考研数学概率论与数理统计复习讲义
河南省考研数学学科概率论与数理统计知识点梳理

河南省考研数学学科概率论与数理统计知识点梳理概率论与数理统计是数学学科中的重要分支,也是考研数学科目中的一项重要内容。
对概率论与数理统计的知识点进行全面梳理,有助于我们更好地理解和掌握这一部分知识,提高考研数学的水平。
本文将详细介绍河南省考研数学学科概率论与数理统计的知识点。
一、概率论基础1.1 概率的定义和性质概率是描述随机事件发生可能性大小的数值,是概率论的核心概念。
概率的定义和性质是概率论的基础内容,主要包括概率的基本性质、经典概型、事件的运算等。
1.2 随机变量与概率分布随机变量是用来描述随机试验结果的数学量,概率分布则是随机变量取值和其对应的概率之间的关系。
常见的概率分布包括离散型分布和连续型分布,如二项分布、正态分布等。
1.3 数学期望与方差数学期望是对随机变量的平均值的度量,描述了随机变量取值的集中程度。
方差则衡量了随机变量取值偏离其均值的程度。
二、概率计算方法2.1 组合分析与计数原理组合分析和计数原理是解决概率计算问题的常用方法。
组合分析研究的是从给定元素集合中选取部分元素组成新集合的方法和性质,计数原理则是用来确定样本空间的元素个数的方法。
2.2 条件概率与事件独立性条件概率指在已知一事件发生的条件下另一事件发生的概率。
事件独立性则是指两个事件的发生与否互相独立,即一个事件的发生不会对另一个事件的发生产生影响。
2.3 事件的概率计算利用条件概率、组合分析和计数原理等方法,可以计算复杂事件的概率。
例如,可以利用贝叶斯公式计算后验概率,利用全概率公式计算联合概率等。
三、随机变量与概率分布3.1 离散型随机变量离散型随机变量的取值只能是有限个或可列个,其概率分布一般用概率质量函数来描述。
常见的离散型随机变量有伯努利分布、二项分布、泊松分布等。
3.2 连续型随机变量连续型随机变量的取值是连续的,其概率分布一般用概率密度函数来描述。
常见的连续型随机变量有均匀分布、正态分布、指数分布等。
概率论与数理统计考研复习资料

概率论与数理统计复习第一章 概率论的基本概念一.基本概念随机试验E:(1)可以在相同的条件下重复地进行;(2)每次试验的可能结果不止一个,并且能事先明确试验的所有可能结果;(3)进行一次试验之前不能确定哪一个结果会出现.样本空间S: E 的所有可能结果组成的集合. 样本点(基本事件):E 的每个结果. 随机事件(事件):样本空间S 的子集.必然事件(S):每次试验中一定发生的事件. 不可能事件(Φ):每次试验中一定不会发生的事件. 二. 事件间的关系和运算1.A ⊂B(事件B 包含事件A )事件A 发生必然导致事件B 发生.2.A ∪B(和事件)事件A 与B 至少有一个发生.3. A ∩B=AB(积事件)事件A 与B 同时发生.4. A -B(差事件)事件A 发生而B 不发生.5. AB=Φ (A 与B 互不相容或互斥)事件A 与B 不能同时发生.6. AB=Φ且A ∪B=S (A 与B 互为逆事件或对立事件)表示一次试验中A 与B 必有一个且仅有一个发生. B=A, A=B . 运算规则 交换律 结合律 分配律 德•摩根律B A B A = B A B A =三. 概率的定义与性质1.定义 对于E 的每一事件A 赋予一个实数,记为P(A),称为事件A 的概率.(1)非负性 P(A)≥0 ; (2)归一性或规范性 P(S)=1 ;(3)可列可加性 对于两两互不相容的事件A 1,A 2,…(A i A j =φ, i ≠j, i,j=1,2,…),P(A 1∪A 2∪…)=P( A 1)+P(A 2)+…2.性质(1) P(Φ) = 0 , 注意: A 为不可能事件 P(A)=0 .(2)有限可加性 对于n 个两两互不相容的事件A 1,A 2,…,A n ,P(A 1∪A 2∪…∪A n )=P(A 1)+P(A 2)+…+P(A n ) (有限可加性与可列可加性合称加法定理) (3)若A ⊂B, 则P(A)≤P(B), P(B -A)=P(B)-P(A) .(4)对于任一事件A, P(A)≤1, P(A)=1-P(A) .(5)广义加法定理 对于任意二事件A,B ,P(A ∪B)=P(A)+P(B)-P(AB) . 对于任意n 个事件A 1,A 2,…,A n()()()()+∑+∑-∑=≤<<≤≤<≤=nk j i k j i nj i j i ni i n A A A P A A P A P A A A P 11121…+(-1)n-1P(A 1A 2…A n )四.等可能(古典)概型1.定义 如果试验E 满足:(1)样本空间的元素只有有限个,即S={e 1,e 2,…,e n };(2)每一个基本事件的概率相等,即P(e 1)=P(e 2)=…= P(e n ).则称试验E 所对应的概率模型为等可能(古典)概型.2.计算公式 P(A)=k / n 其中k 是A 中包含的基本事件数, n 是S 中包含的基本事件总数. 五.条件概率1.定义 事件A 发生的条件下事件B 发生的条件概率P(B|A)=P(AB) / P(A) ( P(A)>0).2.乘法定理 P(AB)=P(A) P (B|A) (P(A)>0); P(AB)=P(B) P (A|B) (P(B)>0).P(A 1A 2…A n )=P(A 1)P(A 2|A 1)P(A 3|A 1A 2)…P(A n |A 1A 2…A n-1) (n ≥2, P(A 1A 2…A n-1) > 0) 3. B 1,B 2,…,B n 是样本空间S 的一个划分(B i B j =φ,i ≠j,i,j=1,2,…,n, B 1∪B 2∪…∪B n =S) ,则 当P(B i )>0时,有全概率公式 P(A)=()()i ni i B A P B P∑=1当P(A)>0, P(B i )>0时,有贝叶斯公式P (B i |A)=()()()()()()∑==ni i i i i i B A P B P B A P B P A P AB P 1. 六.事件的独立性1.两个事件A,B,满足P(AB) = P(A) P(B)时,称A,B 为相互独立的事件.(1)两个事件A,B 相互独立⇔ P(B)= P (B|A) .(2)若A 与B ,A 与B ,A 与B, ,A 与B 中有一对相互独立,则另外三对也相互独立.2.三个事件A,B,C 满足P(AB) =P(A) P(B), P(AC)= P(A) P(C), P(BC)= P(B) P(C),称A,B,C 三事件两两相互独立. 若再满足P(ABC) =P(A) P(B) P(C),则称A,B,C 三事件相互独立.3.n 个事件A 1,A 2,…,A n ,如果对任意k (1<k ≤n),任意1≤i 1<i 2<…<i k ≤n.有()()()()kkii i i i i A P A P A P A A A P 2121=,则称这n 个事件A 1,A 2,…,A n相互独立.第二章 随机变量及其概率分布一.随机变量及其分布函数1.在随机试验E 的样本空间S={e}上定义的单值实值函数X=X (e)称为随机变量.2.随机变量X 的分布函数F(x)=P{X ≤x} , x 是任意实数. 其性质为:(1)0≤F(x)≤1 ,F(-∞)=0,F(∞)=1. (2)F(x)单调不减,即若x 1<x 2 ,则 F(x 1)≤F(x 2). (3)F(x)右连续,即F(x+0)=F(x). (4)P{x 1<X≤x 2}=F(x 2)-F(x 1). 二.离散型随机变量 (只能取有限个或可列无限多个值的随机变量)1.离散型随机变量的分布律 P{X= x k }= p k (k=1,2,…) 也可以列表表示. 其性质为: (1)非负性 0≤P k ≤1 ; (2)归一性 11=∑∞=k k p .2.离散型随机变量的分布函数 F(x)=∑≤xX kk P 为阶梯函数,它在x=x k (k=1,2,…)处具有跳跃点,其跳跃值为p k =P{X=x k } .3.三种重要的离散型随机变量的分布(1)X~(0-1)分布 P{X=1}= p ,P{X=0}=1–p (0<p<1) .(2)X~b(n,p)参数为n,p 的二项分布P{X=k}=()kn k p p k n --⎪⎪⎭⎫ ⎝⎛1(k=0,1,2,…,n) (0<p<1) (3))X~π(λ)参数为λ的泊松分布 P{X=k}=λλ-e k k !(k=0,1,2,…) (λ>0) 三.连续型随机变量1.定义 如果随机变量X 的分布函数F(x)可以表示成某一非负函数f(x)的积分F(x)=()dt t f x⎰∞-,-∞< x <∞,则称X 为连续型随机变量,其中f (x)称为X 的概率密度(函数). 2.概率密度的性质(1)非负性 f(x)≥0 ; (2)归一性 ⎰∞∞-dx x f )(=1 ;(3) P{x 1<X ≤x 2}=⎰21)(xx dx x f ; (4)若f (x)在点x 处连续,则f (x)=F / (x) .注意:连续型随机变量X 取任一指定实数值a 的概率为零,即P{X= a}=0 .3.三种重要的连续型随机变量的分布 (1)X ~U (a,b) 区间(a,b)上的均匀分布⎩⎨⎧=-0)(1a b x f其它b x a << . (2)X 服从参数为θ的指数分布.()⎩⎨⎧=-0/1θθx ex f 00≤>x x 若若 (θ>0). (3)X~N (μ,σ2)参数为μ,σ的正态分布222)(21)(σμσπ--=x ex f -∞<x<∞, σ>0. 特别, μ=0, σ2 =1时,称X 服从标准正态分布,记为X~N (0,1),其概率密度2221)(x e x -=πϕ , 标准正态分布函数⎰=Φ∞--xt dt e x 2221)(π, Φ(-x)=1-Φ(x) .若X ~N ((μ,σ2), 则Z=σμ-X ~N (0,1), P{x 1<X ≤x 2}=Φ(σμ-2x )-Φ(σμ-1x ).若P{Z>z α}= P{Z<-z α}= P{|Z|>z α/2}= α,则点z α,-z α, ±z α/ 2分别称为标准正态分布的上,下,双侧α分位点. 注意:Φ(zα)=1-α , z 1- α= -z α.四.随机变量X 的函数Y= g (X)的分布 1.若g(x k ) (k=1,2,…)的值全不相等,则由上表立得Y=g(X)的分布律.若g(x k ) (k=1,2,…)的值有相等的,则应将相等的值的概率相加,才能得到Y=g(X)的分布律. 2.连续型随机变量的函数若X 的概率密度为f X (x),则求其函数Y=g(X)的概率密度f Y (y)常用两种方法: (1)分布函数法 先求Y 的分布函数F Y (y)=P{Y ≤y}=P{g(X)≤y}=()()dx x f ky X k∑⎰∆其中Δk (y)是与g(X)≤y 对应的X 的可能值x 所在的区间(可能不只一个),然后对y 求导即得f Y (y)=F Y /(y) .(2)公式法 若g(x)处处可导,且恒有g /(x)>0 (或g / (x)<0 ),则Y=g (X)是连续型随机变量,其概率密度为()()()()⎩⎨⎧'=0y h y h f y f X Y其它βα<<y其中h(y)是g(x)的反函数 , α= min (g (-∞),g (∞)) β= max (g (-∞),g (∞)) .如果f (x)在有限区间[a,b]以外等于零,则 α= min (g (a),g (b)) β= max (g (a),g (b)) .第三章 二维随机变量及其概率分布 一.二维随机变量与联合分布函数1.定义 若X 和Y 是定义在样本空间S 上的两个随机变量,则由它们所组成的向量(X,Y)称为二维随机向量或二维随机变量.对任意实数x,y,二元函数F(x,y)=P{X ≤x,Y ≤y}称为(X,Y)的(X 和Y 的联合)分布函数. 2.分布函数的性质(1)F(x,y)分别关于x 和y 单调不减.(2)0≤F(x,y)≤1 , F(x,- ∞)=0, F(-∞,y)=0, F(-∞,-∞)=0, F(∞,∞)=1 .(3) F(x,y)关于每个变量都是右连续的,即 F(x+0,y)= F(x,y), F(x,y+0)= F(x,y) . (4)对于任意实数x 1<x 2 , y 1<y 2P{x 1<X ≤x 2 , y 1<Y ≤y 2}= F(x 2,y 2)- F(x 2,y 1)- F(x 1,y 2)+ F(x 1,y 1)二.二维离散型随机变量及其联合分布律1.定义 若随机变量(X,Y)只能取有限对或可列无限多对值(x i ,y j ) (i ,j =1,2,… )称(X,Y)为二维离散型随机变量.并称P{X= x i ,Y= y j }= p i j 为(X,Y)的联合分布律.也可列表表示.2.性质(1)非负性 0≤p i j ≤1 .(2)归一性∑∑=i jij p 1 .3. (X,Y)的(X 和Y 的联合)分布函数F(x,y)=∑∑≤≤x x yy ij i j p三.二维连续型随机变量及其联合概率密度1.定义 如果存在非负的函数f (x,y),使对任意的x 和y ,有F(x,y)=⎰⎰∞-∞-yxdudv v u f ),(则称(X,Y)为二维连续型随机变量,称f(x,y)为(X,Y)的(X 和Y 的联合)概率密度. 2.性质 (1)非负性 f (x,y)≥0 . (2)归一性 1),(=⎰⎰∞∞-∞∞-d x d y y x f .(3)若f (x,y)在点(x,y)连续,则yx y x F y x f ∂∂∂=),(),(2(4)若G 为xoy 平面上一个区域,则⎰⎰=∈Gdxdy y x f G y x P ),(}),{(.四.边缘分布1. (X,Y)关于X 的边缘分布函数 F X (x) = P{X ≤x , Y<∞}= F (x , ∞) . (X,Y)关于Y 的边缘分布函数 F Y (y) = P{X<∞, Y ≤y}= F (∞,y)2.二维离散型随机变量(X,Y) 关于X 的边缘分布律 P{X= x i }=∑∞=1j ij p = p i·( i =1,2,…) 归一性11=∑∞=∙i i p .关于Y 的边缘分布律 P{Y= y j }= ∑∞=1i ij p = p·j( j =1,2,…) 归一性11=∑∞=∙j j p .3.二维连续型随机变量(X,Y)关于X 的边缘概率密度f X (x)=⎰∞∞-dy y x f ),( 归一性1)(=⎰∞∞-dx x f X关于Y 的边缘概率密度f Y (y)=x d y x f ⎰∞∞-),( 归一性1)(=⎰∞∞-dyy f Y五.相互独立的随机变量1.定义 若对一切实数x,y ,均有F(x,y)= F X (x) F Y (y) ,则称X 和Y 相互独立.2.离散型随机变量X 和Y 相互独立⇔p i j= p i ··p ·j( i ,j =1,2,…)对一切x i ,y j成立.3.连续型随机变量X 和Y 相互独立⇔f (x,y)=f X(x)f Y(y)对(X,Y)所有可能取值(x,y)都成立.六.条件分布1.二维离散型随机变量的条件分布定义 设(X,Y)是二维离散型随机变量,对于固定的j,若P{Y=y j }>0,则称 P{X=x i |Y=y j }为在Y= y j 条件下随机变量X 的条件分布律. 同样,对于固定的i,若P{X=x i }>0,则称,}{},{jj i j j i p p y Y P y Y x X P ∙=====P{Y=y j |X=x i }为在X=x i 条件下随机变量Y 的条件分布律.第四章 随机变量的数字特征一.数学期望和方差的定义随机变量X 离散型随机变量 连续型随机变量分布律P{X=x i }= p i ( i =1,2,…) 概率密度f (x)数学期望(均值)E(X)∑∞=1i i i p x (级数绝对收敛)⎰∞∞-dx x xf )((积分绝对收敛)方差D(X)=E{[X-E(X)]2}[]∑-∞=12)(i i i p X E x ⎰-∞∞-dx x f X E x )()]([2=E(X 2)-[E(X)]2 (级数绝对收敛) (积分绝对收敛) 函数数学期望E(Y)=E[g(X)] i i i p x g ∑∞=1)((级数绝对收敛) ⎰∞∞-dx x f x g )()((积分绝对收敛)标准差σ(X)=√D(X) .二.数学期望与方差的性质1. c 为为任意常数时, E(c) = c , E(cX) = cE(X) , D(c) = 0 , D (cX) = c 2D(X) . 2.X,Y 为任意随机变量时, E (X ±Y)=E(X)±E(Y) .3. X 与Y 相互独立时, E(XY)=E(X)E(Y) , D(X ±Y)=D(X)+D(Y) .4. D(X) = 0 ⇔P{X = C}=1 ,C 为常数.三.六种重要分布的数学期望和方差 E(X) D(X)1.X~ (0-1)分布P{X=1}= p (0<p<1) p p (1- p)2.X~ b (n,p) (0<p<1) n p n p (1- p)3.X~ π(λ) λ λ4.X~ U(a,b) (a+b)/2 (b-a) 2/12 5.X 服从参数为θ的指数分布 θ θ2 6.X~ N (μ,σ2) μ σ2 四.矩的概念随机变量X 的k 阶(原点)矩E(X k ) k=1,2,… 随机变量X 的k 阶中心矩E {[X-E(X)] k }随机变量X 和Y 的k+l 阶混合矩E(X k Y l ) l=1,2,…随机变量X 和Y 的k+l 阶混合中心矩E{[X-E(X)] k [Y-E(Y)] l}第六章 样本和抽样分布一.基本概念总体X 即随机变量X ; 样本X 1 ,X 2 ,…,X n 是与总体同分布且相互独立的随机变量;样本值x 1 ,x 2 ,…,x n 为实数;n 是样本容量.统计量是指样本的不含任何未知参数的连续函数.如:样本均值∑==n i i X n X 11 样本方差()∑--==n i i XX n S 12211 样本标准差S样本k 阶矩∑==n i k i k X n A 11( k=1,2,…) 样本k 阶中心矩∑-==n i ki k X X n B 1)(1( k=1,2,…),}{},{∙=====i j i i j i p p x X P y Y x X P二.抽样分布 即统计量的分布 1.X 的分布 不论总体X 服从什么分布, E (X ) = E(X) , D (X ) = D(X) / n .特别,若X~ N (μ,σ2 ) ,则X ~ N (μ, σ2/n) .2.χ2分布 (1)定义 若X ~N (0,1) ,则Y =∑=ni i X 12~ χ2(n)自由度为n 的χ2分布.(2)性质 ①若Y~ χ2(n),则E(Y) = n , D(Y) = 2n .②若Y 1~ χ2(n 1) Y 2~ χ2(n 2) ,则Y 1+Y 2~ χ2(n 1 + n 2).③若X~ N (μ,σ2 ), 则22)1(σS n -~ χ2(n-1),且X 与S 2相互独立.(3)分位点 若Y~ χ2(n),0< α <1 ,则满足αχχχχαααα=<>=<=>--))}(())({()}({)}({22/122/212n Y n Y P n Y P n Y P的点)()(),(),(22/122/212n n n n ααααχχχχ--和分别称为χ2分布的上、下、双侧α分位点. 3. t 分布(1)定义 若X~N (0,1),Y~ χ2(n),且X,Y 相互独立,则t=nY X~t(n)自由度为n 的t 分布. (2)性质①n →∞时,t 分布的极限为标准正态分布.②X ~N (μ,σ2 )时, nS X μ-~ t (n-1) .③两个正态总体相互独立的样本 样本均值 样本方差X~ N (μ1,σ12 ) 且σ12=σ22=σ2 X 1 ,X 2 ,…,X n1 X S 12Y~ N (μ2,σ22 ) Y 1 ,Y 2 ,…,Y n2Y S22则212111)()(n n S Y X w +---μμ~ t (n 1+n 2-2) , 其中 2)1()1(212222112-+-+-=n n S n S n S w(3)分位点 若t ~ t (n) ,0 < α<1 , 则满足αααα=>=-<=>)}({)}({)}({2/n t t P n t t P n t t P的点)(),(),(2/n t n t n t ααα±-分别称t 分布的上、下、双侧α分位点.注意: t 1- α (n) = - t α (n).4.F 分布 (1)定义 若U~χ2(n 1), V~ χ2(n 2), 且U,V 相互独立,则F =21n V n U ~F(n 1,n 2)自由度为(n 1,n 2)的F 分布.(2)性质(条件同3.(2)③)22212221σσS S ~F(n 1-1,n 2-1)(3)分位点 若F~ F(n 1,n 2) ,0< α <1,则满足)},({)},({21121n n F F P n n F F P αα-<=>ααα=<>=-))},(()),({(212/1212/n n F F n n F F P的点),(),(),,(),,(212/1212/21121n n F n n F n n F n n F αααα--和分别称为F 分布的上、下、双侧α分位点. 注意:.).(1),(12211n n F n n F αα=-第七章 参数估计一.点估计 总体X 的分布中有k 个待估参数θ1, θ2,…, θk .X 1 ,X 2 ,…,X n 是X 的一个样本, x 1 ,x 2 ,…,x n 是样本值.1.矩估计法先求总体矩⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k θθθμμθθθμμθθθμμ 解此方程组,得到⎪⎩⎪⎨⎧===),,,(),,,(),,,(2121222111k k k k k μμμθθμμμθθμμμθθ ,以样本矩A l 取代总体矩μ l ( l=1,2,…,k)得到矩估计量⎪⎪⎩⎪⎪⎨⎧===∧∧∧),,,(),,,(),,,(2121222111k k k k k A A A A A A A A A θθθθθθ,若代入样本值则得到矩估计值. 2.最大似然估计法若总体分布形式(可以是分布律或概率密度)为p (x, θ1, θ2,…, θk ),称样本X 1 ,X 2 ,…,Xn的联合分布∏==ni k i k x p L 12121),,,,(),,,(θθθθθθ 为似然函数.取使似然函数达到最大值的∧∧∧kθθθ,,,21 ,称为参数θ1, θ2,…,θk 的最大似然估计值,代入样本得到最大似然估计量.若L(θ1, θ2,…, θk )关于θ1, θ2,…, θk 可微,则一般可由 似然方程组0=∂∂i L θ 或 对数似然方程组 0ln =∂∂iLθ (i =1,2,…,k) 求出最大似然估计. 3.估计量的标准(1) 无偏性 若E(∧θ)=θ,则估计量∧θ称为参数θ的无偏估计量.不论总体X 服从什么分布, E (X )= E(X) , E(S 2)=D(X), E(A k )=μk =E(X k ),即样本均值X , 样本方差S 2,样本k 阶矩A k 分别是总体均值E(X),方差D(X),总体k 阶矩μk 的无偏估计,(2)有效性 若E(∧θ1 )=E(∧θ2)= θ, 而D(∧θ1)< D(∧θ2), 则称估计量∧θ1比∧θ2有效. (3)一致性(相合性) 若n →∞时,θθP →∧,则称估计量∧θ是参数θ的相合估计量.文 - 汉语汉字 编辑词条文,wen ,从玄从爻。
考研数学概率统计讲义

设售出一台设备的净赢利为
a( X
)
100, 200,
X 1, 0 X 1.
河南理工大学精品课程
概率论与数理统计
故售出一台设备的净赢利的数学期望为
E[a(X )] a(x) f (x)dx
1
(200)
1 4
e
x 4
dx
100
1 4
e
x 4
dx
0
1
200e
x 4
|10
100e
x 4
|1
Z X 2 Y 2 的数学期望.
解 E(Z ) x2 y2 f (x, y)dxdy
x2 y2
1
x2 y2
e 2 dxdy
2
2
0
0
r
1
2
r2
e2
rdr d
2
例6 五个独立元件,寿命分别为X1, X 2, , X5,
都服从参数为 的指数分布,若将它们
(1) 串联; (2) 并联 成整机,求整机寿命的均值.
求E(X)。 0,
其它.
分段函
〖解〗这是连续型随机数变的量积。由数学期望定义得:
分
1500
3000
E(X ) xf (x)dx
x2 15002
dx
dx x (3000 x ) 15002
0
1500
1500 (分□)
河南理工大学精品课程
概率论与数理统计
例4 X ~ N ( , 2 ), 求 E ( X ) .
2
k pk .
k 0
这表明:随着试验次数增大,随机变量X的观察值的算
术平均 2 k ak 接近于
k0 N
考研数学三概率论与数理统计知识点

考研数学三概率论与数理统计知识点考研数学概率论与数理统计总结一、第一章随机事件与概率重点:概率的定义与性质,条件概率与概率的乘法公式,事件之间的关系与运算,全概率公式与贝叶斯公式难点:随机事件的概率,乘法公式、全概率公式、Bayes公式以及对贝努利概型的事件的概率的计算二、常考题型事件、概率与独立性是本章给出的概率论中最基本、最重要的三个概念。
事件关系及其运算是本章的重点和难点,概率计算是本章的重点。
注意事件与概率之间的关系。
本章主要考查随机事件的关系和运算,概率的性质、条件概率和五大公式,注意事件的独立性。
近几年单独考查本章的试题相对较少,但是大多数考题中将本章的内容作为基本知识点来考查。
相当一部分考生对本章中的古典概型感到困难。
大纲只要求对古典概率和几何概率会计算一般难度的题型就可以。
考生不必可以去做这方面的难题,因为古典型概率和几何型概率毕竟不是重点。
三、注意事项与线性代数一样,概率也比高数容易,花同样的时间复习概率也更为划算。
但与线代一样,概率也常常被忽视,有时甚至被忽略。
一般的数学考研参考书是按高数、线代、概率的顺序安排的,概率被放在最后,复习完高数和线代以后有可能时间所剩无多;而且因为前两部分分别占60%和20的分值,复习完以后多少会有点满足心理;这些因素都可能影响到概率的复习。
概率这门课如果有难点就应该是"记忆量大"。
在高数部分,公式、定理和性质虽然有很多,但其中相当大一部分都比较简单,还有很多可以借助理解来记忆;在线代部分,需要记忆的公式定理少,而需要通过推导相互联系来理解记忆的多,所以记忆量也不构成难点;但是在概率中,由大量的概念、公式、性质和定理需要记清楚,而且若靠推导来记这些点的话,不但难度大耗时多而且没有更多的用处(因为概率部分考试时对公式定理的内在推导过程及联系并没有什么要求,一般不会在更深的层次上出题)。
概率部分第二章《随机变量及其分布》、第三章《随机变量的数字特征》中在每章开始列出的那些大表格,都应该自己记忆,可以省略不看的内容少之又少。
概率论与数理统计讲义稿完整版

概率论与数理统计讲义稿HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】第一章随机事件与概率§1.1 随机事件1.1.1 随机试验与样本空间概率论约定为研究随机现象所作的随机试验应具备以下三个特征:(1)在相同条件下试验是可重复的;(2)试验的全部可能结果不只一个,且都是事先可以知道的;(3)每一次试验都会出现上述可能结果中的某一个结果,至于是哪一个结果则事前无法预知。
为简单计,今后凡是随机试验皆简称试验,并记之以英文字母E。
称试验的每个可能结果为样本点,并称全体样本点的集合为试验的样本空间,分别用希腊字母ω和Ω表示样本点及样本空间。
必须指出的是这个样本空间并不完全由试验所决定,它部分地取决于实验的目的。
假设抛掷一枚硬币两次,出于某些目的,也许只需要考虑三种可能的结果就足够了,两次都是正面,两次都是反面,一次是正面一次是反面。
于是这三个结果就构成了样本空间Ω。
但是,如果要知道硬币出现正反面的精确次序,那么样本空间Ω就必须由四个可能的结果组成,正面-正面、反面-反面、正面-反面、反面-正面。
如果还考虑硬币降落的精确位置,它们在空中旋转的次数等事项,则可以获得其它可能的样本空间。
经常使用比绝对必要的样本空间较大的样本空间,因为它便于使用。
比如,在前面的例子中,由四个可能结果组成的样本空间便于问题的讨论,因为对于一个“均匀”的硬币这四个结果是“等可能”的。
尽管这在有3种结果的样本空间内是不对的。
E:从最简单的试验开始,这些试验只有两种结果。
在抛掷硬币这一试验例1.1.11中出现“正面”或“反面”;在检查零件质量时,可能是“合格”或“不合格”;当用来模拟电子产品旋转的方向时,结果是“左边”或者“右边”;在这些情况下样本空间Ω简化为:Ω={正面,反面}。
E:更复杂一些,有的随机试验会产生多种可能的结果,比如掷一颗骰子,观察出2现的点数。
湖南省考研数学专业复习资料概率论与数理统计重点整理

湖南省考研数学专业复习资料概率论与数理统计重点整理概率论与数理统计是数学专业考研中非常重要的一门课程。
它不仅在理论上有着广泛的应用,而且在实际问题的解决中也起着重要的作用。
为了帮助湖南省考研数学专业的同学们更好地复习概率论与数理统计,本文将对该课程的重点内容进行整理和总结。
一、概率论的基本概念和性质1.1 概率的定义与性质概率是事件发生的可能性大小的度量,其定义包括古典概型、几何概型和统计概型。
概率具有非负性、规范性、可列可加性等基本性质。
1.2 随机变量与概率分布随机变量是概率实验结果的数值描述,分为离散型和连续型随机变量两种。
概率分布描述随机变量取值的概率,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。
1.3 数学期望数学期望是随机变量取值的平均值,对于离散型随机变量和连续型随机变量有不同的计算方法。
1.4 方差与协方差方差衡量随机变量取值与其均值之间的离散程度,协方差衡量两个随机变量之间的相关程度。
二、随机变量的常用分布2.1 离散型随机变量的分布常见的离散型随机变量分布包括伯努利分布、二项分布、多项分布、泊松分布等,每种分布的特点和计算方法需要熟练掌握。
2.2 连续型随机变量的分布常见的连续型随机变量分布包括均匀分布、正态分布、指数分布、伽玛分布等,每种分布的特点、密度函数和分布函数需要熟悉。
2.3 极限定理中心极限定理和大数定律是概率论中两个重要的极限定理,它们在实际问题中的应用非常广泛。
三、参数估计与假设检验3.1 参数估计参数估计是根据样本数据估计总体参数的值,包括点估计和区间估计两种方法。
最大似然估计是常用的点估计方法。
3.2 假设检验假设检验是根据样本数据判断总体参数是否满足某种假设,包括单个总体的假设检验和两个总体的假设检验。
四、多元分布及相关分析4.1 多元随机变量及其分布多元随机变量是对多个随机变量的描述,包括离散型和连续型两种情况。
多元随机变量的分布包括联合分布、边缘分布和条件分布。
(完整版)《概率论与数理统计》讲义
第一章 随机事件和概率 第一节 基本概念1、排列组合初步(1)排列组合公式)!(!n m m P n m -= 从m 个人中挑出n 个人进行排列的可能数。
)!(!!n m n m C n m -=从m 个人中挑出n 个人进行组合的可能数。
例1.1:方程xx x C C C 76510711=-的解是 A . 4 B . 3 C . 2 D . 1例1.2:有5个队伍参加了甲A 联赛,两两之间进行循环赛两场,试问总共的场次是多少?(2)加法原理(两种方法均能完成此事):m+n某件事由两种方法来完成,第一种方法可由m 种方法完成,第二种方法可由n 种方法来完成,则这件事可由m+n 种方法来完成。
(3)乘法原理(两个步骤分别不能完成这件事):m ×n某件事由两个步骤来完成,第一个步骤可由m 种方法完成,第二个步骤可由n 种方法来完成,则这件事可由m ×n 种方法来完成。
例1.3:从5位男同学和4位女同学中选出4位参加一个座谈会,要求与会成员中既有男同学又有女同学,有几种不同的选法?例1.4:6张同排连号的电影票,分给3名男生和3名女生,如欲男女相间而坐,则不同的分法数为多少?例1.5:用五种不同的颜色涂在右图中四个区域里,每一区域涂上一种颜色,且相邻区域的颜色必须不同,则共有不同的涂法A.120种B.140种 C.160种D.180种(4)一些常见排列①特殊排列②相邻③彼此隔开④顺序一定和不可分辨例1.6:晚会上有5个不同的唱歌节目和3个不同的舞蹈节目,问:分别按以下要求各可排出几种不同的节目单?①3个舞蹈节目排在一起;②3个舞蹈节目彼此隔开;③3个舞蹈节目先后顺序一定。
例1.7:4幅大小不同的画,要求两幅最大的排在一起,问有多少种排法?例1.8:5辆车排成1排,1辆黄色,1辆蓝色,3辆红色,且3辆红车不可分辨,问有多少种排法?①重复排列和非重复排列(有序)例1.9:5封不同的信,有6个信箱可供投递,共有多少种投信的方法?②对立事件例1.10:七人并坐,甲不坐首位,乙不坐末位,有几种不同的坐法?例1.11:15人中取5人,有3个不能都取,有多少种取法?例1.12:有4对人,组成一个3人小组,不能从任意一对中取2个,问有多少种可能性?③ 顺序问题例1.13:3白球,2黑球,先后取2球,放回,2白的种数?(有序) 例1.14:3白球,2黑球,先后取2球,不放回,2白的种数?(有序) 例1.15:3白球,2黑球,任取2球,2白的种数?(无序)2、随机试验、随机事件及其运算(1)随机试验和随机事件如果一个试验在相同条件下可以重复进行,而每次试验的可能结果不止一个,但在进行一次试验之前却不能断言它出现哪个结果,则称这种试验为随机试验。
概率论与数理统计讲义
概率论与数理统计讲义一、概率论1.1 引言概率论是研究随机现象的理论,广泛应用于自然科学、社会科学以及工程技术等领域。
它通过量化随机事件发生的可能性,帮助我们理解事件之间的关系和规律。
1.2 随机变量与概率分布随机变量是描述随机事件的事物,可以分为离散型随机变量和连续型随机变量。
概率分布则是描述随机变量取值的概率情况,包括离散型随机变量的概率质量函数和连续型随机变量的概率密度函数。
1.3 期望与方差期望是随机变量取值的平均值,用来描述随机变量的集中程度。
方差则是随机变量与其期望之间的差异程度,用来描述随机变量的离散程度。
1.4 概率分布函数的性质概率分布函数有许多重要的性质,包括非负性、归一性、单调性、可加性等。
这些性质能够帮助我们更好地理解随机事件的规律和特征。
二、数理统计2.1 统计学概述统计学是研究数据收集、分析和解释的学科,通过对样本数据的研究,推断出总体的一些特征和规律。
统计学广泛应用于社会调查、市场研究以及科学实验等领域。
2.2 描述统计学描述统计学是对数据进行总结和描述的统计学方法。
它包括数据的集中趋势度量、离散程度度量以及数据分布特征等内容。
2.3 参数估计参数估计是根据样本数据推断总体参数的一种统计学方法。
点估计通过寻找最优参数估计量来描述总体参数的真实值,区间估计则给出了参数估计的置信区间。
2.4 假设检验假设检验是用来判断总体参数是否满足某种假设的统计学方法。
它将原假设和备择假设相比较,通过计算统计量的值来判断是否拒绝原假设。
2.5 方差分析与回归分析方差分析和回归分析是用来研究多个变量之间关系的统计学方法。
方差分析用于比较多个总体均值是否相等,而回归分析则用于建立变量之间的数学模型。
三、应用案例3.1 金融风险管理概率论与数理统计在金融风险管理中发挥着重要作用。
通过对金融市场的随机波动性进行建模和分析,可以帮助投资者制定更合理的投资策略,降低风险。
3.2 医学研究数理统计在医学研究中具有广泛的应用。
考研概率论与数理统计第一讲
3
全概率公式
如果事件B1,B2,...,Bn是样本空间的一个划分,那 么对于任意事件A,有P(A)=∑P(Bi)P(A|Bi)。
随机变量及其分布
随机变量
一个变量在每次试验中都有不同的可能取值,并且取各个值都有确定的概率。
离散型随机变量
随机变量只取有限个或可数个值。
连续型随机变量
随机变量的取值范围是某个区间,并且取该区间内任一值的概率都是非零的。
特征和传播规律,为预防和控制措施提供科学依据。
03
诊断和预后分析
医生利用概率论与数理统计的知识,对患者的诊断和预后进行分析,以
提高诊断的准确性和治疗效果。
在社会学领域的应用
调查研究
在社会学研究中,概率论与数理统计被用于调查研究的设计、数据收集和分析,以了解社 会现象和社会问题的本质和规律。
人口普查
根据个人情况,合理安排每天的复习时间,确保有足 够的时间来复习所有知识点。
制定复习计划
将整个复习过程划分为不同的阶段,每个阶段有具体 的复习目标和任务,确保按计划进行。
调整复习计划
根据复习进度和效果,适时调整复习计划,以适应实 际情况。
掌握重点与难点
梳理知识点
全面梳理概率论与数理统计的知识点,了解每个知识点的地位和 作用。
贝叶斯估计
利用先验信息结合样本数据进行参数估计。
假设检验
显著性检验
根据样本数据判断总体参数是否显著地不等于 某个值。
置信区间检验
通过比较置信区间和假设值来判断假设是否成 立。
比例检验
用于比较两个比例或比率是否相等。
方差分析
单因素方差分析
比较多个组内的均值是否相等。
双因素方差分析
考研数学 汤家凤《概率论与数理统计辅导讲义》
概率论与数理统计概率论与数理统计是一门研究客观世界随机现象及其统计规律的学科,也是高等院校工程类和经济管理类专业的一门重要的基础课,更是全国硕士研究生招生考试数学一和数学三的重要考查内容,分值约占总分的20%。
本书根据概率论与数理统计课程的教学要求及全国硕士研究生招生考试的数学考试大纲编写而成。
本书作者在高校从事概率统计教学工作接近三十年,指导全国硕士研究生招生考试数学(包括高等数学、线性代数、概率统计)复习二十六年,有极其丰富的教学经验。
本书理论体系清晰系统,原理讲解深入浅出、通俗易懂,重要考点把握精准。
使用本书可以帮助考生迅速掌握概率统计的理论架构,提高考生分析问题、解决问题的能力。
本书的主要特点有:1.对各章知识进行系统总结基本概念理解到位、理解原理和性质的内涵及使用方法,清晰易懂,层次分明。
关键知识点后添加必要的注解,使重点更加突岀,提高相应知识的深度和广度。
2.对各章基本题型及重要考点进行分类与高等数学和线性代数相比,概率统计的重要考点相对较少,本书将每章的重要考点以题型的形式总结出来,同时在各题型中安排各章的小考点,给出各种题型的规范解法和解题思路,方法力求简明扼要。
希望本书的出版能帮助考生在较短的时间内,系统掌握概率统计的基本理论、基本题型及解题方法,提高利用数学理论解决实际问题的能九轻松应对研究生入学考试的概率统计部分。
本书可作为高校概率统计课程配套的参考资料,也可作为成人教育、教师和科技工作者的参考用书,希望本书能成为广大读者的良师益友。
本书若有不到之处,恳请读者批评指正。
汤老师微博汤老师微信公众号汤老师一直播ID:186288809汤家凤2021年3月于南京S^CONTENTS^^第一章随机事件与概率 (1)本章理论体系 (1)经典题型讲解 (7)题型一事件的关系与运算、概率基本公式 (7)题型二事件的独立性 (9)题型三三种常见的概型 (10)题型四全概率公式与贝叶斯公式 (11)第二章一维随机变量及其分布 (15)本章理论体系 (15)经典题型讲解 (20)题型一一维离散型随机变量的分布律与分布函数 (20)题型二一维连续型随机变量的概率密度与分布函数 (23)题型三一维既非离散又非连续型随机变量的分布函数 (28)题型四随机变量函数的分布 (28)第三章二维随机变量及其分布 (35)本章理论体系 (35)经典题型讲解 (40)题型一二维离散型随机变量的联合分布、边缘分布 (40)题型二二维连续型随机变量的联合分布、边缘分布 (42)题型三二维随机变量的条件分布、独立性 (45)题型四二维随机变量函数的分布 (51)第四章随机变量的数字特征 (61)本章理论体系 (61)经典题型讲解 (64)题型一离散型随机变量的数字特征 (64)题型二连续型随机变量的数字特征 (69)题型三多维随机变量的数字特征 (70)题型四相关性与独立性 (74)第五章大数定律与中心极限定理 (78)本章理论体系 (78)经典题型讲解 (80)1题型一切比雪夫不等式 (80)题型二大数走律 (81)题型三中心极限定理 (81)第六章数理统计基本概念 (84)本章理论体系 (84)经典题型讲解 (90)题型一统计量的基本概念 (90)题型二三个扌由样分布 (91)题型三分位点 (95)题型四统计学的数字特征与概率 (96)第七章参数估计 (99)本章理论体系 (99)经典题型讲解 (104)题型一离散型总体参数的点估计 (104)题型二连续型随机变量参数的点估计 (106)题型三估计量的无偏性(数学三不要求) (111)题型四参数的区间估计(数学三不要求) (115)第八章假设检验(数学三不要求) (117)本章理论体系 (117)经典题型讲解 (122)题型一-个正态总体的假设检验 (122)题型二两个正态总体的假设检验 (123)2机事件与概率藝存彖一、随机试验与随机事件定义H随机试验设E为随机试验,若满足如下条件:(1)在相同的条件下该试验可重复进行;(2)试验的结果是多样的且所有可能的结果在试验前都是确定的;(3)某次试验之前不确定具体发生的结果,这样的试验称为随机试验,简称试验,一般用字母E表示.定义何样本空间设E为随机试验,随机试验E的所有可能的基本结果所组成的集合,称为随机试验E的样本空间,记为0,0中的任意一个元素称为样本点.(1)样本空间中所有元素为随机试验的最基本的结果,即所有元素都具有不可再分性;(2)样本空间必须是所有可能的基本结果,即具有完备性,且同一个基本结果在样本空间中只出现一次.定义❸随机事件设E为随机试验4为其样本空间,则O的子集称为随机事件,其中0称为不可能事件称为必然事件.例如:一个均匀的正六面体的骰子,六个面分别标有1、2、3、4、5、6,随机扔骰子,该试验骰子朝上一面的数字的样本空间为0={1,2,3,4,5,6},事件A={2,4,6},表示“扔骰子后朝上的面的数为偶数”,事件B={1,2,3},表示“扔骰子后朝上的面的数不超过3”.二、事件的运算与关系(-)事件的运算定义❹事件的积设为两个随机事件,则事件A与事件B同时发生的事件.称为事件的积事件,记为43或A A B,如图1-1所示.图1-11>»考研数学概率论与数理统计辅导教程定义目事件的和设A,£为两个事件,则事件A或事件£发生的事件(或事件A,B至少有一个发生的事件),称为事件的和事件,记为A+B或A U如图1-2所示.AUB图1-2定义❻事件的差设A,B为两个随机事件,则事件A发生而事件B不发生的事件,称为事件的差事件,记为A—3,如图1-3所示.A-B图1-3定义❼出件的补设。