傅里叶变换定律-傅里叶变换定义定律
傅里叶变换性质证明

傅里叶变换性质证明性质一:线性性质F[a*f(t)+b*g(t)]=a*F[f(t)]+b*F[g(t)]其中F表示傅里叶变换。
这个性质的证明非常简单,我们只需将傅里叶变换的定义代入到等式中即可。
性质二:时移性质时移性质指的是时域上的移动会导致频域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(t - a)] = e^(-2πiaω) * F[f(t)]其中a是常数,ω是角频率。
这个性质的证明可以通过将f(t-a)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质三:频移性质频移性质指的是频域上的移动会导致时域上的相位变化。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[e^(2πiaω0) * f(t)] = F[f(t - a)]其中a是常数,ω0是角频率。
这个性质的证明可以利用傅里叶变换的定义以及欧拉公式进行推导。
性质四:尺度变换性质尺度变换性质指的是时域上的信号缩放会导致频域上的信号压缩。
设F[f(t)]表示函数f(t)的傅里叶变换,则有:F[f(a*t)]=,a,^(-1)*F[f(t/a)]其中a是常数。
这个性质的证明可以通过将f(a*t)展开成泰勒级数,并代入傅里叶变换的定义进行推导得到。
性质五:卷积定理卷积定理是傅里叶变换中最重要的性质之一、它指出卷积在频域上等于两个函数的傅里叶变换的乘积。
设f(t)和g(t)是两个函数,f(t)*g(t)表示它们的卷积,F[f(t)]和F[g(t)]表示它们的傅里叶变换,则有:F[f(t)*g(t)]=F[f(t)]*F[g(t)]其中*表示卷积,乘法表示两个函数的傅里叶变换的乘积。
这个性质的证明可以通过将卷积展开成积分形式,然后利用傅里叶变换的定义进行推导得到。
以上是傅里叶变换的几个重要性质及其证明。
这些性质使得傅里叶变换具有很强的分析和应用能力,在信号处理、图像处理、通信等领域得到广泛应用。
这些性质的正确性和证明对于理解和应用傅里叶变换非常重要。
常用的傅里叶变换+定理+各种变换的规律(推荐)

਼ᰦ F ^g x exp j 2Sf a x ` G f x f a ࠭ᮠ൘オฏѝⲴ〫ˈᑖᶕ仁ฏѝⲴᒣ〫
㪉
[ f ( x)] F (P ) ᷍ x0 㬨⤜㸋㒄⭥㬖⧄㭞᷍䋓䇱
[ f ( x r x0 )] exp(r j 2SP x0 ) F (P ) ᷉㠞䄧㾵䐫᷊ [exp p(r j 2SP0 x) f ( x)] F (P P0 ) ᷉㼁䄧㾵䐫᷊
重 要
名称
连续傅里叶变换对 傅里叶变换 F (ω ) 连续时间函数 f (t )
= sinc ( u)
2
结论: 三角形函数的傅里叶变换是 sinc 函数的平方
9
七、符号函数的傅里叶变换
1 F [sgn( x )] = jπ u
二维 留待推算
1 1 F [sgn( x )sgn( y )] = • jπ u jπ v
八、exp[ jπx ] 函数的傅里叶变换 1 F {exp[ jπx ]} = δ ( u − ) 2
3
二、梳状函数的傅里叶变换
F [comb( x )] = comb( u)
普遍型
x F comb = a comb( au) a
结论
comb 函数的
傅里叶变换 仍是
二维情况
x y F comb comb a b = ab comb( au) comb( bv )
= sinc( u)
−1 / 2
∫ exp(− j 2πux )ห้องสมุดไป่ตู้x
a x ≤ 2 其它
rect(x)
F.T.
sinc(u)
5
普遍型
x F rect a
傅里叶变换三部曲(二)·傅里叶变换的定义

傅⾥叶变换三部曲(⼆)·傅⾥叶变换的定义Part1:傅⾥叶级数的复数形式设f(x)是周期为l的周期函数,若f(x)∼a02+∞∑n=1(a n cosnπxl+bn sinnπxl),an=1l∫l−lf(x)cosnπxl d x,(n=0,1,2,…)bn=1l∫l−lf(x)sinnπxl d x.(n=1,2,…)记ω=πl,引进复数形式:cos nωx=e i nωx+e−i nωx2,sin nωx=e i nωx−e−i nωx2i级数化为f(x)∼a02+∞∑n=1(a ne i nωx+e−i nωx2+bne i nωx−e−i nωx2i)=a02+∞∑n=1(a n−ib n2e i nωx+a n+ib n2e−i nωx)令c0=a02,cn=a n−ib n2,dn=a n+ib n2,则c0=12l∫l−lf(x)d x,c n=12l∫l−lf(x)(cos nωx−isin nωx)d x=12l∫l−lf(x)e−i nωx d x,d n=12l∫l−lf(x)(cos nωx+isin nωx)d x=12l∫l−lf(x)e i nωx d x≜c−n=¯c n,(n=1,2,…)合并为c n=12l=∫l−lf(x)e−i nωx d x,(n∈Z)级数化为+∞∑n=−∞c n e−i nωx=12l+∞∑n=−∞∫l−l f(x)e−i nωx d x e i nωx我们称c n为f(x)的离散频谱(discrete spectrum),|c n|为f(x)的离散振幅频谱(discrete amplitude spectrum),arg c n为f(x)的离散相位频谱(discrete phase spectrum).对任何⼀个⾮周期函数f(t)都可以看成是由某个由某个周期为l的函数f(x)当l→∞时得来的.Part2:傅⾥叶积分和傅⾥叶变换傅⾥叶积分公式设f T(t)是周期为T的周期函数,在[−T2,T2]上满⾜狄利克雷条件,则f T(t)=1T∞∑n=−∞∫T2−T2f T(t)e−j nωt d t e j nωt,ω=2πT(上式中j是虚数单位,在傅⾥叶分析中我们不⽤i⽽通常记作j)由limT→∞f T(t)=f(t)知,f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt记Δω=2πT,则Δω→0⇔T→∞,则f(t)=limT→∞1T∞∑n=−∞[∫T2−T2f T(t)e−j nωt d t]e j nωt=limΔω→012π+∞∑n=−∞∫T2T2f T(t)e−j nωt d t e j nωtΔω[][][]令F T(nω)=∫T2−T2f T(t)e−j nωt d t,则f(t)=limΔω→012π+∞∑n=−∞F T(nω)e j nωtΔω,F T(t)→∫+∞−∞f(t)e−jωt d t≜F(ω)(T→∞),由定积分定义f(t)=12π∫+∞−∞F(ω)e jωt dω,即f(t)=12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω上述公式称为傅⾥叶积分公式.傅⾥叶积分存在定理若f(t)在任何有限区间上满⾜狄利克雷条件,且在R上绝对可积,则12π∫+∞−∞∫+∞−∞f(t)e−jωt d t e jωt dω=f(t),t为连续点,f(t−)+f(t+)2,t为间断点.傅⾥叶变换设f(t)满⾜傅⾥叶积分存在定理,定义F(ω)=∫+∞−∞f(t)e−jωt d t 为f(t)的傅⾥叶变换(Fourier Transform)(实际上是⼀个实⾃变量的复值函数),记作F(ω)=F[f(t)]类似地,定义f(t)=12π∫+∞−∞F(ω)e−jωt dω为F(ω)的傅⾥叶逆变换(Inverse Fourier Transform),记作f(t)=F−1[F(ω)]在⼀定条件下,有F[f(t)]=F(ω)⇒F−1[F(ω)]=f(t);F−1[F(ω)]=f(t)⇒F[f(t)]=F(ω). f(t)与F(ω)在傅⽒变换意义下是⼀个⼀⼀对应,称f(t)与F(ω)构成⼀个傅⽒变换对,记作f(t)F↔F(ω)在不引起混淆的情况下,简记为f(t)↔F(ω).f(t)称为原象函数(original image function),F(ω)称为象函数(image function).在频谱分析中,F(ω)⼜称为f(t)的频谱(密度)函数(spectrum function),|F(ω)|称为f(t)的振幅频谱(amplitude spectrum),arg F(ω)称为f(t)的相位频谱(phase spectrum).下⾯我们来求⼏个常见信号函数的傅⽒变换.例1 求矩形脉冲函数(rectangular pulse function)R(t)=1,|t|≤1, 0,|t|>1的傅⽒变换及其频谱积分表达式.解:F(ω)=F[R(t)]=∫+∞−∞R(t)e−jωt d t=∫1−1R(t)e−jωt t=e−jωt−jω1−1=−e−jω−e jωjω=2sinωω;R(t)=12π∫∞−∞F(ω)e jωt dω=1π∫+∞F(ω)cosωt dω=1π∫+∞2sinωωcosωt dω=2π∫+∞sinωcosωtωdω=1,|t|<1, 12,|t|=1, 0,|t|>1因此可知,当t=0时,有[] []{{ []{∫+∞0sin t xd t =π2例2 求指数衰减函数(exponential decay function)E (t )=0,t <0,e −βt ,t ≥0的傅⽒变换及其频谱积分表达式,其中β>0为常数.解:F (ω)=F [E (t )]=∫+∞−∞E (t )e −j ωt d t=∫+∞0e −βt e −j ωtd t =∫+∞0e (β+j ω)t d t =1β+j ωβ−j ωβ2+ω2E (t )=12π∫+∞−∞F (ω)e j ωt ω=12π∫+∞−∞β−j ωβ2+ω2e j ωtω=1π∫+∞βcos ωt +ωsin ωtβ2+ω2d ω=0,t <0,12,t =0,e −βt ,t >0Part3:单位脉冲函数我们记电流脉冲函数q (t )=0,t ≠0,1,t =0,严格地,由于q (t )在t =0出不连续,所以q (t )在t =0点是不可导的.但是,如果我们形式地计算这个导数,有q ′(0)=limΔt →0q (0+Δt )−q (0)Δt=limΔt →0−1Δt=∞我们引进这样⼀个函数,称为单位脉冲函数(unit pulse function)或狄拉克(Dirac)函数,简记为δ−函数,即δ(t )=0,t ≠0,∞,t =0,⼀般地,给定⼀个函数序列δε(t )=0,t <0,1ε,0≤t ≤ε,0,t >ε则有δ(t )=lim ε→0δε(t )=0,t ≠0,∞,t =0于是∫+∞−∞δ(t )d t =limε→0∫+∞−∞δεd t =limε→0∫ε01εd t =1若设f (t )为连续函数,则δ−函数有以下性质:∫+∞−∞δ(t )f (t )d t =f (0);∫+∞−∞δ(t −t 0)f (t )d t =f (t 0)于是我们可得:F [δ(t )]=∫+∞−∞δ(t )e −j ωt t =e −j ωt t =0=1于是δ(t )与常数1构成了⼀对傅⾥叶变换对.例3: 证明:e j ω0t ↔2πδ(ω−ω0)其中ω0是常数.证:{{{{{{|f(t)=F−1[F(ω)]=12π∫+∞−∞2πδ(ω−ω0)e jωt dω=e jωtω=ω=e jω0t在物理学和⼯程技术中,有许多重要函数不满⾜傅⽒积分定理中的绝对可积条件,即不满⾜条件∫+∞−∞|f(t)|d t<∞例如常数,符号函数,单位阶跃函数以及正,余弦函数等, 然⽽它们的⼴义傅⽒变换也是存在的,利⽤单位脉冲函数及其傅⽒变换就可以求出它们的傅⽒变换.所谓⼴义是相对于古典意义⽽⾔的,在⼴义意义下,同样可以说,原象函数f(t)和象函数F(ω)构成⼀个傅⽒变换对.例求正弦函数f(t)=sinω0t的傅⽒变换.解:F(ω)=F[f(t)]=∫+∞−∞f(t)e−jωt d t=∫+∞−∞e jω0t−e−jω0t2je−jωt d t=12j∫+∞−∞e−j(ω−ω0)t−e−j(ω+ω0)t d t=jπδ(ω+ω0)−δ(ω−ω0)同样我们易得F(cosω0t)=πδ(ω+ω0)+δ(ω−ω0)例证明:单位阶跃函数(unit step function)u(t)=0,t<0, 1,t>0的傅⽒变换为F[u(t)]=1jω+πδ(ω)证:F−11jω+πδ(ω)=12π∫+∞−∞1jω+πδ(ω)e jωt dω=12π∫+∞−∞[πδ(ω)]e jωt dω+12π∫+∞−∞1jωe jωt dω=12+12π∫+∞−∞cosωt+jsinωtjωdω=12+12π∫+∞−∞sinωtωdω=12+1π∫+∞sinωtωdω∫+∞0sinωtωdω=π2,t>0,−π2,t<0⇒F−11jω+πδ(ω)=12+1π−π2=0,t<012,t=0,12+1ππ2=1,t>0=u(t).本⽂完|()[][]{[][][][][][] { []{()()。
如何由傅里叶逆变换推导傅里叶变换

如何由傅里叶逆变换推导傅里叶变换如何由傅里叶逆变换推导傅里叶变换1. 前言傅里叶变换是数学和工程领域中一项重要的技术,它将一个函数分解成一系列基础频率的正弦和余弦函数的叠加。
这一变换的应用非常广泛,从信号处理到图像处理,都离不开傅里叶变换。
然而,要深入理解傅里叶变换,我们首先需要了解其逆变换,即傅里叶逆变换。
在本文中,我们将通过推导傅里叶逆变换来揭示傅里叶变换的本质和原理。
2. 傅里叶变换的定义在开始推导傅里叶逆变换之前,我们先来回顾一下傅里叶变换的定义。
给定一个连续函数f(x),其傅里叶变换F(k)可以表示为:F(k) = ∫[ -∞, +∞ ] f(x) e^(-2πikx) dx (1)其中,k表示频率,e是自然对数的底数,i是虚数单位。
傅里叶变换将函数从时域转换到频域,将函数在不同频率上的振幅和相位信息展现出来。
3. 傅里叶逆变换的定义傅里叶逆变换是傅里叶变换的逆运算,用于将频域的函数转换回时域。
给定一个频域函数F(k),其傅里叶逆变换f(x)可以表示为:f(x) = (1/L) ∫[ -∞, +∞ ] F(k) e^(2πikx) dk (2)在公式中,L代表频域函数的长度。
傅里叶逆变换将函数从频域转换回时域,还原出原始函数在不同位置上的振幅和相位信息。
4. 傅里叶逆变换推导的基本思路为了推导傅里叶逆变换,我们首先将傅里叶变换的定义(公式1)进行变换,再进行一系列代数化简和变量替换的操作。
具体步骤如下:(1)将公式1中的e^(-2πikx)拆分成cos(2πkx)和sin(2πkx)的形式;(2)利用欧拉公式将cos(2πkx)和sin(2πkx)表示为复数形式,即e^(2πikx)和e^(-2πikx);(3)将公式1中的f(x)表示为复数形式,即F(k)的共轭,即f*(x);(4)应用线性性质,将复数形式的傅里叶逆变换表示为实数形式;(5)将公式中的k替换为-u,重新对公式进行整理和变量替换。
信息光学中的傅里叶变换

为了克服这些局限性,未来的研究将更加注重发展新型的 光学器件和技术,如光子晶体、超表面和量子光学等。这 些新技术有望为傅里叶光学的发展带来新的突破和机遇, 推动光学领域的技术进步和应用拓展。同时,随着人工智 能和机器学习等领域的快速发展,将人工智能算法与傅里 叶光学相结合,有望实现更高效、智能的光波信号处理和 分析。
信息光学中的傅里叶变换
目录
• 傅里叶变换基础 • 信息光学基础 • 信息光学中的傅里叶变换 • 傅里叶变换在信息光学中的应用
实例 • 傅里叶变换的数学工具和软件包
01
傅里叶变换基础
傅里叶变换的定义
傅里叶变换是一种数学工具,用于将 一个信号或函数从时间域或空间域转 换到频率域。在信息光学中,傅里叶 变换被广泛应用于图像处理和通信系 统的 编程语言,具有广泛的应 用领域。
R语言是一种统计计算语 言,广泛应用于数据分析 和可视化。
ABCD
C的开源科学计算软件包 如FFTW等可用于计算傅 里叶变换,并支持并行计 算以提高效率。
R语言的科学计算库如 fftw等可用于计算傅里叶 变换,并支持多种数据类 型和可视化方式。
光的波动理论
光的波动理论认为光是一种波动现象,具有波长、频率、相 位等特征,能够发生干涉、衍射等现象。
光的波动理论在光学领域中具有基础性地位,是研究光的行 为和性质的重要工具。
光的量子理论
光的量子理论认为光是由粒子组成的,这些粒子被称为光子。该理论解释了光的 能量、动量和角动量等物理量的本质。
光的量子理论在量子力学和量子光学等领域中具有重要应用,为现代光学技术的 发展提供了理论基础。
04
傅里叶变换在信息光学中的 应用实例
图像处理中的傅里叶变换
图像去噪
信息光学傅里叶变换的基本性质和有关定理

1.7.3复振幅分布的空间频谱
任意的平面波可以用空间频率表示
(x, y)面上的平面波具有如下形式
在相干光照明下g(x,y)是xy面上复振幅分布
指数基元
表示传播方向余弦(cosα=λξ,cosβ=λη)
的单位振幅的单色平面波。而g(x,y)可看成无数基元函数代表的平 面波叠加。
空间频谱可用方向余弦表示
exp(i*x)=cos(x)+i*sin(x)
a (P)和φ(P)是P点的振幅和初相位。
通常用指数函数表示一点的光振动
优点:可以将与位置有关的φ(P)和与时间有关的2πνt分开。 定义复振幅 为单色波场P点的复振幅。它与时间无关,仅是空间的函数。 即描述了光振动的空间分布。而时间因子exp(2πνt)对各点均相 同,可省略。
3. 4.实函数
即
由于输入余弦函数的频率是任意的,上式可写为
说明在线性不变系统中,在有实值脉冲的响应情况下,余弦函 数将产生同频率的余弦输出。但有衰减和相移。其改变程度由传递 函数的模和辐角决定。
1.7 二维光场分析
光波的数学描述。 1.7.1. 单色光波场的复振幅表示 单色光波场中某点P在时刻t的振动为
1.5.2
傅里叶变换的基本定理
1. 卷积定理 如果 则
பைடு நூலகம்
2.相关定理 (1)互相关定理 如果 则 ☆ ,
称F*(ξ,η)G(ξ,η)为函数f(x,y)和g(x,y)的互谱能量密度(互谱密度)
(2)自相关定理 设 则 ☆
(3)巴塞伐定理 设 且积分
存在,则 表示能量守恒。
1.4.4.广义巴塞伐定理 设
称ξ为沿x方向的空间频率。 y方向的周期为无穷。
同样对y方向,当cosβ≠0也可得到 ,空间频率 在z方向 空间频率
傅里叶变换常用公式

傅里叶变换常用公式1.傅里叶变换定义:F(w) = ∫[f(t)e^(-jwt)] dt2.傅里叶逆变换定义:f(t) = ∫[F(w)e^(jwt)] dw / (2π)傅里叶逆变换定义了将频域函数F(w)转换回时域函数f(t)的方式。
3.单位冲激函数的傅里叶变换:F(w) = ∫[δ(t)e^(-jwt)] dtδ(t)是单位冲激函数,其傅里叶变换结果为14.周期函数的傅里叶级数展开:f(t) = ∑[a(n)cos(nω0t) + b(n)sin(nω0t)]f(t)可以用无穷级数形式表示,其中ω0为基本角频率,a(n)和b(n)为系数。
5.周期函数的傅里叶变换:F(w)=2π∑[δ(w-nω0)]周期函数f(t)的频谱是一系列频率为nω0的冲激函数。
6.卷积定理:FT[f*g]=F(w)G(w)f*g表示函数f(t)和g(t)的卷积,FT表示傅里叶变换,*表示复数乘法。
卷积定理说明卷积在频域中的运算等于对应的傅里叶变换相乘。
7.积分定理:∫[f(t)g(t)] dt = 1/2π ∫[F(w)G(-w)] dw积分定理表明函数f(t)和g(t)的乘积在时域中的积分等于它们在频域中的乘积的逆变换。
8.平移定理:g(t) = f(t - t0) 对应的傅里叶变换 F(w) = e^(-jwt0) G(w)平移定理说明在时域中将函数f(t)右移t0单位,等价于在频域中将F(w)乘以e^(-jwt0)。
9.缩放定理:g(t) = f(at) 对应的傅里叶变换 G(w) = 1/,a, F(w/a)缩放定理说明在时域中将函数f(t)横向拉伸为af(t),等价于在频域中将F(w)纵向压缩为1/,a,F(w/a)。
除了以上列举的公式,傅里叶变换还有许多性质和定理,如频移定理、频域微分定理、频域积分定理等,这些公式和定理在信号处理中非常有用,可以加速计算和简化问题的分析。
信息光学基础1-6傅里叶变换性质

2
f
b 2
e
j
2
f
b 2
]
Hale Waihona Puke j2 f b e j2 fa sin( bf ) bf
b e j2 fa sin c(bf )
解法二: 比例和位移性质
F sin(2
f0 x)
1 2j
[d (
fx
f0 )
d
(
fx
f0 )]
F cos(2
f0 x)
b
解法一:根据傅里叶变换的定义
F 1{rect( x a )} rect( x a ) e j2 fx dx
b
b
b 2
a
e j2 fxdx
b 2
a
j 2 fx
b 2
a
[e ]
b 2
a
j2 f
e j2 fa
[e
j
d(x)
x
d (x a)g(x)dx g(a)
d(x)函数的筛选性质
1 ei2 fxdf d (u)
2)rect 函数的傅里叶变换
f
(x,
y)
rect(x,
y)
1
0
x
1 2
,
y
1 2
其它
解:F{rect(x)}
rect(x)exp(i2 fx)dx
1 2
(ei 2
f0x
ei 2
) f0 x
1 F{ei2 f0x} 1 F{ei2 } f0x
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第2章信号分析本章提要信号分类周期信号分析--傅里叶级数非周期信号分析--傅里叶变换脉冲函数及其性质信号:反映研究对象状态和运动特征的物理量信号分析:从信号中提取有用信息的方法和手段§2-1 信号的分类两大类:确定性信号,非确定性信号确定性信号:给定条件下取值是确定的。
进一步分为:周期信号,非周期信号。
质量M弹簧 刚度Ktx (t )ox 0 质量-弹簧系统的力学模型x (t ) ⎪⎪⎭⎫⎝⎛+=0cos )(ϕt m k A t x非确定性信号(随机信号):给定条件下取值是不确定的按取值情况分类:模拟信号,离散信号 数字信号:属于离散信号,幅值离散,并用二进制表示。
信号描述方法 时域描述 如简谐信号频域描述以信号的频率结构来描述信号的方法:将信号看成许多谐波(简谐信号)之和,每一个谐波称作该信号的一个频率成分,考察信号含有那些频率的谐波,以及各谐波的幅值和相角。
<page break>§2-2 周期信号与离散频谱一、 周期信号傅里叶级数的三角函数形式周期信号时域表达式)21()()2()()( ,,±±=+==+=+=n nT t x T t x T t x t xT :周期。
注意n 的取值:周期信号“无始无终”#傅里叶级数的三角函数展开式)sin cos ()(0100t n b t n a a t x n n n ωω∑∞=++=(n =1, 2, 3,…)傅立叶系数:⎰-=220)(1T Tdt t x T a⎰-=220cos )(2T Tn tdt n t x T a ω⎰-=220sin )(2T Tn tdt n t x Tb ω式中 T--周期;0--基频,0=2/T 。
三角函数展开式的另一种形式:)cos()(100∑∞=++=n n n t n A a t x ϕωN 次谐波N 次谐波的相角N 次谐波的频率N 次谐波的幅值信号的均值,直流分量,3,2,1arctg22=-=+=n a b ba A n nn nn n φ周期信号可以看作均值与一系列谐波之和--谐波分析法 频谱图﹡﹡﹡﹡﹡﹡nA nφω0 2ω0 3ω0 4ω0 ω0 2ω0 ω ω周期信号的频谱三个特点:离散性、谐波性、收敛性例1:求周期性非对称周期方波的傅立叶级数并画出频谱图解:解:信号的基频傅里叶系数n次谐波的幅值和相角最后得傅立叶级数频谱图…… ωωφnA n πA4π34Aπ54A2π-ω03ω05ω0幅频谱图 相频谱图二、 周期信号傅里叶级数的复指数形式 欧拉公式tj t etj ωωωsin cos ±=±或()()⎪⎩⎪⎨⎧-=+=--t j t j tj t j e e j t e e t ωωωωωω2sin 21cos1-=j傅立叶级数的复指数形式),3,2,1,0()(0 ±±±==∑∞-∞=n ec t x n tjn nω复数傅里叶系数的表达式⎰-==2200)(1T T dtt x Ta cdt e t x T jb a c T T t jn nn n ⎰--=-=220)(12ω其中a n b n 同,只是n 包括全部整数。
一般c n 是个复数。
因为a n 是n 的偶函数,b n 是n 的奇函数,因此 #nn a a -=nn b b -=-即:实部相等,虚部相反,c n 与c -n 共轭。
c n 的复指数形式nj n n ec c φ=共轭性还可以表示为nn c c -=,nn --=φφ即:c n 与c -n 模相等,相角相反。
傅立叶级数复指数也描述信号频率结构。
它与三角函数形式的关系 对于n >022)(22nn nn A b a c =-+=(等于三角函数模的一半)nnn a b -=arctgφ(与三角函数形式中的相角相等)2nn A c =-nnn n n a b a b arctgarctg =--=-φ用c n 画频谱:双边频谱 第一种:幅频谱图:|c n |-,相频谱图:n -0ω02ω1φ0ωnA 1A 2A nφ2φnc 211A c =2c =0ω02ωω02ωωω0ω02ωωω-02ω-2φ1φ1-2φ-n φ1φ-单边频谱 双边频谱第二种:实谱频谱图:Re c n -,虚频谱图:Im c n -;也就是a n -和-b n -.#<page break>§2-3 非周期信号与连续频谱分两类:a.准周期信号定义:由没有公共周期(频率)的周期信号组成频谱特性:离散性,非谐波性判断方法:周期分量的频率比(或周期比)不是有理数b.瞬变非周期信号几种瞬变非周期信号数学描述:傅里叶变换一、傅里叶变换演变思路:视作周期为无穷大的周期信号式(2.22)借助(2.16)演变成:定义x(t)的傅里叶变换X(ω)X(ω)的傅里叶反变换x(t):傅里叶变换的频谱意义:一个非周期信号可以分解为角频率 连续变化的无数谐波ωωπωd e X tj )(21的叠加。
称X ()其为函数x (t )的频谱密度函数。
对应关系:[]tjn n t j e c e d X 0)(21ωωωωπ⇔⎥⎦⎤⎢⎣⎡X ()描述了x (t )的频率结构 X ()的指数形式为)()()(ωφωωj eX X =以频率 f (Hz)为自变量,因为f=w/(2p),得⎰∞∞--=dte t xf X tf j π2)()(⎰∞∞-=dfef X t x tf j π2)()(X ( f )的指数形式)()()(f j ef X f X ϕ=频谱图幅值频谱图和相位频谱图:ω )(ωX ω)(ωϕ幅值频谱图相位频谱图实频谱图Re X (ω)和虚频谱图Im(ω) 如果X ()是实函数,可用一张X ()图表示。
负值理解为幅值为X ()的绝对值,相角为π或π-。
二、 傅里叶变换的主要性质 (一)叠加性)()()()(22112211f X a f X a t x a t x a FT+−→−+(二)对称性)()(f x t X FT-−→−(注意翻转)(三)时移性质20)()(t f j FTef X t t x π±−→−±(幅值不变,相位随 f 改变±2ft 0)(四)频移性质)()(020f f X et x FTft j −→−±π(注意两边正负号相反)(五)时间尺度改变特性(六)微分性质(七)卷积性质(1)卷积定义(2)卷积定理三、 脉冲函数及其频谱 (一) 脉冲函数:x (t )-ε/2 tt 01/εx (t ) tε/2 )(t δ)(0t t A -δ定义函数(要通过函数值和面积两方面定义) 函数值:⎩⎨⎧≠=∞=000)(t t t δ脉冲强度(面积)1)(=⎰∞∞-dt t δ(二)脉冲函数的样质1. 脉冲函数的采性(相乘)样质:x )()(00t t t x -δ函数值:强度:结论:1.结果是一个脉冲,脉冲强度是x (t )在脉冲发生时刻的函数值2.脉冲函数与任意函数乘积的积分等于该函数在脉冲发生时刻的的值。
2.脉冲函数的卷积性质:(a) 利用结论2(b) 利用结论2结论:平移x (t(三)脉冲函数的频谱均匀幅值谱由此导出的其他3个结果(利用时移性质)(利用对称性质)(对上式,再用频移性质)(四)正弦函数和余弦函数的频谱)(f ∆)(f ∆余弦函数的频谱正弦函数的频谱<page break>。