。

对于“两定两动”,要找出平行四边形第三、四个顶点,将两个定点连成定线段,将此线段按照作为平行四边形的边或对角线两种分类讨论。

如果平行四边形的四个顶点都能用坐标来表示,则可以直接利用坐标系中平行四边形的基本特征:即对边平行且相等或对边水平距离相等和竖直距离相等列方程求解。

如果平行四边形的四个顶点中某些点不能用坐标表示,则可以利用列方程组解图形交点的方法解决。

此外,还可以灵活运用平行四边形的中心对称的性质,或者使用平移坐标法。

平移坐标法的具体步骤是先由题目条件探索三点的坐标(若只有两个定点,可设一个动点的坐标),再画出以三点为顶点的平行四边形,根据坐标平移的性质写出第四个顶点的坐标。

最后根据题目的要求(动点在什么曲线上),判断平行四边形的存在性。

除了平行四边形,矩形、菱形和正方形也有存在性问题。

对于矩形,增加对角线相等和邻边垂直的性质,还可以转化为直角三角形的存在性问题。

对于菱形,增加四边相等和对角线垂直的性质,还可以转化为直角三角形或等腰(等边)三角形的存在性问题。

中考复习专题09二次函数与正方形存在性问题(含解析)

中考复习专题09二次函数与正方形存在性问题(含解析)

专题09二次函数与正方形存在性问题二次函数与正方形存在性问题1.作为特殊四边形中最特殊的一位,正方形拥有更多的性质,因此坐标系中的正方形存在性问题变化更加多样,从判定的角度来说,可以有如下:(1)有一个角为直角的菱形;(2)有一组邻边相等的矩形;(3)对角线互相垂直平分且相等的四边形.依据题目给定的已知条件选择恰当的判定方法,即可确定所求的点坐标.2.对于二次函数与正方形的存在性问题,常见的处理思路有:思路1:从判定出发若已知菱形,则加有一个角为直角或对角线相等;若已知矩形,则加有一组邻边相等或对角线互相垂直;若已知对角线互相垂直或平分或相等,则加上其他条件.思路2:构造三垂直全等若条件并未给关于四边形及对角线的特殊性,则考虑在构成正方形的4个顶点中任取3个,必是等腰直角三角形,若已知两定点,则可通过构造三垂直全等来求得第3个点,再求第4个点.3.示例:在平面直角坐标系中,已知A、B的坐标,在平面中求C、D使得以A、B、C、D 为顶点的四边形是正方形.如图,一共6个这样的点C使得以A、B、C为顶点的三角形是等腰直角三角形.【例1】(2022•齐齐哈尔)综合与探究如图,某一次函数与二次函数y=x2+mx+n的图象交点为A(﹣1,0),B(4,5).(1)求抛物线的解析式;(2)点C为抛物线对称轴上一动点,当AC与BC的和最小时,点C的坐标为(1,2);(3)点D为抛物线位于线段AB下方图象上一动点,过点D作DE⊥x轴,交线段AB于点E,求线段DE长度的最大值;(4)在(2)条件下,点M为y轴上一点,点F为直线AB上一点,点N为平面直角坐标系内一点,若以点C,M,F,N为顶点的四边形是正方形,请直接写出点N的坐标.【分析】(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n,解方程即可得出答案;(2)根据两点之间,线段最短,可知当点A、B、C三点共线时,AC+BC的最小值为AB的长,求出直线AB的解析式,即可得出点C的坐标;(3)设D(a,a2﹣2a﹣3),则E(a,a+1),表示出DE的长度,利用二次函数的性质可得答案;(4)分CF为对角线和边,分别画出图形,利用正方形的性质可得答案.【解答】解:(1)将A(﹣1,0),B(4,5)代入y=x2+mx+n得,,∴,∴抛物线的解析式为y=x2﹣2x﹣3;(2)设直线AB的函数解析式为y=kx+b,,∴,∴直线AB的解析式为y=x+1,∵AC+BC≥AB,∴当点A、B、C三点共线时,AC+BC的最小值为AB的长,∵抛物线y=x2﹣2x﹣3的对称轴为x=1,∴当x=1时,y=2,∴C(1,2),故答案为:(1,2);(3)设D(a,a2﹣2a﹣3),则E(a,a+1),∴DE=(a+1)﹣(a2﹣2a﹣3)=﹣a2+3a+4(﹣1<a<4),∴当a=时,DE的最大值为;(4)当CF为对角线时,如图,此时四边形CMFN是正方形,∴N(1,1),当CF为边时,若点F在C的上方,此时∠MFC=45°,∴MF∥x轴,∵△MCF是等腰直角三角形,∴MF=CN=2,∴N(1,4),当点F在点C的下方时,如图,四边形CFNM是正方形,同理可得N(﹣1,2),当点F在点C的下方时,如图,四边形CFMN是正方形,同理可得N(,),综上:N(1,1)或(1,4)或(﹣1,2)或(,).【例2】(2022•扬州)如图是一块铁皮余料,将其放置在平面直角坐标系中,底部边缘AB在x轴上,且AB =8dm,外轮廓线是抛物线的一部分,对称轴为y轴,高度OC=8dm.现计划将此余料进行切割:(1)若切割成正方形,要求一边在底部边缘AB上且面积最大,求此正方形的面积;(2)若切割成矩形,要求一边在底部边缘AB上且周长最大,求此矩形的周长;(3)若切割成圆,判断能否切得半径为3dm的圆,请说明理由.【分析】(1)先根据题意求出抛物线的解析式,当正方形的两个顶点在抛物线上时正方形面积最大,先根据GH=2OG计算H的横坐标,再求出此时正方形的面积即可;(2)由(1)知:设H(t,﹣t2+8)(t>0),表示矩形EFGH的周长,再根据二次函数的性质求出最值即可;(3)设半径为3dm的圆与AB相切,并与抛物线相交,设交点为N,求出点N的坐标,并计算点N是圆M与抛物线在y轴右侧的切点即可.【解答】解:(1)如图1,由题意得:A(﹣4,0),B(4,0),C(0,8),设抛物线的解析式为:y=ax2+8,把B(4,0)代入得:0=16a+8,∴a=﹣,∴抛物线的解析式为:y=﹣x2+8,∵四边形EFGH是正方形,∴GH=FG=2OG,设H(t,﹣t2+8)(t>0),∴﹣t2+8=2t,解得:t1=﹣2+2,t2=﹣2﹣2(舍),∴此正方形的面积=FG2=(2t)2=4t2=4(﹣2+2)2=(96﹣32)dm2;(2)如图2,由(1)知:设H(t,﹣t2+8)(t>0),∴矩形EFGH的周长=2FG+2GH=4t+2(﹣t2+8)=﹣t2+4t+16=﹣(t﹣2)2+20,∵﹣1<0,∴当t=2时,矩形EFGH的周长最大,且最大值是20dm;(3)若切割成圆,能切得半径为3dm的圆,理由如下:如图3,N为⊙M N作⊙M的切线交y轴于Q,连接MN,过点N作NP ⊥y轴于P,则MN=OM=3,NQ⊥MN,设N(m,﹣m2+8),由勾股定理得:PM2+PN2=MN2,∴m2+(﹣m2+8﹣3)2=32,解得:m1=2,m2=﹣2(舍),∴N(2,4),∴PM=4﹣1=3,∵cos∠NMP===,∴MQ=3MN=9,∴Q(0,12),设QN的解析式为:y=kx+b,∴,∴,∴QN的解析式为:y=﹣2x+12,﹣x2+8=﹣2x+12,x2﹣2x+4=0,Δ=(﹣2)2﹣4××4=0,即此时N为圆M与抛物线在y轴右侧的唯一公共点,∴若切割成圆,能切得半径为3dm的圆.【例3】(2022•海南)如图1,抛物线y=ax2+2x+c经过点A(﹣1,0)、C(0,3),并交x轴于另一点B,点P(x,y)在第一象限的抛物线上,AP交直线BC于点D.(1)求该抛物线的函数表达式;(2)当点P的坐标为(1,4)时,求四边形BOCP的面积;(3)点Q在抛物线上,当的值最大且△APQ是直角三角形时,求点Q的横坐标;(4)如图2,作CG⊥CP,CG交x轴于点G(n,0),点H在射线CP上,且CH=CG,过GH的中点K作KI∥y轴,交抛物线于点I,连接IH,以IH为边作出如图所示正方形HIMN,当顶点M恰好落在y 轴上时,请直接写出点G的坐标.【分析】(1)将A,C两点坐标代入抛物线的解析式,进一步求得结果;(2)可推出△PCB是直角三角形,进而求出△BOC和△PBC的面积之和,从而求得四边形BOCP的面积;(3)作PE∥AB交BC的延长线于E,根据△PDE∽△ADB,求得的函数解析式,从而求得P点坐标,进而分为点P和点A和点Q分别为直角顶点,构造“一线三直角”,进一步求得结果;(4)作GL∥y轴,作RC⊥GL于L,作MT⊥KI于K,作HW⊥IK于点W,则△GLC≌△CRH,△ITM ≌△HWI.根据△GLC≌△CRH可表示出H点坐标,从而表示出点K坐标,进而表示出I坐标,根据MT=IW,构建方程求得n的值.【解答】解:(1)由题意得,,∴,∴该抛物线的函数表达式为:y=﹣x2+2x+3;(2)当y=0时,﹣x2+2x+3=0,∴x1=﹣1,x2=3,∴B(3,0),∵PC2+BC2=[1+(4﹣3)2]+(32+32)=20,PB2=[(3﹣1)2+42]=20,∴PC2+BC2=PB2,∴∠PCB=90°,===3,∴S△PBC===,∵S△BOC=S△PBC+S△BOC=3+=;∴S四边形BOCP(3)如图1,作PE∥AB交BC的延长线于E,设P(m,﹣m2+2m+3),∵B(3,0),C(0,3),∴直线BC的解析式为:y=﹣x+3,由﹣x+3=﹣m2+2m+3得,x=m2﹣2m,∴PE=m﹣(m2﹣2m)=﹣m2+3m,∵PE∥AB,∴△PDE∽△ADB,∴===﹣(m﹣)2+,=,∴当m=时,()最大当m=时,y=﹣()2+2×+3=,∴P(,),设Q(n,﹣n2+2n+3),如图2,当∠PAQ=90°时,过点A作y轴平行线AF,作PF⊥AF于F,作QG⊥AF于G,则△AFP∽△GQA,∴=,∴=,∴n=,如图3,当∠AQP=90°时,过QN⊥AB于N,作PM⊥QN于M,可得△ANQ∽△QMP,∴=,∴=,可得n1=1,n2=,如图4,当∠APQ=90°时,作PT⊥AB于T,作QR⊥PT于R,同理可得:=,∴n=,综上所述:点Q的横坐标为:或1或或;(4)如图5,作GL∥y轴,作RC⊥GL于L,作MT⊥KI于T,作HW⊥IK于点W,则△GLC≌△CRH,△ITM≌△HWI.∴RH=OG=﹣n,CR=GL=OC=3,MT=IW,∴G(n,0),H(3,3+n),∴K(,),∴I(,﹣()2+n+3+3),∵TM=IW,∴=()2+n +6﹣(3+n ),∴(n +3)2+2(n +3)﹣12=0,∴n 1=﹣4+,n 2=﹣4﹣(舍去),∴G (﹣4+,0).【例4】(2022•长春)在平面直角坐标系中,抛物线y =x 2﹣bx (b 是常数)经过点(2,0).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形PQMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴左侧.过点B 作x 轴的平行线交抛物线于另一点C ,连结BC .当BC =4时,求点B 的坐标;(3)若m >0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大时,或者y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为时,直接写出m 的值.【分析】(1)把(2,0)代入y =x 2﹣bx ,得到b =2,可得结论;(2)判断出点B 的横坐标为﹣1,可得结论;(3)分两种情形:当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大.当抛物线在正方形内部的点的纵坐标y 随x 的增大而减小.利用图象法解决问题即可;(4)分三种情形:如图4﹣1中,当点N (0,)时,满足条件,如图4﹣2中,当点N (0,﹣),满足条件,如图4﹣3中,当正方形PQMN 的边长为时,满足条件,分别求出点A 的坐标,可得结论.【解答】解:(1)把(2,0)代入y =x 2﹣bx ,得到b =2,∴该抛物线的解析式为y =x 2﹣2x ;(2)如图1中,∵y=x2﹣2x=(x﹣1)2﹣1,∴抛物线的顶点为(1,﹣1),对称轴为直线x=1,∵BC∥x,∴B,C故对称轴x=1对称,BC=4,∴点B的横坐标为﹣1,∴B(﹣1,3);(3)如图2中,∵点A的横坐标为m,PQ=2|m|,m>0,∴PQ=PQM=MN=2m,∴正方形的边MN在y轴上,当点M与O重合时,由,解得或,∴A(3,3),观察图象可知,当m≥3时,抛物线在正方形内部的点的纵坐标y随x的增大而增大.如图3中,当PQ落在抛物线的对称轴上时,m=,观察图象可知,当0<m≤时,抛物线在正方形内部的点的纵坐标y随x的增大而减小.综上所述,满足条件的m的值为0<m≤或m≥3;(4)如图4﹣1中,当点N(0,)时,满足条件,此时直线NQ的解析式为y=﹣x+,由,解得,或,∵点A在第四象限,∴A(,﹣),∴m=.如图4﹣2中,当点N(0,﹣),满足条件,此时直线NQ是解析式为y=﹣x﹣,由,解得,∴A (,﹣),∴m =.如图4﹣3中,当正方形PQMN 的边长为时,满足条件,此时m =﹣,综上所述,满足条件的m 的值为或或﹣.1.(2020•乐平市一模)如图,抛物线y =a (x ﹣h )2+k (a ≠0)的顶点为A ,对称轴与x 轴交于点C ,当以AC 为对角线的正方形ABCD 的另外两个顶点B 、D 恰好在抛物线上时,我们把这样的抛物线称为美丽抛物线,正方形ABCD 为它的内接正方形.(1)当抛物线y =ax 2+1是美丽抛物线时,则a =﹣2;当抛物线y =+k 是美丽抛物线时,则k=﹣4;(2)若抛物线y =ax 2+k 是美丽抛物线时,则请直接写出a ,k 的数量关系;(3)若y =a (x ﹣h )2+k 是美丽抛物线时,(2)a ,k 的数量关系成立吗?为什么?(4)系列美丽抛物线y n =a n (x ﹣n )2+k n (n 为小于7的正整数)顶点在直线y =x 上,且它们中恰有两条美丽抛物线内接正方形面积比为1:16.求它们二次项系数之和.【分析】(1)画出函数y=ax2+k的图象,求出点D的坐标,即可求解;(2)由(1)知,点D的坐标为(k,k),即可求解;(3)美丽抛物线沿x轴向右或向左平移后得到的抛物线仍然是美丽抛物线,美丽抛物线y=a(x﹣h)2+k 沿x轴经过适当平移后为抛物线y=ax2+k,即可求解;(4)设这两条美丽抛物线的顶点坐标分别为和,它们的内接正方形的边长比为,则m=4k,,进而求解.【解答】解:(1)函数y=ax2+k的图象如下:①抛物线y=ax2+1是美丽抛物线时,则AC=1,∵四边形ABCD为正方形,则点D的坐标为(,),将点D的坐标代入y=ax2+1得:=a()2+1,解得a=﹣2;②同理可得,点D的坐标为(k,k),将点D的坐标代入y=+k得:k=(k)2+1,解得k=0(不合题意)或﹣4;故答案为:﹣4;(2)由(1)知,点D的坐标为(k,k),将点D 的坐标代入y =ax 2+k 得:k =a (k )2+k ,解得ak =﹣2;(3)答:成立.∵美丽抛物线沿x 轴向右或向左平移后得到的抛物线仍然是美丽抛物线.∴美丽抛物线y =a (x ﹣h )2+k 沿x 轴经过适当平移后为抛物线y =ax 2+k .∴ak =﹣2;(4)设这两条美丽抛物线的顶点坐标分别为和,(k ,m 为小7的正整数,且k <m ),它们的内接正方形的边长比为,∴m =4k ,.∴这两条美丽抛物线分别为和.∵,=﹣2,∴a 1=﹣12,a 4=﹣3.∴a 1+a 4=﹣15.答:这两条美丽抛物线对应的二次函数的二次项系数和为﹣15.2.(2016秋•西城区校级期中)我们规定:在正方形ABCD 中,以正方形的一个顶点A 为顶点,且过对角顶点C 的抛物线,称为这个正方形的以A 为顶点的对角抛物线.(1)在平面直角坐标系xOy 中,点在轴正半轴上,点C 在y 轴正半轴上.①如图1,正方形OABC 的边长为2,求以O 为顶点的对角抛物线;②如图2,在平面直角坐标系xOy 中,正方形OABC 的边长为a ,其以O 为顶点的对角抛物线的解析式为y =x 2,求a 的值;(2)如图3,正方形ABCD 的边长为4,且点A 的坐标为(3,2),正方形的四条对角抛物线在正方形ABCD 内分别交于点M 、P 、N 、Q ,直接写出四边形MPNQ 的形状和四边形MPNQ 的对角线的交点坐标.【分析】(1)①设O为顶点的抛物线的解析式为y=ax2,把B(2,2)代入即可解决问题.②设B(a,a).代入y=x2求出a即可解决问题.(2)如图3中,结论:四边形MPNQ是菱形,对角线的交点坐标为(5,4).求出A、B、C、D的顶点的对角抛物线,利用方程组求出M、P、N、Q的坐标即可解决问题.【解答】解:(1)①如图1中,设O为顶点的抛物线的解析式为y=ax2,∵过B(2,2),∴2=4a,∴a=,∴所求的抛物线的解析式为y=x2.②如图2中,设B(a,a).则有a=a2,解得a=4或0(舍弃),∴B(4,4),∴OA=4,∴正方形的边长为4.(2)如图3中,结论:四边形MPNQ是菱形,对角线的交点坐标为(5,4).理由:∵正方形ABCD的边长为4,A(3,2),∴B(7,2),C(7,6),D(3,6),∴以A为顶点的对角抛物线为y=(x﹣3)2+2,以B为顶点的对角抛物线为y=(x﹣7)2+2,以C为顶点的对角抛物线为y=﹣(x﹣7)2+6,以D为顶点的对角抛物线为y=﹣(x﹣3)2+6,由可得M(5,3),由可得N(5,5),由可得P(3+2,4),由可得Q(7﹣2,4),∴PM=,PN=,QN=,QM=,∴PM=PN=QN=QM,∴四边形MPNQ是菱形,对角线的交点坐标为(5,4).3.(2022•陇县二模)在平面直角坐标系中,已知抛物线经过A(﹣2,0),两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【分析】(1)利用顶点式,可以求得该抛物线的解析式;(2)根据题意,画出相应的图形,然后利用分类讨论的方法,可以分别求得对应的抛物线L2的解析式.【解答】解:(1)设抛物线L1的表达式是,∵抛物线L1过点A(﹣2,0),∴,解得,∴.即抛物线L1的表达式是;(2)令x=0,则y=﹣2,∴C(0,﹣2).Ⅰ.当AC为正方形的对角线时,如图所示,∵AE3=E3C=CD3=D3A=2,∴点D3的坐标为(0,0),点E3的坐标为(﹣2,﹣2).设,则,解得即抛物线L2的解析式是.Ⅱ.当AC为边时,分两种情况,如图,第①种情况,点D1,E1在AC的右上角时.∵AO=CO=E1O=D1O=2,∴点D1的坐标为(0,2),点E1的坐标为(2,0).设,则,解得:,即抛物线L2的解析式是.第②种情况,点D2E2在AC的左下角时,过点D2作D2M⊥x轴,则有△AD2M≌△AD1O,∴AO=AM,D1O=D2M.过E2作E2N⊥y轴,同理可得,△CE2N≌△CE1O,∴CO=CN,E1O=E2N.则点D2的坐标为(﹣4,﹣2),点E2的坐标为(﹣2,﹣4),设,则,解得,即抛物线L2的解析式是.综上所述:L2的表达式为:,或.4.(2022•临潼区二模)在平面直角坐标系中,已知抛物线L1:y=ax2+bx+c经过A(﹣2,0),B(1,﹣)两点,且与y轴交于点C,点B是该抛物线的顶点.(1)求抛物线L1的表达式;(2)将L1平移后得到抛物线L2,点D,E在L2上(点D在点E的上方),若以点A,C,D,E为顶点的四边形是正方形,求抛物线L2的解析式.【分析】(1)利用顶点式,可以求得该抛物线的解析式;(2)根据题意,画出相应的图形,然后利用分类讨论的方法,可以分别求得对应的抛物线L2的解析式.【解答】解:(1)设抛物线L1的表达式是y=a(x﹣1)2﹣,∵抛物线L1:y=ax2+bx+c A(﹣2,0),∴0=9a﹣,解得a=,∴y=(x﹣1)2﹣,即抛物线L1的表达式是y=x2﹣x﹣2;(2)当AC为正方形的对角线时,则点D的坐标为(0,0),点E(﹣2,﹣2),设y=x2+bx+c,∴,解得,即抛物线L2的解析式是y=x2+x;当AC为边时,分两种情况,第一种情况,点D、E在AC的右上角时,则点D的坐标(0,2),点E(2,0),设y=x2+bx+c,∴,解得,即抛物线L2的解析式是y=x2﹣x+2;第二种情况,点D、E在AC的左下角时,则点D的坐标(﹣4,﹣2),点E(﹣2,﹣4),设y=x2+bx+c,则,解得,即抛物线L2的解析式是y=x2+x﹣4.5.(2022•松阳县一模)如图,抛物线与x轴,y轴分别交于A,D,C三点,已知点A(4,0),点C(0,4).若该抛物线与正方形OABC交于点G且CG:GB=3:1.(1)求抛物线的解析式和点D的坐标;(2)若线段OA,OC上分别存在点E,F,使EF⊥FG.已知OE=m,OF=t①当t为何值时,m有最大值?最大值是多少?②若点E与点R关于直线FG对称,点R与点Q关于直线OB对称.问是否存在t,使点Q恰好落在抛物线上?若存在,直接写出t的值;若不存在,请说明理由.【分析】(1)先求得点G的坐标,再用待定系数法求解即可;(2)①证明△EOF∽△FCG,利用相似三角形的性质得到m关于t的二次函数,利用二次函数的性质即可求解;②根据轴对称的性质以及全等三角形的判定和性质先后求得点R(﹣m,2t),点Q(2t,﹣m),代入二次函数的解析式得到方程,解方程即可求解.【解答】解:(1)∵点A(4,0),点C(0,4).且四边形OABC是正方形,∴QA=QC=BC=4,∵CG:GB=3:1.∴CG=3,BG=l,∴点G的坐标为(3,4),设抛物线的解析式为y=ax2+bx+c,把.4(4,0),C(0,4),G(3,4),代入y=ax2+bx+c得,,解得:,∴抛物线的解析式为y=﹣x2+3x+4,令y=0,则﹣x2+3x+4=0,解得x=4或x=﹣1,∴点D的坐标为(﹣1,0);.(2)①∵EF⊥FG,∠EOF=∠GFE=∠GCF=90°,∴∠EFO+∠FEO=∠EFO+∠CFG=90°,.∴∠FEO=∠CFG,∴△EOF∽△FCG,∴=,即=,∴m=﹣t2+t=﹣(t﹣2)2+,∴当t=2时,m有最大值,最大值为;②∵点A(4,0),点C(0,4),且四边形OABC是正方形,∴点B的坐标为(4,4),设直线OB的解析式为y=kx,把(4,4),代入得:4=4k,解得k=1,∴直线OB的解析式为y=x,过点R作RS⊥y轴于点S,如图:∵点E与点R关于直线FG对称,EF⊥FG,∴RF=EF,∠RFS=∠EFO,∴△RFS≌△EFO(AAS),∴RS=EO=m,FS=FO=t,则SO=2t,∴点R的坐标为(﹣m,21)∵点R与点Q关于直线OB对称,同理点Q的坐标为(2t,﹣m),把Q(2t,﹣m)代入y=﹣x2+3x+4,得:﹣m=﹣4t2+6t+4,由①得m=﹣t2+t,∴t2﹣t=﹣4t2+6t+4,解得:t1=,t2=,∵0≤t1≤4,∴当t=时,点G恰好落在抛物线上.6.(2022•香坊区校级开学)在平面直角坐标系中,点O为坐标原点,点A、C分别在x轴、y轴正半轴上,四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.(1)如图1,求抛物线的解析式;(2)如图2,点D是OA的中点,经过点D的直线交AB于点E、交y轴于点F,连接BD,若∠EDA=2∠ABD,求直线DE的解析式;(3)如图3,在(2)的条件下,点G在OD上,连接GC、GE,点P在AB右侧的抛物线上,点Q为BP中点,连接DQ,过点B作BH⊥BP,交直线DP于点H,连接CH、GH,若GC=GE,DQ=PQ,求△CGH的周长【分析】(1)根据正方形的性质求得B,C的坐标,利用待定系数法求解析式即可;(2)在AD延长线时取DI=DE,连接IE,设∠ABD=α,可得tan∠EIA==,设AE=x,则AI=2x,在Rt△ADE中,ED2=AD2+AE2,建立方程,解方程进而可得E点的坐标,利用待定系数法求解析式即可;(3)延长BD,交y轴于点M.设直线DP交y轴于点S,分别求得G,C.H三点的坐标,进而根据勾股定理以及两点距离公式分别求得CG,HG,HC的长,即可求得△CGH的周长.【解答】解:∵四边形OABC是正方形,抛物线y=﹣x2+bx+c经过点B、C,OA=18.∴AB=OC=OA=18,∴C(0,18),B(18,18),∴c=18,∴18=﹣×182+bx+18,解得b=2,∴抛物线的解析式为y=﹣x2+2x+18;(2)如图,在AD延长线时取DI=DE,连接IE,设∠ABD=α,∵∠EDA=2∠ABD,∴∠EDA=2α,∵DI=DE,∴∠EID=∠IED=α,∵点D是OA的中点,∴OD=DA=9,∴tanα==,∴tan∠EIA==,设AE=x,则AI=2x,∴ED=DI=IA﹣DA=2x﹣9,在Rt△ADE中,ED2=AD2+AE2,即(2x﹣9)2=92+x2,解得x1=12,x2=0(舍),∴AE=12,∴E(18,12),∵D(9,0),设直线ED的解析式为y=kx+t,∴,解得,∴直线DE的解析式为y=x﹣12;(3)如图,延长BD,交y轴于点M,设直线DP交y轴于点S,∵OD=DA,∠DOM=∠DAB,∠ODM=∠ADB,∴△ODM≌△ADB(ASA),∴MD=DB,∵点Q为BP中点,DQ=PQ,∴DQ=BQ=PQ,∴∠QDB=∠QBD,∠QDP=∠QPD,∠QDB+∠QBD+∠QDP+∠QPD=180°,∴∠BDQ+∠PDQ=90°,即∠BDP=90°,∴PH⊥BD,∴∠SDO+∠MDO=∠MDO+∠OMD=90°,∴∠SDO=∠OMD=∠ABD,∴tan ∠SDO =tan ∠ABD ==,∴OS =OD =,∴S (0,),设直线SD 的解析式为y =mx +n ,将点S (0,),D (9,0)代入得,,解得,∴直线SD 的解析式为y =﹣x +,联立,解得,,∵点P 在AB ∴P (27,﹣9),∵D (9,0),B (18,18),∴PD ==9,BD ==9,∴DB =DP ,∴△DBP 是等腰直角三角形,∴∠DBP =45°,DQ ⊥BP ,∵BH ⊥BP ,∴BH ∥DQ ,∴=1,∴DH =DP ,∵D (9,0),P (27,﹣9),∴H (﹣9,9),∵点G 在OD 上,GC =GE ,C (0,18),E (18,12),设G (p ,0),则p 2+182=(18﹣p )2+122,解得p =4,∴G (4,0),∵H (﹣9,9),G (4,0),C (0,18),∴CG ==2,CH ==9,HG ==5,∴CG +HG +CH =2+5+9,∴△CGH 的周长为2+5+9.7.(2021•咸丰县一模)如图,在平面直角坐标系中,抛物线与x 轴正半轴交于点A ,且点A 的坐标为(3,0),过点A 作垂直于x 轴的直线l ,P 是该抛物线上一动点,其横坐标为m ,过点P 作PQ ⊥l 于点Q ,M 是直线l 上的一点,其纵坐标为.以PQ ,QM 为边作矩形PQMN .(1)求抛物线的解析式;(2)当点Q 与点M 重合时,求的值;(3)当矩形PQMN 是正方形,且抛物线的顶点在该正方形内部时,求m 的值;(4)当抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小时,求m 的取值范围.【分析】(1)利用待定系数法求解即可.(2)根据点M 与点P 的纵坐标相等构建方程求解即可.(3)根据PQ =MQ ,构建方程求解即可.(4)当点P 在直线l 的左边,点M 在点Q 是下方下方时,抛物线在矩形PQMN 内的部分所对应的函数值y 随x 的增大而减小,则有﹣m +<﹣m 2+m +,解得0<m <4,观察图象可知.当0<m <3时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小,如图4﹣1中.当m>4时,点M 在点Q的上方,也满足条件,如图4﹣2中.【解答】解:(1)∵抛物线的图象经过点A(3,0),∴=0,解得b=1.∴抛物线解析式为:.(2)∵P点的横坐标为m,且P点在抛物线y=的图象上,∴P点的坐标为(m,),∵PQ⊥l,l过A点且垂直于x轴,∴Q点的坐标为(3,),∵M点的坐标为(3,﹣m+),∵Q点与M点重合,∴=﹣m+,解方程得:m=0或m=4.(3)∵抛物线=﹣(x﹣1)2+2,∴抛物线的顶点坐标为(1,2).∵N点的坐标为N(m,﹣m+),要使顶点(1,2)在正方形PQMN内部,∴﹣m+>2,得m<﹣.∴PN=﹣m+﹣()=m2﹣2m,PQ=3﹣m.∵四边形PQMN是正方形,∴m2﹣2m=3﹣m,解得m=1+(舍去)或m=1﹣.∴当m=1﹣时,抛物线顶点在正方形PQMN内部.(4)∵M点的纵坐标﹣m+,随P点的横坐标m的增大而减小,根据(1)的结果得:当m=0时,M,Q两点重合;m=3时,P,Q重合;m=4时,M,Q重合,矩形PQMN不存在;当m<0时,直线MN在直线PQ上方,抛物线顶点在矩形PQMN内部,不合题意.当0<m<4时,直线MN在直线PQ下方,如图4﹣1,当3<m<4时,矩形内部没有抛物线图象,不合题意;当m>4时,直线MN在直线PQ上方,矩形内部有抛物线,且为对称轴右侧,y随x的增大而减小,如图4﹣2;综上:当0<m<3或m>4时,抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小.8.(2021•云南模拟)如图1,在平面直角坐标系xOy中,抛物线与x轴交于点A,B(点A在点B的左侧),交y轴于点C,且经过点D(5,6).(1)求抛物线的解析式及点A,B的坐标;(2)在平面直角坐标系xOy中,是否存在点P,使△APD是等腰直角三角形?若存在,请直接写出符合条件的所有点的坐标;若不存在,请说明理由;(3)在直线AD下方,作正方形ADEF,并将沿对称轴平移|t|个单位长度(规定向上平移时t为正,向下平移时t为负,不平移时t为0),若平移后的抛物线与正方形ADEF(包括正方形的内部和边)有公共点,求t的取值范围.【分析】(1)用待定系数法直接求出解析式,然后令y=0,求出点A、B的坐标即可;(2)求出直线AD的解析式,设直线AD与y轴交于点E,得出∠DAB=45°,过点D作DP1⊥x轴,过点A作AP2∥y轴,过点D作DP2∥x轴,AP2与DP2交于点P2,延长AP1至P3,使AP1=P1P3,连接DP3,延长DP1至P4,使DP1=P1P4,连接AP4,延长AP2至P5,使AP2=P2P5,连接DP5,延长DP2至P6,使DP2=P2P6,连接AP6,则△AP1D,△AP2D,△AP3D,△AP4D,△AP5D,△AP6D为所有符合题意的等腰直角三角形,求出各个P点的坐标即可;(3)设平移后的抛物线解析式为,分别求出抛物线平移后与正方形ADEF有公共点的最低位置和最高位置的t值,即可求出t的取值范围.【解答】解:(1)依题意,将点D(5,6)代入,得,解得k=﹣2,∴抛物线的解析式为,令y=0,得,解得x1=﹣1,x2=3,∴A(﹣1,0),B(3,0);(2)存在,设直线AD的解析式为y=mx+n(m≠0),将A(﹣1,0),D(5,6)两点坐标代入得,,解得,∴直线AD的解析式为y=x+1,如图1,设直线AD与y轴交于点E,令x=0,得y=1,∴OA=OE=1,∴∠DAB=45°,过点D作DP1⊥x轴,过点A作AP2∥y轴,过点D作DP2∥x轴,AP2与DP2交于点P2,延长AP1至P3,使AP1=P1P3,连接DP3,延长DP1至P4,使DP1=P1P4,连接AP4,延长AP2至P5,使AP2=P2P5,连接DP5,延长DP2至P6,使DP2=P2P6,连接AP6,则△AP1D,△AP2D,△AP3D,△AP4D,△AP5D,△AP6D为所有符合题意的等腰直角三角形,∴P1(5,0),P2(﹣1,6),P3(11,0),P4(5,﹣6),P5(﹣1,12),P6(﹣7,6);(3)如图2,由(2)可知,点E的坐标是(11,0),点F的坐标是(5,﹣6),直线AD的解析式是y=x+1,设平移后的抛物线解析式为,结合图象可知,当抛物线经过点E时,是抛物线平移后与正方形ADEF有公共点的最低位置,将点(11,0)代入,得,解得t=﹣48,当抛物线与AD边有唯一公共点时,是抛物线平移后与正方形ADEF有公共点的最高位置,将y=x+1与联立方程组,,化简得x2﹣4x+2t﹣5=0,∵只有唯一解,即此一元二次方程有两个相等的实数根,∴△=(﹣4)2﹣4×1×(2t﹣5)=0,解得,∴t的取值范围.9.(2019秋•温州校级月考)如图1所示,动点A、B同时从原点O出发,运动的速度都是每秒1个单位,动点A沿x轴正方向运动,动点B沿y轴正方向运动,以OA、OB为邻边建立正方形OACB,抛物线y =﹣x²+bx+c经过B、C两点,假设A、B两点运动的时间为t秒.=6?若存在,(1)当t=3秒时,求此时抛物线的解析式;此时抛物线上是否存在一点D,使得S△BCD 求出点D的坐标;若不存在,说明理由;(2)如图2,在(1)的条件下,有一条平行于y轴的动直线l,交抛物线于点E,交直线OC于点F,若以O、B、E、F四个点构成的四边形是平行四边形,求点F的坐标;(3)在动点A、B运动的过程中,若正方形OACB内部有一个点P,且满足OP=,CP=,∠OPA =135°,直接写出此时AP的长度.【分析】(1)根据正方形的性质可得OA、OB,然后写出点B、C的坐标,再利用待定系数法求二次函数解析式解答,设BC边上的高为h,利用三角形的面积求出h,从而确定出点P的纵坐标,再代入抛物线解析式求解即可;(2)分点E在点F上方和下方两种情况表示出EF,再根据平行四边形对边相等列方程求解即可;(3)将△AOP绕点A逆时针旋转90°得到△AP′C,根据旋转的性质可得AP′=AP,P′C=OP,∠AP′C=∠OPA,然后判断出△APP′是等腰直角三角形,再求出∠PP′C=90°,利用勾股定理列式求出PP′,再根据等腰直角三角形的性质解答.【解答】解:(1)∵t=3秒,∴OA=OB=3,∴点B(0,3),C(3,3),将点B、C代入抛物线得,,解得,∴抛物线解析式为y=﹣x2+3x+3,设BC边上的高为h,=6,∵BC=OA=3,S△BCD∴h=4,∴点D的纵坐标为3﹣4=﹣1,令y=﹣1,则﹣x2+3x+3=﹣1,整理得,x2﹣3x﹣4=0,解得x1=﹣1,x2=4,所以,D1(﹣1,﹣1),D2(4,﹣1);(2)∵OB=3,∴EF=3,设E(m,﹣m2+3m+3),F(m,m),若E在F上方,则,﹣m2+3m+3﹣m=3,整理得,m2﹣2m=0,解得m1=0(舍去),m2=2,∴F1(2,2),若F在E上方,则,m﹣(﹣m2+3m+3)=3,整理m2﹣2m﹣6=0,解得m1=1﹣,m2=1+,∴F2(1﹣,1﹣),F3(1+,1+);(4)如图,将△AOP绕点A逆时针旋转90°得到△AP′C,由旋转的性质得,AP′=AP,P′C=OP=,∠AP′C=∠OPA=135°,∵△APP′是等腰直角三角形,∴∠AP′P=45°,∴∠PP′C=135°﹣45°=90由勾股定理得,PP′==,所以,AP=PP′=×=1.10.(2021•峨眉山市模拟)如图,已知直线y=与坐标轴交于A,B两点,以线段AB为边向上作正方形ABCD,过点A,D,C的抛物线与直线的另一个交点为E.(1)求抛物线的解析式;(2)若正方形以每秒个单位长度的速度沿射线AB下滑,直至顶点D落在x轴上时停止,设正方形落在x轴下方部分的面积为S,求S关于滑行时间t的函数关系式,并写出相应自变量t的取值范围;(3)在(2)的条件下,抛物线与正方形一起平移,同时停止,求抛物线上C,E两点间的抛物线弧所扫过的面积.【分析】(1)求出OA、OB,根据勾股定理求出AB,过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,证△AOB≌△BZC≌△DMA,推出BZ=OA=DM=1,CZ=OB=MA=2,进而求解;(2)分为三种情况,根据题意画出图形,①当点A运动到x轴上点F时,②当点C运动x轴上时,③当点D运动到x轴上时,根据相似三角形的性质和判定和三角形的面积公式求出即可;(3)由抛物线上C,E两点间的抛物线弧所扫过的面积即为▱EE′C′C的面积,即可求解.【解答】解:(1)∵直线y=﹣x+1,∴当x=0时,y=1,当y=0x=2,∴OA=1,OB=2,过C作CZ⊥x轴于Z,过D作DM⊥y轴于M,∵四边形ABCD是正方形,∴AD=AB=BC,∠ABC=∠AOB=∠CZB=90°,∴∠ABO+∠CBZ=90°,∠OAB+∠ABO=90°,∴∠OAB=∠CBZ,在△AOB和△BZC中,,∴△AOB≌△BZC(AAS),∴OA=BZ=1,OB=CZ=2,∴C(3,2),同理可求D的坐标是(1,3);设抛物线为y=ax2+bx+c,∵抛物线过A(0,1),D(1,3),C(3,2),则,解得,∴抛物线的解析式为y=﹣x2+x+1;(2)∵OA=1,OB=2,∴由勾股定理得:AB=,①当点A运动到x轴上点F时,t=1,当0<t≤1时,如图1,∵∠OFA=∠GFB′,tan∠OFA=,∴tan∠GFB′===,∴GB′=t,=FB′×GB′=•t•t=t2;∴S△FB′G②当点C运动x轴上时,t=2,当1<t≤2时,如图2,∵AB=A′B′=,∴A′F=t﹣,∴A′G=,∵B′H=t,=(A′G+B′H)•A′B′=(+t)•=t﹣;∴S四边形A′B′HG③当点D运动到x轴上时,t=3,当2<t≤3时,如图3,∵A′G=,∴GD′=﹣=,=×2×1=1,OA=1,∠AOF=∠GD′H=90°,∠AFO=∠GFA′,∵S△AOF∴△AOF∽△GA′F,∴=()2,=()2,∴S△GA′F=()2﹣()2=﹣t2+t﹣;则S五边形GA′B′CH综上,S=;(3)设平移后点E和点C对应的点为E′、C′,则抛物线上C,E两点间的抛物线弧所扫过的面积即为▱EE′C′C的面积,联立y=与y=﹣x2+x+1并解得,∴E(4,﹣1),∴BC=BE,CE=,当顶点D落在x3个单位长度,向右平移了6个单位长度,此时点E′的坐标为(10,﹣4),∴EE′=3,∴抛物线上C,E两点间的抛物线弧所扫过的面积为S=EE′•BC=3×=15.11.(2021•深圳模拟)如图1,抛物线C1:y=ax2+bx+c与x轴交于A(﹣1,0),B(3,0)两点,且顶点为C,直线y=kx+2经过A,C两点.(1)求直线AC的表达式与抛物线C1的表达式;(2)如图2,将抛物线C1沿射线AC方向平移一定距离后,得到抛物线为C2,其顶点为D,抛物线C2=S△MAE,求与直线y=kx+2的另一交点为E,与x轴交于M,N两点(M点在N点右边),若S△MDE 点D的坐标;(3)如图3,若抛物线C1向上平移4个单位得到抛物线C3,正方形GHST的顶点G,H在x轴上,顶点S,T在x轴上方的抛物线C3上,P(m,0)是射线GH上一动点,则正方形GHST的边长为4,。

二次函数压轴题之菱形存在性问题

二次函数压轴题之菱形存在性问题

菱形存在性问题作为一种特殊的平行四边形,我们已经知道可以从以下几种方式得到菱形: (1)有一组邻边相等的平行四边形菱形; (2)对角线互相垂直的平行四边形是菱形; (3)四边都相等的四边形是菱形.坐标系中的菱形存在性问题也是依据以上去得到方法.和平行四边形相比,菱形多一个“对角线互相垂直”或“邻边相等”,但这两者其实是等价的,故若四边形ABCD 是菱形,则其4个点坐标需满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=考虑到互相垂直的两条直线斜率之积为1在初中并不适合直接用,故取两邻边相等. 即根据菱形的图形性质,我们可以列出关于点坐标的3个等式, 故菱形存在性问题点坐标最多可以有3个未知量,与矩形相同.因此就常规题型而言,菱形存在性至少有2个动点,多则有3个动点,可细分如下两大类题型:(1)2个定点+1个半动点+1个全动点 (2)1个定点+3个半动点解决问题的方法也可有如下两种: 思路1:先平四,再菱形设点坐标,根据平四存在性要求列出“A +C =B +D ”(AC 、BD 为对角线),再结合一组邻边相等,得到方程组.思路2:先等腰,再菱形在构成菱形的4个点中任取3个点,必构成等腰三角形,根据等腰存在性方法可先确定第3个点,再确定第4个点.1.看个例子:如图,在坐标系中,A 点坐标(1,1),B 点坐标为(5,4),点C 在x 轴上,点D 在平面中,求D 点坐标,使得以A 、B 、C 、D 为顶点的四边形是菱形.思路1:先平四,再菱形设C 点坐标为(m ,0),D 点坐标为(p ,q ).(1)当AB 为对角线时,由题意得:(AB 和CD 互相平分及AC =BC ) ()()()()222215*********m p q m m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:398985m p q ⎧=⎪⎪⎪=⎨⎪⎪=⎪⎩(2)当AC 为对角线时,由题意得:(AC 和BD 互相平分及BA =BC ) ()()()()2222151041514504m p qm ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:223m p q =⎧⎪=-⎨⎪=-⎩或843m p q =⎧⎪=⎨⎪=-⎩ (3)当AD 为对角线时,由题意得:()()()()2222151401514110p mq m ⎧+=+⎪⎪+=+⎨⎪-+-=-+-⎪⎩,解得:153m p q ⎧=+⎪⎪=+⎨⎪=⎪⎩153m p q ⎧=-⎪⎪=-⎨⎪=⎪⎩思路2:先等腰,再菱形先求点C,点C满足由A、B、C构成的三角形一定是等腰三角形,用等腰存在性问题的方法先确定C,再确定D点.(1)当AB=AC时,C点坐标为()1+,对应D点坐标为()5+;C点坐标为()1-,对应D点坐标为()5-.(2)当BA=BC时,C点坐标为(8,0),对应D点坐标为(4,-3);C点坐标为(2,0),对应D点坐标为(-2,-3).(3)AC=BC时,C点坐标为39,08⎛⎫⎪⎝⎭,D点坐标为9,58⎛⎫⎪⎝⎭.以上只是两种简单的处理方法,对于一些较复杂的题目,还需具体问题具体分析,或许有更为简便的方法.【两定两动:坐标轴+平面】(2019·齐齐哈尔中考删减)综合与探究如图,抛物线2y x bx c =++与x 轴交于A 、B 两点,与y 轴交于C 点,OA =2,OC =6,连接AC 和BC .(1)求抛物线的解析式;(2)若点M 是y 轴上的动点,在坐标平面内是否存在点N ,使以点A 、C 、M 、N 为顶点的四边形是菱形?若存在,请直接写出点N 的坐标;若不存在,请说明理由.备用图【分析】(1)抛物线:26y x x=--;(2)先考虑M点位置,即由A、C、M三点构成的三角形是等腰三角形:①当CA=CM时,即CM=CA=M点坐标为(0,6--、(0,6-+,对应N点坐标为(2,--、(-.②当AC=AM时,即AM=AC=M点坐标为(0,6),对应N点坐标为(2,0).③当MA=MC时,勾股定理可求得M点坐标为8 0,3⎛⎫-⎪⎝⎭,对应N点坐标为10 2,3⎛⎫--⎪⎝⎭.综上,N点坐标为(2,--、(-、(2,0)、102,3⎛⎫--⎪⎝⎭.如下图依次从左到右.【两定两动:对称轴+平面】(2019·辽阳中考)如图,在平面直角坐标系中,Rt △ABC 的边BC 在x 轴上,∠ABC =90°,以A 为顶点的抛物线2y x bx c =-++经过点C (3,0),交y 轴于点E (0,3),动点P 在对称轴上.(1)求抛物线解析式;(2)若点M 是平面内的任意一点,在x 轴上方是否存在点P ,使得以点P ,M ,E ,C 为顶点的四边形是菱形,若存在,请直接写出符合条件的M 点坐标;若不存在,说明理由.【分析】(1)抛物线:223y x x =-++;(2)先考虑P 点位置,由P 、E 、C 三点构成的三角形是等腰三角形.①当EC =EP 时,由EC =,得EP =P 在对称轴x =1上, 勾股定理解得P点坐标为(、(1,3(舍), 根据点的平移推得M点坐标为(. ②当CE =CP 时,即CP =CE=P点坐标为(、(1,(舍), 根据点的平移推得M点坐标为(2,3-. ③当PE =PC 时, 设P 点坐标为(1,m ),解得:m =1,故P 点坐标为(1,1), 对应的点M 坐标为(2,2).综上所述,M 点坐标为(、(2,3-、(2,2).【两定两动:斜线+平面】 (2018·齐齐哈尔)综合与探究如图1所示,直线y =x +c 与x 轴交于点A (-4,0),与y 轴交于点C ,抛物线2y x bx c =-++经过点A ,C .(1)求抛物线的解析式(2)如图2所示,M 是线段OA 的上一个动点,过点M 垂直于x 轴的直线与直线AC 和抛物线分别交于点P 、N .若点P 恰好是线段MN 的中点,点F 是直线AC 上一个动点,在坐标平面内是否存在点D ,使以点D ,F ,P ,M 为顶点的四边形是菱形?若存在,请直接写出点D 的坐标;若不存在,请说明理由.图2【分析】(1)抛物线解析式:234y x x =--+; (2)设M 点坐标为(m ,0)(-4<m <0),则N 点坐标为()2,34m m m --+,P 点坐标为(m ,m +4), 若P 是MN 中点,则()23424m m m --+=+, 解得:11m =-,24m =-(舍) 故P (-1,3)、M (-1,0)考虑到F 点在直线AC 上,故可先确定F 点位置,再求得D 点坐标.当PM =PF 时,PF =3,可得11F ⎛-+ ⎝⎭、21F ⎛-- ⎝⎭, 对应D点坐标分别为11D ⎛-+ ⎝⎭、21D ⎛- ⎝⎭. 当MP =MF 时,MP =MF ,可得()34,0F -,对应D 点坐标为()34,3D -. 当FP =FM 时,FP =FM ,F 点在PM 垂直平分线上,可得453,22F ⎛⎫- ⎪⎝⎭,对应D 点坐标为413,22D ⎛⎫⎪⎝⎭.综上所述,D点坐标有11D ⎛-+ ⎝⎭、21D ⎛-- ⎝⎭、()34,3D -、413,22D ⎛⎫⎪⎝⎭.【两定两动:斜线+抛物线】(2018•衡阳)如图,已知直线24y x =-+分别交x 轴、y 轴于点A 、B ,抛物线过A 、B 两点,点P 是线段AB 上一动点,过点P 作PC ⊥x 轴于点C ,交抛物线于点D . (1)若抛物线的解析式为2224y x x =-++,设其顶点为M ,其对称轴交AB 于点N .①求点M 、N 的坐标;②是否存在点P ,使四边形MNPD 为菱形?并说明理由.【分析】(1)①M 点坐标为19,22⎛⎫ ⎪⎝⎭,N 点坐标为1,32⎛⎫⎪⎝⎭.②由题意可知MN ∥PD ,故四边形MNPD 若是菱形,首先MN =PD 考虑到M 、N 是定点,可先求得32MN =, 设(),24P m m -+,则()2,224D m m m -++, ()222242424PD m m m m m =-++--+=-+,令32PD =,即23242m m -+=, 解得:112m =,232m =. 故P 点坐标为3,12⎛⎫ ⎪⎝⎭,D 点坐标为35,22⎛⎫⎪⎝⎭.但此时仅仅满足四边形MNPD 是平行四边形,本题要求的是菱形,故还需加邻边相等. 但此时P 、D 已定,因此接下来要做的只是验证邻边是否相等.由两点间距离公式得:32PN ==≠,PN ≠MN ,故不存在点P 使四边形MNPD 是菱形.【小结】为什么此题会不存在,表面上看是不满足邻边相等,究其原因,是因为M 、N 是定点,P 、D 虽为动点但仅仅是半动点,且P 、D 横坐标相同,故本题只需一个字母便可表示出4个点的坐标,对于菱形四个点满足:A CB D AC BD x x x x y y y y ⎧+=+⎪⎪+=+⎨=若只有1个未知数或2个未知数,便出现方程个数>未知量个数的情况,就有可能会无解. 方程个数<未知数个量,可能无法确定有限组解; 方程个数>未知数个量,可能会无解.特殊图形的存在性,其动点是在线上还是在平面上,是有1个动点还是有2个动点,都是由其图形本身决定,矩形和菱形相比起平行四边形,均多一个等式,故对动点位置的要求可以有3个半动点或者1个全动点+1个半动点,若减少未知量的个数,反而可能会产生无解的情况.不难想象,对于正方形来说,可以有4个未知量,比如在坐标系中已知两定点,若要作正方形,只能在平面中再取另外两动点,即2个全动点,当然,也有可能是1全动+2半动,甚至是4个半动点.练习:如图,抛物线2y x bx c=++与x轴相交于A、B两点,与y轴相交于点C,已知抛物线的对称轴所在的直线是94x=,点B的坐标为(4,0).(1)求抛物线解析式;(2)若M为x轴上一动点,在抛物线上是否存在点N,使得点B、C、M、N构成的四边形是菱形,若存在,求出点N坐标,若不存在,请说明理由.【分析】(1)抛物线:2922y x x =-+;(2)本题是“两定两动”,但两个动点一个在x 轴上,一个在抛物线上,均为半动点,故只需两个字母即可表示,未知量个数少于方程个数,结果可能会无解.设M 点坐标为(m ,0),N 点坐标为29,22n n n ⎛⎫-+ ⎪⎝⎭,又B (4,0)、C (0,2).当CB 为对角线时,取对角线互相平分及MB =MC ,可得: ()()()()2222240902022400002m nn n m m ⎧+=+⎪⎪+=+-+⎨⎪⎪-+-=-+-⎩方程组无解,故这种情况不存在;当CM 为对角线时,取对角线互相平分及BC =BM ,可得: ()()()()22222049022024002400m n n n m ⎧+=+⎪⎪+=-++⎨⎪⎪-+-=-+-⎩方程组依然无解;这种情况也不存在;当CN 为对角线时,取对角线互相平分及CB =CM ,可得: ()()()()22222049220020420020n m n n m ⎧+=+⎪⎪+-+=+⎨⎪⎪-+-=-+-⎩方程组还是无解.综上,不存在这样的M 、N .【小结】问题本身源于对动点位置的选取导致点坐标中未知量的个数与方程个数不一致,以致出现不存在的情况.【一定三动】讲真在翻了一些中考题,并没有看到类似的题型,举些数据编一个吧:如图,抛物线过A (-1,0)、B (3,0)、C (0,3),点C 关于抛物线对称轴的对称点为D 点,连接AD .点P 在抛物线上,点M 在直线AD 上,点N 在抛物线对称轴上,四边形OPMN 能否为菱形,若能,求出P 点坐标,若不能,说明理由.【分析】抛物线解析式为:223y x x =-++,直线AD 解析式为y =x -1.设P 点坐标为()2,23p p p -++,M 点坐标为(),1m m -,N 点坐标为()1,n , 考虑到在四边形OPMN 中,OM 为对角线,可得: ()()()()222220+1012310011m p m p p nn m n m ⎧=+⎪⎪+-=-+++⎨⎪-+-=-+-+⎪⎩显然这个计算很麻烦,经化简可得点P 满足32610p p --=,剩下的就不解了呵呵呵. 可能是数据不太凑巧,但显然,这样的问题并不像“两定两动”问题那样普遍易解,方法其实是同样的方法,因为就题目构造而言,其实“3个半动点”与“1全动+1半动”并无本质区别.了解题目的构造,当再去看一些题目的时候,是否一目了然?。

压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

压轴题06二次函数与特殊四边形存在性问题(四大类型)-2023年中考数学压轴题专项训练(全

2023年中考数学压轴题专项训练压轴题06二次函数与特殊四边形存在性问题(四大类型)题型一:二次函数与平行四边形存在性问题例1.(2023•泽州县一模)综合与探究.如图1,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A,B两点,与直线l交于B,C 两点,其中点A的坐标为(﹣2,0),点C的坐标为(﹣1,﹣4).(1)求二次函数的表达式和点B的坐标.(2)若P为直线l上一点,Q为抛物线上一点,当四边形OBPQ为平行四边形时,求点P的坐标.(3)如图2,若抛物线与y轴交于点D,连接AD,BD,在抛物线上是否存在点M,使∠MAB=∠ADB?若存在,请直接写出点M的坐标;若不存在,请说明理由.题型二:二次函数与矩形存在性问题例2.(2023•歙县校级模拟)如图,若二次函数y=ax2+bx+4的图象与x轴交于点A(﹣1,0)、B(4,0),与y轴交于点C,连接BC.(1)求该二次函数的解析式;(2)若点Q是抛物线上一动点,在平面内是否存在点K,使以点B、C、Q、K为顶点,BC为边的四边形是矩形?若存在请求出点K的坐标;若不存在,请说明理由.题型三: 二次函数与菱形存在性问题例3.(2023春•沙坪坝区校级月考)如图,在平面直角坐标系中,抛物线y=﹣x2+bx+c经过A(0,1),B (4,﹣1).直线AB交x轴于点C,P是直线AB上方且在对称轴右侧的一个动点,过P作PD⊥AB,垂足为D,E为点P关于抛物线的对称轴的对应点.(1)求抛物线的函数表达式;(2)当√5PD+PE的最大值时,求此时点P的坐标和√5PD+PE的最大值;(3)将抛物线y关于直线x=3作对称后得新抛物线y',新抛物线与原抛物线相交于点F,M是新抛物线对称轴上一点,N是平面中任意一点,是否存在点N,使得以C,F,M,N为顶点的四边形是菱形,写出所有符合条件的点N的坐标,并写出求解点N的坐标的其中一种情况的过程.题型四: 二次函数与正方形存在性问题例4.(2023•前郭县一模)如图,在平面直角坐标系中,抛物线y=x2﹣4x+c与y轴相交于点A(0,2).(1)求c的值;(2)点B为y轴上一点,其纵坐标为m(m≠2),连接AB,以AB为边向右作正方形ABCD.①设抛物线的顶点为P,当点P在BC上时,求m的值;②当点C在抛物线上时,求m的值;③当抛物线与正方形ABCD有两个交点时,直接写出m的取值范围.一.解答题(共20小题)1.(2023春•兴化市月考)已知:二次函数y=ax2+2ax﹣8a(a为常数,且a>0)的图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,顶点为点D.(1)分别求点A、B的坐标;(2)若△ABC是直角三角形,求该二次函数相应的表达式;(3)当a=12时,一次函数y=12x+b的图象过B点,与二次函数的对称轴交于Q点,N为一次函数图象上一点,过N点作y的平行线交二次函数图象于M点,当D、M、N、Q四点组成的四边形是平行四边形时,求N点的坐标.2.(2023春•沙坪坝区校级月考)如图1,在平面直角坐标系中,抛物线y=ax2+bx+8(a≠0)与x轴交于点B(﹣4,0),点C(8,0),与y轴交于点A.点D的坐标为(0,4).(1)求二次函数的解析式及点C的坐标.(2)如图1,点F为该抛物线在第一象限内的一动点,过E作FE∥CD,交CD于点F,求EF+√55DF的最大值及此时点E的坐标.(3)如图2,在(2)的情况下,将原抛物线绕点D旋转180°得到新抛物线y',点N是新抛物线y'上一点,在新抛物线上的对称轴上是否存在一点M,使得点D,E,M,N为顶点的四边形为平行四边形,若存在,请直接写出点M的坐标,并写出其中一个点M的求解过程.3.(2023•武清区校级模拟)在平面直角坐标系中,二次函数y=ax2+bx+3的图象与x轴交于A(﹣4,0),B(2,0)两点,与y轴交于点C.(1)求这个二次函数的解析式;(2)抛物线上是否存在点Q,且满足AB平分∠CAQ,若存在,求出Q点坐标;若不存在,说明理由;(3)点N为x轴上一动点,在抛物线上是否存在点M,使以B,C,M,N为顶点的四边形是平行四边形?若存在,直接写出点M的坐标;若不存在,说明理由.4.(2023春•承德县月考)已知二次函数y=14x2−32x−4与x数轴交于点A、B(A在B的左侧),与y轴交于点C,连接BC.发现:点A的坐标为,求出直线BC的解析式;拓展:如图1,点P是直线BC下方抛物线上一点,连接PB、PC,当△PBC面积最大时,求出P点的坐标;探究:如图2,抛物线顶点为D,抛物线对称轴交BC于点E,M是线段BC上一动点(M不与B、C两点重合),连接PM,设M点的横坐标为m(0<m<8),当m为何值时,四边形PMED为平行四边形?5.(2023春•梅江区校级月考)如图,在平面直角坐标系中,△AOC绕原点O逆时针旋转90°得到△DOB,其中OA=1,OC=3.(1)若二次函数经过A、B、C三点,求该二次函数的解析式;(2)在(1)条件下,在二次函数的对称轴l上是否存在一点P,使得P A+PC最小?若P点存在,求出P点坐标;若P点不存在,请说明理由.(3)在(1)条件下,若E为x轴上一个动点,F为抛物线上的一个动点,使得B、C、E、F构成平行四边形时,求E点坐标.6.(2022秋•云州区期末)综合与探究如图,二次函数y=ax2+bx+4的图象经过x轴上的点A(6,0)和y轴上的点B,且对称轴为直线x=7 2.(1)求二次函数的解析式.(2)点E位于抛物线第四象限内的图象上,以OE,AE为边作平行四边形OEAF,当平行四边形OEAF 为菱形时,求点F的坐标与菱形OEAF的面积.(3)连接AB,在直线AB上是否存在一点P,使得△AOP与△AOB相似,若存在,请直接写出点P坐标,若不存在,请说明理由.7.(2023春•开福区校级月考)【定义】对于函数图象上的任意一点P(x,y),我们把x+y称为该点的“雅和”,把函数图象上所有点的“雅和”的最小值称为该函数的“礼值”.根据定义回答问题:(1)①点P(9,10)的“雅和”为;(直接写出答案)②一次函数y=3x+2(﹣1≤x≤3)的“礼值”为;(直接写出答案)(2)二次函数y=x2﹣bx+c(bc≠0)(3≤x≤5)交x轴于点A,交y轴于点B,点A与点B的“雅和”相等,若此二次函数的“礼值”为1﹣b,求b,c的值;(3)如图所示,二次函数y=x2﹣px+q的图象顶点在“雅和”为0的一次函数的图象上,四边形OABC 是矩形,点B的坐标为(5,﹣3),点O为坐标原点,点C在x轴上,当二次函数y=x2﹣px+q的图象与矩形的边有四个交点时,求p的取值范围.8.(2023春•无锡月考)在平面直角坐标系中,O为坐标原点,二次函数y=ax2﹣2ax﹣3a(a>0)的图象分别与x轴交于A、B两点(点A在点B左侧),与y轴交于点C,过点B作BC的垂线交对称轴于点M,以BM、BC为邻边作矩形BMNC.(1)求A、B的坐标;(2)当点N恰好落在函数图象上时,求二次函数的表达式;(3)作点N关于MC的对称点N',则点N'能否落在函数图象的对称轴上,若能,请求出二次函数的表达式;若不能,请说明理由.9.(2022秋•开福区校级期末)若凸四边形的两条对角线所夹锐角为60°,我们称这样的凸四边形为“美丽四边形”.(1)①在“平行四边形、矩形、菱形、正方形”中,一定不是“美丽四边形”的有;②若矩形ABCD是“美丽四边形”,且AB=1,则BC=;(2)如图1,“美丽四边形”ABCD内接于⊙O,AC与BD相交于点P,且对角线AC,为直径,AP=2,PC=8,求另一条对角线BD的长;(3)如图2,平面直角坐标系中,已知“美丽四边形”ABCD的四个顶点A(﹣2,0),C(1,0),B在第三象限,D在第一象限,AC与BD交于点O,且四边形ABCD的面积为6√3,若二次函数y=ax2+bx+c (a、b、c为常数,且a≠0)的图象同时经过这四个顶点,求a的值.10.(2022秋•南关区校级期末)在平面直角坐标系中,二次函数y=x2﹣2x+n(x>0)的图象记为G1,将G1绕坐标原点旋转180°得到图象G2,图象G1和G2合起来记为图象G.(1)若点P(﹣2,3)在图象G上,求n的值.(2)当n=﹣1时.①若O(t,1)在图象G上,求t的值.②当k≤x≤3(k<3)时,图象G对应函数的最大值为2,最小值为﹣2,直接写出k的取值范围.(3)当以A(﹣2,2),B(﹣2,﹣1),C(1,﹣1),D(1,2)为顶点的矩形ABCD的边与图象G有且只有3个公共点时,直接写出n的取值范围.11.(2022•株洲)已知二次函数y=ax2+bx+c(a>0).(1)若a=1,b=3,且该二次函数的图象过点(1,1),求c的值;(2)如图所示,在平面直角坐标系xOy中,该二次函数的图象与x轴相交于不同的两点A(x1,0)、B (x2,0),其中x1<0<x2、|x1|>|x2|,且该二次函数的图象的顶点在矩形ABFE的边EF上,其对称轴与x轴、BE分别交于点M、N,BE与y轴相交于点P,且满足tan∠ABE=3 4.①求关于x的一元二次方程ax2+bx+c=0的根的判别式的值;②若NP=2BP,令T=1a2+165c,求T的最小值.阅读材料:十六世纪的法国数学家弗朗索瓦•韦达发现了一元二次方程的根与系数之间的关系,可表述为“当判别式Δ≥0时,关于x的一元二次方程ax2+bx+c=0(a≠0)的两个根x1、x2有如下关系:x1+x2=−b a,x1x2=ca”.此关系通常被称为“韦达定理”.12.(2023春•南关区月考)已知抛物线y=−12x2+bx+c(b、c是常数)的顶点B坐标为(﹣1,2),抛物线的对称轴为直线l,点A为抛物线与x轴的右交点,作直线AB.点P是抛物线上的任意一点,其横坐标为m,过点P作x轴的垂线交直线AB于点Q,过点P作PN⊥l于点N,以PQ、PN为边作矩形PQMN.(1)b=,c=.(2)当点Q在线段AB上(点Q不与A、B重合)时,求PQ的长度d与m的函数关系式,并直接写出d的最大值.(3)当抛物线被矩形PQMN截得的部分图象的最高点纵坐标与最低点纵坐标的距离为2时,求点P的坐标.13.(2023春•南关区校级月考)在平面直角坐标系中,抛物线y =﹣x 2+bx +c (b 、c 是常数)经过点A (﹣1,0)和点B (3,0).点P 在抛物线上,且点P 的横坐标为m . (1)求b 、c 的值;(2)当△P AB 的面积为8时,求m 的值;(3)当点P 在点A 的右侧时,抛物线在点P 与点A 之间的部分(包含端点)记为图象G ,设G 的最高点与最低点的纵坐标之差为h ,求h 与m 之间的函数关系式;(4)点Q 的横坐标为1﹣3m ,纵坐标为m +1,以PQ 为对角线构造矩形,且矩形的边与坐标轴平行.当抛物线在矩形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,直接写出m 的取值范围.14.(2023•九台区校级一模)在平面直角坐标系中,已知抛物线y =x 2﹣2ax ﹣a (a 为常数). (1)若点(2,﹣1)在抛物线上. ①求抛物线的表达式;②当x 为何值时y 随x 的增大而减小?(2)若x ≤2a ,当抛物线的最低点到x 轴的距离恰好是1时,求a 的值;(3)已知A (﹣1,1)、B(−1,2a −12),连结AB .当抛物线与线段AB 有交点时,该交点为P (点P 不与A 、B 重合),将线段PB 绕点P 顺时针旋转90°得到线段PM ,以PM 、P A 为邻边构造矩形PMQA .当抛物线在矩形PMQA 内部(包含边界)图象所对应的函数的最大值与最小值的差为32时,直接写出a 的值.15.(2023•靖江市校级模拟)如图,在平面直角坐标系中,抛物线y=−12x2+bx+32与x轴正半轴交于点A,且点A的坐标为(3,0),过点A作垂直于x轴的直线l.P是该抛物线上的任意一点,其横坐标为m,过点P作PQ⊥l于点Q,M是直线l上的一点,其纵坐标为﹣m+32,以PQ、QM为边作矩形PQMN.(1)求b的值.(2)当点Q与点M重合时,求m的值.(3)当矩形PQMN是正方形,且抛物线的顶点在该正方形内部时,求m的值.(4)当抛物线在矩形PQMN内的部分所对应的函数值y随x的增大而减小时.直接写出m的取值范围.16.(2022秋•临朐县期末)如图,在平面直角坐标系中,O是坐标原点,菱形OABC的顶点A(3,4),C 在x轴的负半轴,抛物线y=ax2+bx+c的对称轴x=2,且过点O,A.(1)求抛物线y=ax2+bx+c的解析式;(2)若在线段OA上方的抛物线上有一点P,求△P AO面积的最大值,并求出此时P点的坐标;(3)若把抛物线y=ax2+bx+c沿x轴向左平移m个单位长度,使得平移后的抛物线经过菱形OABC的顶点B.直接写出平移后的抛物线解析式.17.(2023•道外区一模)如图,在平面直角坐标系中,点O为坐标原点,抛物线y=ax2﹣2ax+c经过点A (﹣4,0),点C(0,6),与x轴交于另一点B.(1)求抛物线的解析式;(2)点D为第一象限抛物线上一点,连接AD,BD,设点D的横坐标为t,△ABD的面积为S,求S关于t的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,点P为第四象限抛物线上一点,连接P A交y轴于点E,点F在线段BC上,点G在直线AD上,若tan∠BAD=12,四边形BEFG为菱形,求点P的坐标.18.(2023春•九龙坡区校级月考)如图,在平面直角坐标系中,抛物线y=12x2+bx+c与x轴交于A(﹣1,0),B(4,0),与y轴于点C,连接BC,D为抛物线的顶点.(1)求该抛物线的解析式;(2)点P为直线BC下方抛物线上的一动点,过P作PE⊥BC于点E,过P作PF⊥x轴于点F,交直线BC于点G,求PE+PG的最大值,以及此时点P的坐标;(3)将抛物线y=12x2+bx+c沿射线CB方向平移,平移后的图象经过点H(2,﹣1),点M为D的对应点,平移后的抛物线与y轴交于点N,点Q为平移后的抛物线对称轴上的一点,且点Q在第一象限.在平面直角坐标系中确定点R,使得以点M,N,Q,R为顶点的四边形为菱形,请写出所有符合条件的点R的坐标,并写出求解点R的坐标的其中一种情况的过程.19.(2023•安徽一模)如图,在平面直角坐标系中,抛物线C 1:y =−14x 2+bx +c 的图象与坐标轴交于A 、B 、C 三点,其中点A 的坐标为(0,8),点B 的坐标为(﹣4,0),点D 的坐标为(0,4).(1)求该二次函数的表达式及点C 的坐标;(2)若点F 为该抛物线在第一象限内的一动点,求△FCD 面积的最大值;(3)如图2,将抛物线C 1向右平移2个单位,向下平移5个单位得到抛物线C 2,M 为抛物线C 2上一动点,N 为平面内一动点,问是否存在这样的点M 、N ,使得四边形DMCN 为菱形,若存在,请直接写出点N 的坐标;若不存在,请说明理由.20.(2023•九台区一模)在平面直角坐标系中,抛物线y =x 2+bx +c (b 、c 是常数)经过点(﹣2,﹣1),点(1,2).点A 在抛物线上,且点A 的横坐标为m (m ≠0).以点A 为中心,构造正方形POMN ,PQ =2|m |,且PQ ⊥x 轴.(1)求该抛物线对应的函数表达式;(2)若点B 是抛物线上一点,且在抛物线对称轴右侧.过点B 作x 轴的平行线交抛物线于另一点C ,连接BC .当BC =6时,求点B 的坐标;(3)若m <0,当抛物线在正方形内部的点的纵坐标y 随x 的增大而增大或y 随x 的增大而减小时,求m 的取值范围;(4)当抛物线与正方形PQMN 的边只有2个交点,且交点的纵坐标之差为34时,直接写出m 的值.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(4)设K是抛物线上一点,过K作KJ∥y轴,交直线AC
于点J,是否存在点K使得以M、E、K、J为顶点的四
边形是平行四边形,若存在,求出点K的坐标;若不存在, 请说明理由;
(4)【思维教练】
解:存在,如解图③,设点K的坐标为(e,e2+6e+5),
∵KJ∥y轴,交直线AC于点J,直线AC的解析式为y=x+5,

7
2
29


y 2

7
2
29
∴这样的Q有两个,坐标分别为( 7 29 ,7 29 );
( 7 29 , 7 29 ).
2
2
2
2
∴设点J的坐标为(e,e+5).
∵M(-3,-4),E(-3,2),∴ME=6.
∵ME∥y轴,KJ∥y轴,∴KJ∥ME,
要得到平行四边形,只需KJ=ME=6.
(ⅰ)当点K在点J的下方时,
KJ=(e+5)-(e2+6e+5)=-e2-5e, 则-e2-5e=6,解得e1=-2,e2=-3,
例题解图③
则K1(-2,-3)或K2(-3,-4), 由于K2(-3,-4)与点M重合,此时不能构成平行四边形, 故舍去;
(1)【思维教练】
解:由由拋物线过A(-5,0),B(-1,0)可知,其对称
轴l为x=-3,设抛物线解析式为y=a(x+3)2+h,分别
将A(-5,0),C(0,5)代入上式
可得 4a h 0 , 解得 a 1
9a h 5
h 4
∴抛物线解析式为y=(x+3)2-4=x2+6x+5,
解:存在.如解图⑤,过点O作OI⊥AC交AC于点I.
∵OA=OC=5,∴AI=CI,
∴OI是AC的垂直平分线,
∵四边形AQCR是菱形,
∴点Q、R在AC的垂直平分线上,
∴点Q是直线OI与抛物线的交点.
例题解图⑤
过点I作II ′ ⊥x轴于点I′,则II′是△AOC的中位线,
∴∴I点I′I=的坐标12O为C=(- 5
第二部分 攻克题型得高分
题型八 二次函数综合题
类型五 平行四边形、菱形、正方形的存 在性问题
典例精析
例 如图,抛物线经过A(-5,0),B(-1,0),C(0,5)三点, 顶点为M,连接AC,抛物线的对称轴为l,l与x轴交点 为D,与AC的交点为E. (1)求抛物线的解析式、顶点坐标以及对称轴l;
四边形是平行四边形,则NS=AE,
∴△SNT≌△AED,
∴NT=ED=2.
例题解图④
设点N的坐标为(n,n2+6n+5),
当点N在x轴上方,则NT=n2+6n+5=2,
解得n1=- 6 -3,n2= 6 -3, 此时点N的坐标为N1(- 6 -3,2)或N2( 6 - 3,2); 当点N在x轴下方,则NT=-n2-6n-5=2,
例题解图①
解得p=-9,此时点P的坐标为(-3,-9).
综上,这样的点P有两个,坐标分别为(-3,1)、(-3,-9);
(3)设点G是抛物线上一点,过点G作GH⊥l于点H, 是否存在点G,使得以A、B、G、H为顶点的四边形是 平行四边形?若存在,求出点G的坐标,若不存在,请 说明理由;
(3)【思维教练】若要以点A、B、G、H构成的四边形
于点S,是否存在点N,使得以A、E、N、S为顶点的四
边形是平行四边形?若存在,求出点N的坐标;若不存 在,请说明理由; (5)【思维教练】
2
解:如解图④,过点N作NT⊥x轴,交x轴于点T,
∵NS∥AE,∴∠NST=∠EAD,
∵NT⊥x轴,ED⊥x轴,
∴∠NTS=∠EDA=90°,
∵NS∥AE,要以点A、E、N、S为顶点的
解得n3=-3+ 2,n4=-3- 2 , 此时点N的坐标为N3(-3+ 2 ,-2)或N4(-3- 2 ,-2). 综上,这样的点N有4个,分别为:
(- 6-3,2),( 6 -3,2),(-3+ 2 ,-2) 或 (-3 - 2,-2).
(6)设点Q是抛物线上一点,点R是任意一点,是否 存在点Q,使得四边形AQCR是菱形,若存在,求出点 Q的坐标;若不存在,请说明理由. (6)【思维教练】
为平行四边形,由图可得点G只能位于x轴以上部分的 抛物线上,在对称轴两侧,会存在对称的两点,然后 根据对边相等求解.
解:存在.如解图②,
∵点G在抛物线上,则设点G的坐标为(g,g2+6g+5), ∵GH∥x轴,点H在直线l:x=-3上, ∴点H(-3,g2+6g+5). ∵GH∥AB,要得到平行四边形, ∴GH=AB=4, 即|g+3|=4,解得g=1或g=-7, 例题解图② 当g=1时,g2+6g+5=12,此时点G的坐标为(1,12); 当g=-7时,g2+6g+5=12,此时点G的坐标为(-7,12). 综上,这样的点G有两个,坐标分别为(1,12)、(-7,12).
5,I′O= 2,5 ),
22
A1O= ,5
2
2
设直线OI的解析式为y=tx,将点I的坐标代入,可得t=-1,
∴直线OI的解析式为y=-x,
与抛物线联立得
x y

2 6x 5 y x ,解得

x1

7
2
29Βιβλιοθήκη y 17 2
29
, ,
x 2
顶点坐标为(-3,-4).
(2)设点P是直线l上一点,且PM=CO,求点P的坐标; (2)【思维教练】
例题图
解:∵点C(0,5),∴CO=5,
设点P的坐标为(-3,p),
如解图①,当点P在M点上方,
则PM=p-(-4)=5,解得p=1,
此时点P的坐标为(-3,1);
当点P在M点下方, 则PM=-4-p=5,
(ⅱ)当点K在点J的上方时, KJ=(e2+6e+5)-(e+5)=e2+5e, 则e2+5e=6,解得e3=-6,e4=1, 则K3(-6,5)、k4(1,12). 综上,这样的点K有三个,坐标分别为(-2,-3)、(-6,5) 或(1,12).
(5)设点N是抛物线上一点,过点N作NS∥AC,交x轴
相关文档
最新文档