应用统计学_卡方检验
卡方检验在统计学中的应用

公式
根据不同的理论分布,拟合优度 卡方检验的公式也有所不同,但 基本思路是计算样本数据与理论 分布之间的差异程度。
应用场景
例如,判断某地区居民的身高是 否符合正态分布。
03 卡方检验在统计学中的应 用场景
分类变量间关系的研究
研究两个分类变量之间的关系,判断它们 是否独立。通过卡方检验可以比较观测频 数与期望频数的差异,从而判断两个分类 变量之间是否存在关联或因果关系。
公式
与独立性卡方检验类似,但计算的是同一观察对象在不同条件下的实际观测频数与期望频数的差异程度。
应用场景
例如,判断某药物在不同剂量下的疗效是否一致。
拟合优度卡方检验
定义
拟合优度卡方检验用于检验一个 样本数据是否符合某个理论分布 或模型。假设有一组样本数据, 拟合优度卡方检验的目的是判断 这组数据是否符合正态分布、二 项分布等理论分布。
数据来源
市场调查中的消费者数据,包括消费者的年龄、性别、收 入等信息以及他们对某一产品的评价和偏好。
分析方法
使用卡方检验分析不同消费者群体对同一产品的偏好程度 ,判断是否存在显著性差异。
结果解释
如果卡方检验结果显著,说明不同消费者群体对同一产品 的偏好程度存在显著差异;如果结果不显著,则说明消费 者偏好较为接近。
它通过计算观测频数与期望频 数之间的卡方值,评估两者之 间的差异是否具有统计学显著 性。
卡方检验常用于分类数据的分 析,如计数数据和比例数据。
卡方检验的基本思想
1 2
基于假设检验原理
卡方检验基于假设检验的基本思想,首先提出原 假设和备择假设,然后通过样本数据对原假设进 行检验。
比较实际观测与期望值
要点二
自由度
卡方检验医学统计学

卡方检验医学统计学卡方检验是医学统计学中最常用的检验方法之一,它可用于测量两组数据之间的关联性。
在研究中,我们常常需要探究二者之间是否存在某种关联,卡方检验就是我们解决这个问题的利器。
卡方检验的原理卡方检验的原理是基于期望频数和实际频数的差异来检验两个变量之间的关系。
期望频数指的是在假设两个变量独立的情况下,我们可以根据样本量和其他条件,计算出不同组之间的理论值。
而实际频数则是实验中观察到的实际结果。
卡方检验的步骤如下:1.建立零假设和备择假设。
零假设指的是假设两个变量之间不存在任何关系,备择假设则是反之。
2.确定显著性水平 alpha,通常取值为0.05。
3.构建卡方检验统计量。
计算方法为将所有观察值与期望值的差平方后,再除以期望值的总和。
4.根据自由度和显著性水平,查卡方分布表得到 P 值。
5.如果 P 值小于显著性水平,拒绝零假设;否则无法拒绝零假设。
卡方检验的应用卡方检验可以应用于多个领域,其中医学统计学是最为常见的一个。
卡方检验可以用来分析两个疾病之间的相关性或者测量一种治疗方法的效果。
举个例子,某药厂要研发一种新的药物来治疗心脏病。
为了验证该药的疗效,实验组和对照组各50 人。
在 6 个月的治疗后,实验组和对照组中分别有 10 人和 15 人痊愈了。
卡方检验的作用就在于此时可以用来检验两组之间的差异是否具有统计学意义。
除了医学统计学之外,卡方检验在社会学、心理学、市场营销、物理等领域也都有广泛应用。
卡方检验的限制虽然卡方检验被广泛应用于各种实验和研究中,但它也有着自己的限制。
其中比较明显的一点就是对样本量有一定的要求。
当样本量较小的时候,期望频数的计算就会出现一定的误差,进而导致检验结果不准确。
此外,在面对非常态分布数据时,卡方检验也会出现问题。
当数据呈现正态分布时,卡方检验的准确性最高。
然而,实际上,很多数据都呈现出非正态分布,这时需要使用一些修正方法来解决。
卡方检验是医学统计学中最常用的统计方法之一,它可以用来测量两个变量之间的关联性。
统计学-第十二章卡方检验

避免误用与误判的建议
充分理解卡方检验的原理 和适用条件,避免在不满 足条件的情况下使用。
结合专业知识判断观察频数与 期望频数的差异是否具有实际 意义,避免过度解读统计结果 。
ABCD
在进行卡方检验前,对数据 进行充分的描述性统计分析 ,了解数据的分布特点。
统计学-第十二章卡方检验
目 录
• 第十二章概述 • 卡方检验的基本原理 • 卡方检验的应用场景 • 卡方检验的步骤与实现 • 卡方检验的优缺点及注意事项 • 实例分析与操作演示
01
第十二章概述
章节内容与目标
01
掌握卡方检验的基本原理和假设检验流程
02
了解卡方检验在不同类型数据中的应用
能够运用卡方检验进行实际问题的分析和解决
THANK YOU
卡方分布及其性质
卡方分布的定义
若$n$个相互独立的随机变量$X_1, X_2, ldots, X_n$均服从标准正态分布$N(0,1)$,则它们的 平方和$X^2 = sum_{i=1}^{n}X_i^2$服从自 由度为$n$的卡方分布,记为$chi^2(n)$。
期望和方差
$E(X) = n$,$D(X) = 2n$,其中$X sim chi^2(n)$。
运行分析
点击“确定”按钮,运行卡方检验分 析。
结果解读与报告撰写
结果解读
根据卡方检验的结果,判断各组分类数据的 分布是否存在差异,以及差异的显著性水平 。
报告撰写
将分析结果以文字、表格和图表的形式呈现 出来,包括研究目的、数据收集与整理过程 、卡方检验结果和结论等部分。同时,需要
注意报告的规范性和可读性。
统计学卡方检验

根据分析结果,为患者提供个体化的干预措施,提高生存质量。
06
卡方检验注意事项及局限 性讨论
样本量要求及抽样方法选择
样本量要求
卡方检验对样本量有一定的要求,通常建议每个单元格的期望频数不小于5,以确保检验结果的稳定性和可靠性 。当样本量不足时,可能会导致检验效能降低,增加第二类错误的概率。
抽样方法选择
在进行卡方检验时,应选择合适的抽样方法。简单随机抽样是最常用的方法,但在某些情况下,如分层抽样或整 群抽样可能更适合。选择合适的抽样方法有助于提高检验的准确性和可靠性。
期望频数过低时处理策略
合并类别
当某个单元格的期望频数过低时,可以考虑 合并相邻的类别,以增加期望频数。合并类 别时应注意保持类别的逻辑性和实际意义。
适用范围及条件
适用范围
卡方检验适用于多个分类变量之间的独立性或相关性检验,如医学、社会科学等领域的调查研究。
条件
使用卡方检验需要满足一些前提条件,如样本量足够大、每个单元格的期望频数不宜过小等。此外, 对于有序分类变量或存在空单元格的情况,需要采用相应的处理方法或选择其他适合的统计方法。
02
卡方检验方法
统计学卡方检验
目录
• 卡方检验基本概念 • 卡方检验方法 • 数据准备与预处理 • 卡方检验实施步骤 • 卡方检验在医学领域应用举例 • 卡方检验注意事项及局限性讨论
01
卡方检验基本概念
定义与原理
01
02
定义
原理
卡方检验是一种基于卡方分布的假设检验方法,用于推断两个或多个 分类变量之间是否独立或相关。
确定分组界限
在确定分组界限时,可以采用等距分组、等频分组或 基于数据分布的分组方法。选择合适的分组界限有助 于保持各组之间的均衡性,减少信息损失。
统计学中的卡方检验原理

统计学中的卡方检验原理卡方检验是统计学中常用的一种假设检验方法,用于判断观察值与期望值之间的差异是否具有统计学意义。
它的原理和步骤如下:一、问题描述与假设建立在进行卡方检验前,首先需要明确研究的问题,并建立相应的假设。
以一个实例来说明,假设我们想研究男女之间是否存在不同的喜欢的颜色偏好。
我们将男女作为两个分类变量,颜色(如红、黄、蓝)作为一个分类变量,我们想知道男女对这些颜色有无统计学上的差异。
这个问题的原假设(H0)是:男女对颜色的喜好没有差异。
对立假设(H1)是:男女对颜色的喜好存在差异。
二、计算卡方值计算卡方值需要先构建列联表,列联表是将观察值按照不同的组合进行汇总,形成一个二维表格。
以男女喜欢的颜色偏好为例,假设我们调查了100位男性和100位女性,得到了以下的统计数据:红色黄色蓝色男性 30 40 30女性 50 30 20由上表可知,我们可以计算出男性对于红色的期望值:男性对红色的期望频数 = (男性总数/总样本数) * 红色总频数 =(100/200) * (30 + 50) = 80/200 = 40同理,我们可以计算出男性对黄色和蓝色的期望频数,以及女性对各个颜色的期望频数。
计算期望频数后,我们可以根据以下公式计算每一个单元格的卡方值:卡方值= (∑(观察频数 - 期望频数)^2 / 期望频数)将计算得到的每个单元格的卡方值相加,即可得到总的卡方值。
三、确定自由度和临界值卡方检验中,自由度的计算公式为:自由度 = (行数 - 1) * (列数 - 1)。
在本例中,自由度为 (2-1) * (3-1) = 2。
在确定自由度后,可以查找卡方分布表,根据所设定的显著性水平(如0.05)确定相应的临界值。
以自由度为2和显著性水平为0.05为例,在卡方分布表中查找,可得临界值为5.99。
四、判断与推断将计算得到的卡方值与临界值进行比较。
如果计算得到的卡方值大于临界值,则可以拒绝原假设,即说明观察值与期望值之间的差异是具有统计学意义的,反之,则接受原假设。
医学统计学——卡方检验

• ⑵χ2分布具有可加性:如果两个独立的 随机变量X1和X2分别服从ν1和ν2的χ2分 布,那么它们的和(X1+X2)也服从(ν1+ ν2)的χ2分布。
χ2 界值
• ν确定后,如果分布曲线下右侧尾部的 面积为α时,则横轴上相应的χ2值就记 作χ2 α,ν ,即χ2界值。其右侧部分的 面积α表示:自由度为ν时, χ2值大 于界值的概率大小。χ2值与P值的对应 关系见χ2界值表(附表6)。χ2值愈大,P 值愈小;反之,χ2值愈小,P值愈大。
• T22=(c+d)×(1- PC)=(c+d)×(b+d)/n = 56×17/112=8.5
χ2检验的基本思想
• χ2检验实质上是检验A的分布与T的分 布是否吻合及吻合的程度,χ2越小,表
明实际观察次数与理论次数越接近。
• 若检验假设成立,则A与T之差不会很 大,出现大的χ2值的概率P是很小的, 若P≤α,就怀疑假设成立,因而拒绝 它;若P>α,则没有理由拒绝它。
不同自由度的χ2分布曲线图
图 8-1 不同自由度的χ2 分布曲线图
二、χ2检验的基本思想
• 例8-1 某中医院将112例急性肾炎 病人随机分为两组,分别用西药和 中西药结合方法治疗,结果见表8-1, 问两种方法的疗效有无差别?
表8-1 两种方法治疗急性肾炎的结果
组 别 治愈例数 未愈例数 合计 治愈率(%)
例8-2
• 某医师将门诊的偏头痛病人随机 分为两组,分别采用针灸和药物 两种方法治疗,结果见表8-3 , 问两种疗法的有效率有无差别?
两种疗法对偏头痛的治疗结果
疗 法 有效例数 无效例数 合计 有效率(%)
针 灸 33(30.15) 2(4.85) 35 94.29
定性数据分析——卡方检验

定性数据分析——卡方检验卡方检验(Chi-square test)是统计学中用于检验两个定性变量之间关联性的方法。
它可以帮助我们确定两个变量之间的差异是由于随机因素导致的还是由于真实的关联性。
卡方检验的基本原理是,通过比较实际观察到的频数与期望频数之间的差异来判断变量之间是否存在关联。
在卡方检验中,我们首先要计算期望频数,即假设两个变量之间没有关联时,我们预计每个组别内的频数应该是多少。
然后,我们计算实际观察到的频数与期望频数之间的差异,并将这些差异加总得到一个卡方值。
最后,我们将卡方值与自由度相结合,使用卡方分布表来确定检验结果是否具有统计学意义。
卡方检验可以分为两种类型:拟合优度检验(goodness-of-fit test)和独立性检验(independence test)。
拟合优度检验用于确定观察到的频数是否与预期的频数相匹配。
它在比较一个变量的分布与一个预先给定的理论分布之间的差异时非常有用。
例如,我们可以使用卡方检验来检验一个骰子是否公平,即骰子的六个面是否具有相等的概率。
独立性检验用于确定两个变量之间是否存在关联。
它可以帮助我们确定两个变量是否独立,即它们的分布是否相互独立。
例如,我们可以使用卡方检验来确定男性和女性之间是否存在偏好其中一种产品的差异。
在进行卡方检验时,我们需要满足一些前提条件。
首先,两个变量必须是独立的,即每个观察值只能属于一个组别。
其次,每个组别中的观察值必须相互独立。
最后,期望频数应该足够大,通常要求每个组别的期望频数大于5卡方检验的结果通常以p值的形式呈现。
p值表示观察到的差异是由于随机因素导致的可能性。
如果p值小于预先设定的显著性水平(通常为0.05),则我们可以拒绝原假设,即认为变量之间存在关联。
在实际应用中,卡方检验可以帮助我们解决许多问题。
例如,我们可以使用卡方检验来确定广告宣传对购买行为的影响,消费者对不同品牌的偏好程度,或者员工对不同工作条件的满意度。
医学统计学-卡方检验

卡方检验是一种常用的统计方法,用于比较观察值和期望值之间的差异。它 在医学研究中有着广泛的应用,可以帮助我们验证假设、推断总体特征以及 分析类别变量的相关性。
卡方检验的定义和原理
卡方检验是一种基于卡方分布的统计检验方法。它基于观察值与期望值之间 的差异来判断样本数据与理论分布的拟合程度。
卡方检验的局限性和注意事项
• 卡方检验只能验证分类变量之间的关联性,不能验证因果关系。 • 卡方检验对样本足够大和数据分类合理的要求比较严格。 • 卡方检验结果受样本选择和观察误差的影响,需要谨慎解释。 • 在进行卡方检验前,需要对数据进行充分的清洗和准备。
结论和要点
卡方检验是一种常用的统计方法
卡方检验的应用领域
医学研究
卡方检验可以用来分析疾病的发生与某个因素之间的关联性,如吸烟与肺癌。
社会科学
卡方检验可以用来研究不同人群之间的行模式和态度偏好,如性别与政治观点。
市场调研
卡方检验可以用来分析消费者的购买偏好和市场细分,如年龄与产品偏好。
卡方检验的假设和前提条件
1 独立性假设
卡方检验基于观察值和期望值之间的差异来验证两个变量之间是否存在独立性。
它可以帮助我们验证假设、推断总体特征以 及分析类别变量的相关性。
结果解读和意义
卡方检验的结果可以帮助我们了解变量之间 的关系,并为决策提供依据。
应用广泛
卡方检验在医学研究、社会科学和市场调研 等领域都有着重要的应用。
局限性和注意事项
卡方检验有一定的局限性,需要注意样本大 小和数据分类的合理性。
4
比较卡方值和临界值
判断卡方值是否大于临界值,从而做出关于拒绝或接受原假设的决策。
卡方检验的结果解读和意义
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
multinomial experiment It is a generalisation of a binomial experiment These test the null hypothesis that data in the target population has a particular probability distribution. Example 1 We might test whether consumers are indifferent to which of four materials (glass, plastic, steel or aluminium) that could be used to make soft drink containers.
Under the null hypothesis We expect 25 consumers to nominate glass, 25 to nominate plastic, 25 to nominate steel and 25 to nominate aluminium
These are the expected frequencies, Ei.
Hypotheses
The alternative is that at least one material is more preferred (or less preferred) than the others.
Example 1cont..
Procedure:
Select a random sample of, say, 100 consumers and determine their preferences.
确定待检验个案的取值范围(expected range)
get from data:全部样本 use specified range:用户自定义个案范围 指定期望频数(expected values) all categories equal:所有类别有相同的构成比 value:用户自定义构成比
Categorical variable
Variables that describe categories of entities
Dealing with them all the time in statistics Making comparisons among variables For example, whether consumers prefer a particular brand of a product among other competing brands. Checking whether there is a relationship between
The null hypothesis is that they are indifferent (or that equal numbers prefer glass, plastic, steel and aluminium).
Example 1
Data
Let pG be the probability that an individual selected at random will nominate glass as his/her preference if required to make a choice. Similarly for pP (plastic), pS (steel) and pA (aluminium) HO: pG = pP = pS = pA = 0.25. HA: at least one pi 0.25.
方值 – 卡方值较小,则实际频数和期望频数相差较小.如果P大 于a,不能拒绝H0,认为总体分布与已知分布无显著i-square检验
(4)基本操作步骤:
菜单:analyze->nonparametric test->chi square 选定待检验变量入test variable list 框
Ei = n pi.
We compare the expected frequencies with the sample results or the observed frequencies, Oi. If they are approximately the same we would conclude that the null hypothesis is true. Oi Ei HO is probably true.
BEO2255 Applied Statistics for Business
Week Six – Analyzing categorical data: Chi-squared tests
This week lecture will cover...
Analysing categorical data (nominal) Chi-square test of differences between proportions Chi-square test of independence
SPSS单样本非参数检验
总体分布的chi-square检验
(1)目的: 根据样本数据推断总体的分布与某个已知分布是否有显著差异--吻合性检验。
适用于分类资料的统计推断
SPSS单样本非参数检验
总体分布的chi-square检验
(2)基本假设: H0:总体分布与理论分布无显著差异 (3)基本方法 – 根据已知总体的构成比计算出样本中各类别的期望频 数,计算实际观察频数与期望频数的差距,即:计算卡
two categorical variables
Gender and preference for a product, whether the
preference for a product is independent from gender
Chi-square test for differences between proportions