二次函数经典解题技巧(最新整理)
二次函数动点问题的解题技巧

二次函数动点问题的解题技巧
以下是 8 条关于二次函数动点问题的解题技巧:
1. 大胆设未知数呀!比如在一个直角坐标系里,有个二次函数图像上有个动点 P,那咱就大大方方设它的坐标为(x,y),这样不就能更好地分析啦!就像给这个动点取了个名字,好指挥它呀!
2. 把条件都用上呀!可别漏了,像找到某个线段长度与动点坐标的关系,哎呀呀,这可是关键呢!比如已知一个线段的长度是 5,和动点 P 的横坐标有关,那可不能放过这个线索,得好好挖掘挖掘!
3. 找等量关系呀!这就好比寻宝,到处去找那些能关联起来的等量哦。
比如说一个三角形面积和另一个图形面积相等,这不就找到宝贝线索啦!
4. 注意特殊位置呀!嘿,动点有时候会跑到一些特殊的点呢,那可有意思啦。
比如它跑到对称轴上时,那说不定会有惊喜发现呢!像突然发现一些对称关系,多神奇呀!
5. 画画图呀!通过图形能更直观地看到动点的运动呀,这就像给你一双眼睛看着它怎么跑。
看看它跑到不同地方时整个图形发生的变化,多好玩呀!
6. 多试试分类讨论呀!有时候动点的情况不唯一呢,那咱就别怕麻烦,一种一种来。
难道还能被它难住不成?像动点在不同区间时可能有不同的结果,咱就一个个算清楚嘛!
7. 利用函数解析式呀!这可是个好宝贝,通过它能知道很多信息呢。
比如知道了二次函数的解析式,那动点在上面的一些性质不就清楚啦?
8. 要敢想敢做呀!别犹豫,大胆去尝试各种方法。
不试试看怎么知道行不行呢?就像冒险一样,多刺激呀!
总之,面对二次函数动点问题,别怕!勇敢地去探索,一定能找到答案的!。
解二次函数的方法

解二次函数的方法解二次函数的方法有以下几种:1. 因式分解法:对于形如y = ax^2 + bx + c的二次函数,当a≠0时,可以尝试以因式分解的方式将其拆解成两个一次函数的乘积形式。
具体步骤如下:- 将二次项ax^2分解成两个一次函数的乘积形式,即找到两个数m和n,使得:m*n = a 且m + n = b;- 根据上述分解结果,将二次函数y = ax^2 + bx + c写成因式乘积形式,即y = (mx + p)(nx + q);- 求解得到m、n、p、q的值,得到最终的因式分解结果。
2. 完全平方公式法:通过完全平方公式,可以将二次函数表示成一个平方项加上一个常数的形式。
具体步骤如下:- 将二次函数y = ax^2 + bx + c变形成y = a(x-h)^2 + k的形式;- 根据变形后的形式可得,h = -b/(2a),k = c - b^2/(4a);- 根据上述求得的h和k的值,将二次函数写成完全平方的形式。
3. 配方法:对于一般形如y = ax^2 + bx + c的二次函数,当a≠0时,可以通过配方法来解。
具体步骤如下:- 首先将二次函数的二次项系数a提取出来,并将方程变形为y = a(x^2 + (b/a)x) + c;- 进一步变形为y = a(x^2 + (b/a)x + b^2/(4a^2)) + c - b^2/(4a);- 再次变形为y = a(x + b/(2a))^2 + (4ac - b^2)/(4a);- 根据上述变形,可以将二次函数表示为(x + b/(2a))^2的形式,并求出平移向量及其他信息。
4. 求根公式法:对于一般形如y = ax^2 + bx + c的二次函数,可以通过求根公式来解。
求根公式是利用一元二次方程的求根公式,得到二次函数的根的表达式。
一元二次方程的求根公式为:x = (-b ±√(b^2 - 4ac))/(2a) ;根据上述公式,可以求得二次函数的根的值。
二次函数解题思路十大技巧

二次函数解题思路十大技巧
1、先求出二次函数的顶点:
设二次函数为y=ax2+bx+c,那么顶点的横坐标为-b/2a,纵坐标为f(-b/2a)。
2、确定函数的性质:
判断a的正负,可以确定函数的单调性,从而确定函数的大致形状。
3、利用函数的性质,确定函数的根:
若函数为单调递增,则函数的根在顶点左边;若函数为单调递减,则函数的根在顶点右边。
4、利用绝对值函数的性质,确定函数的根:
若函数为绝对值函数,则函数的根在顶点两边,且根的绝对值相等。
5、利用函数的性质,确定函数的最大值和最小值:
若函数为单调递增,则函数的最大值在顶点右边;若函数为单调递减,则函数的最小值在顶点左边。
6、利用函数的性质,确定函数的极值:
若函数为单调递增,则函数的极大值在顶点右边;若函数为单调递减,则函数的极小值在顶点左边。
7、利用函数的性质,确定函数的极值点:
若函数为单调递增,则函数的极大值点在顶点右边;若函数为单调递减,则函数的极小值点在顶点左边。
8、利用函数的性质,确定函数的增量和减量:
若函数为单调递增,则函数的增量在顶点右边;若函数为单调递减,则函数的减量在顶点左边。
二次函数典型题解题技巧

二次函数典型题解题技巧一有关角1、已知抛物线2y ax bx c =++的图象与x 轴交于A 、B 两点点A 在点B 的左边,与y 轴交于点(0C ,3),过点C 作x 轴的平行线与抛物线交于点D ,抛物线的顶点为M ,直线5y x =+经过D 、M 两点.(1) 求此抛物线的解析式;2连接AM 、AC 、BC ,试比较MAB ∠和ACB ∠的大小,并说明你的理由.思路点拨:对于第1问,需要注意的是CD 和x 轴平行过点C 作x 轴的平行线与抛物线交于点D对于第2问,比较角的大小a 、 如果是特殊角,也就是我们能分别计算出这两个角的大小,那么他们之间的大小关系就清楚了b 、 如果这两个角可以转化成某个三角形的一个外角和一个不相邻的内角,那么大小关系就确定了c 、 如果稍难一点,这两个角转化成某个三角形的两个内角,根据大边对大角来判断角的大小d 、 除了上述情况外,那只有可能两个角相等,那么证明角相等的方法我们学过什么呢,全等三角形、相似三角形和简单三角函数,从这个题来看,很明显没有全等三角形,剩下的就是相似三角形和简单三角函数了,其实简单三角函数证明角相等和相似三角形证明角相等的本质是一样的,都是对应边的比相等e 、 可能还有人会问,这么想我不习惯,太复杂了,那么我再说一个最简单的方法,如何快速的找出题目的结论问题,在本题中,需要用到的点只有M 、C 、A 、B 这四个点,而这四个点的坐标是很容易求出来的,那么请你把这四个点规范的在直角坐标系内标出来,再用量角器去量这两个角大大小,你就能得出结论了,得出结论以后你再看d 这一条解:1∵CD ∥x 轴且点C0,3,∴设点D 的坐标为x,3 .∵直线y= x+5经过D 点,∴3= x+5.∴x=-2.即点D -2,3 .根据抛物线的对称性,设顶点的坐标为M -1,y,又∵直线y= x+5经过M 点,∴y =-1+5,y =4.即M -1,4.∴设抛物线的解析式为2(1)4y a x =++. ∵点C0,3在抛物线上,∴a=-1.即抛物线的解析式为223y x x =--+.…………3分 2作BP ⊥AC 于点P,MN ⊥AB 于点N .由1中抛物线223y x x =--+可得 点A -3,0,B1,0,∴AB=4,AO=CO=3,AC=32. ∴∠PAB =45°.∵∠ABP=45°,∴PA=PB=22.∴PC=AC -PA=2.在Rt △BPC 中,tan ∠BCP=PBPC =2.在Rt △ANM 中,∵M-1,4,∴MN=4.∴AN=2.tan ∠NAM=MN AN =2.∴∠BCP =∠NAM .即∠ACB =∠MAB .后记:对于几何题来说,因为组成平面图形的最基本的元素就是线段和角圆分开再说,所以几何的证明无非就是线段之间的关系,角之间的关系,在二次函数综合题里,我主张首先要想到的是利用角之间的关系来解题,其次才是利用线段之间的关系来解题,除非你很快就能看出利用线段之间的关系来解题很简单,因为在直角坐标系里要求两点之间的距离是很麻烦的,尤其是不知道某个点的确切坐标时,那么这个题给了我们一个如果判断角之间关系的基本思路2、如图,抛物线两点轴交于与B A x bx ax y ,32-+=,与y 轴交于点C ,且OA OC OB 3==.I 求抛物线的解析式;II 探究坐标轴上是否存在点P ,使得以点C A P ,,为顶点的三角形为直角三角形若存在,求出P 点坐标,若不存在,请说明理由;III 直线131+-=x y 交y 轴于D 点,E 为抛物线顶点.若α=∠DBC ,βαβ-=∠求,CBE 的值.思路点拨:II 问题的关键是直角,已知的是AC 边,那么AC 边可能为直角边,可能为斜边,当AC 为斜边的时,可知P 点是已AC 为直径的圆与坐标轴的交点,且不能与A 、C 重合,明显只有O 点;当AC 为直角边时,又有两种情况,即A 、C 分别为直角顶点,这时候我们要知道无论是A 或者C 为直角顶点,总有一个锐角等于∠OCA 或Rt △PAC 和Rt △OAC 相似,利用这点就可以求出OP 的长度了III 从题目的已知条件看,除了∠ABC=45°外没有知道其他角的度数,那么这两个角要么全是特殊角30°,45°,60°,90°,在这种情况下,他们的差才有可能不是特殊的角,很明显,这两个角不是特殊角,那只有一种可能在没有学反三角函数的前提下,就是他们的差是特殊角,再联系到∠ABC=45°,可知,这两个角的差就是45°,那么我们需要证明的就是∠ABD=∠CBE,再想想上一题所说的,就明白是利用相似三角形来证明了,即证明△BCE 是一个直角三角形且与△BAD 相似解:I ()3,032--+=点轴交与抛物线C y bx ax y ,且OA OC OB 3==.())0,3(,0,1B A -∴.代入32-+=bx ax y ,得 {{12030339=-==--=-+∴a b b a b a322--=∴x x yII ①当190,PAC ∠=︒时可证AO P 1∆∽ACO ∆ 31tan tan 11=∠=∠∆∴ACO AO P AO P Rt 中,.)31,0(1P ∴②同理: 如图当)0,9(9022P CA P 时,︒=∠③当)0,0(9033P A CP 时,︒=∠综上,坐标轴上存在三个点P ,使得以点C A P ,,为顶点的三角形为直角三角形,分别是)31,0(1P )0,9(2P ,)0,0(3P . III ()1,0,131D x y 得由+-=.()4,1322---=E x x y ,得顶点由. ∴52,2,23===BE CE BC .为直角三角形BCE BE ∆∴=+,CE BC 222.31tan ==∴CB CE β. 又31tan ==∠∆∴OB OD DBO DOB Rt 中.β∠=∠∴DBO . ︒=∠=∠-∠=∠-∠45OBC DBO αβα.二线段最值问题引子:初中阶段学过的有关线段最小值的有两点之间线段最短和垂线段最短,无论是两点之间选段最短还是垂线段最短,它们的本质就是要线段首尾相接,或者说线段要有公共端点,如果我们公共端点,我们要想办法把它们构造成有公共端点来解决;有关线段最大值的问题,学过的有三角形三边之间的关系,两边之差小于第三边,我们可以利用这个来求第三边的最大值,还有稍微难一点的就是利用二次函数及其自变量取值范围来求最大值3、抛物线()20y ax bx c a =++≠交x 轴于A 、B 两点,交y 轴于点C,已知抛物线的对称轴为直线x = -1,B1,0,C0,-3.⑴ 求二次函数()20y ax bx c a =++≠的解析式;⑵ 在抛物线对称轴上是否存在一点P,使点P 到A 、C 两点距离之差最大 若存在,求出点P 坐标;若不存在,请说明理由.思路点拨:点P 到A 、C 两点距离之差最大,即求|PA -PC|的最大值,因P 点在对称轴上,有PA=PB,也就是求|PB -PC|,到了这儿,易知当P 点是BC 所在直线与对称轴的交点,易知最大值就是线段BC 的长;具体解题过程略4、研究发现,二次函数2ax y =0≠a 图象上任何一点到定点0,a 41和到定直线ay 41-=的距离相等.我们把定点0,a 41叫做抛物线2ax y =的焦点,定直线ay 41-=叫做抛物线2ax y =的准线.1写出函数241x y =图象的焦点坐标和准线方程; 2等边三角形OAB 的三个顶点都在二次函数241x y =图象上,O 为坐标原点, 求等边三角形的边长;3M 为抛物线241x y =上的一个动点,F 为抛物线241x y =的焦点,P1,3 为定点,求MP+MF 的最小值.思路点拨:2因△OAB 是等边三角形,易知AB 平行于X 轴,且∠AOB=60°,知OA 、OB 于y 轴的夹角等于30°,利用这点容易求出三角形的边长3由题目可知MF 的长度等于M 点到直线y=-1的距离,那么MP+MF 就是P 点到达抛物线上某一点再到y=-1上某一点的距离和,易知最小值就是过P 点做y=-1的垂线段的长 解:1焦点坐标为0,1, 准线方程是1-=y ;2设等边ΔOAB 的边长为x,则AD=x 21,OD=x 23. 故A 点的坐标为x 21,x 23. 把A 点坐标代入函数241x y =,得 2)21(4123x x ⋅=, 解得0=x 舍去,或38=x .∴ 等边三角形的边长为38.3如图,过M 作准线1-=y 的垂线,垂足为N,则MN=MF.过P 作准线1-=y 的垂线PQ,垂足为Q,当M 运动到PQ 与抛物线交点位置时,MP+MF 最小,最小值为PQ=4. 5、思路点拨:2要求AE 和AM 的长,对于求线段的长度我们学过的是勾股定理,相似三角形和简单三角函数,从题目可知OA 和OE 的长以及E 点到x 轴的距离,我们作EG ⊥x 轴,垂足为G,那么容易求出OG 的长,从而求出AE 的长;要求AM 的长,先做OK ⊥AE,垂足为K,要求AM 的长,首先我们利用已知的OA 的长和∠EAO 的函数值来求出AK 和OK 的长,利用OK 的长和三角形OMN 是等边三角形求出MK 和NK 的长,AM 的长也就知道了3这个是著名的费马点的问题,第2问给了我们提示,我们可以猜想当P 点在什么位置时,PA+PB+PO 才能取最小值,P 点应该在线段AE 上,至于具体的位置我们还不知道,我们就在线段AE 上任取一点P,把PA 、PB 、PO 连起来,要取最小值,那么这三条线段应该首尾相接,我们应该能想到它们首尾相接后的位置就是AE 所在直线,这时P 点应该和在△OAB 内的M 点重合,PA 的长就是AM 的长,m 的最小值就是AE 的长答案详见前段时间发过的从近近几年北京中考模拟及中考压轴题谈起额外讲解一个与二次函数无关的有关线段最值的问题6、2009年中考第25题如图,在平面直角坐标系xOy 中,△ABC 三个顶点的坐标分别为A -6,0,B 6,0,C 0,43,延长AC 到点D ,使AC CD 21=,过D 点作DE ∥AB 交BC 的延长线于点E . 1求D 点的坐标;2作C 点关于直线DE 的对称点F ,分别连结DF 、EF ,若过B 点的直线y =kx +b 将四边形CDFE 分成周长相等的两个四边形,确定此直线的解析式;3设G 为y 轴上一点,点P 从直线y =kx +b 与y 轴的交点出发,先沿y 轴到达G 点,再沿GA 到达A 点.若P 点在y 轴上运动的速度是它在直线GA 上运动速度的2倍,试确定G 点的位置,使P 点按照上述要求到达A 点所用的时间最短. 要求:简述确定G 点位置的方法,但不要求证明思路点拨:3首先要把速度转化成路程,也就是线段的长度,直线与y 轴的交点假设为M,则OM=63,设P 点在y 轴上的速度为2v,那么在GA 上的速度为v,P 点到达A 点所用的时间为,要使时间最短,也就是求AG+GM/2的最小值,那么我们要把它转化成我们熟悉的两条线段的和,因为∠BMO=30°,GM/2也就是G 点到BM 的距离,我们作GK ⊥BM,垂足为K,问题转化成求GA+GM 的最小值,易知,A 、G 、M 必须共线且垂直BM,所以G 点就是过A 点作BM 的垂线与y 轴的交点解:1∵A -6,0,C 0,43,∴OA =6,OC =43.设DE 与y 轴交于点M .由DE ∥AB 可得△DMC ∽△AOC .又AC CD 21=,21===∴CA CD CO CM OA MD . ∴CM =23,MD =3.同理可得EM =3.∴OM =63.∴D 点的坐标为3,63.2由1可得点M 的坐标为0,63.由DE∥AB,EM=MD,可得y轴所在直线是线段ED的垂直平分线.∴点C关于直线DE的对称点F在y轴上.∴ED与CF互相垂直平分.∴CD=DF=FE=EC.∴四边形CDFE为菱形,且点M为其对称中心.作直线BM.设BM与CD、EF分别交于点S、点T.可证△FTM≌△CSM.∴FT=CS.∵FE=CD,∴TE=SD.∵EC=DF,∴TE+EC+CS+ST=SD+DF+FT+TS.∴直线BM将四边形CDFE分成周长相等的两个四边形.由点B6,0,点M0,63在直线y=kx+b上,可得直线BM的解析式为y=-3x+63.第25题答图3确定G点位置的方法:过A点作AH⊥BM于点H,则AH与y轴的交点为所求的G点.由OB=6,OM=63,可得∠OBM=60°.∴∠BAH=30°.在Rt△OAG中,OG=AO·tan∠BAH=23.∴G点的坐标为0,23.或G点的位置为线段OC的中点三平移对称旋转问题引子:平移问题以前讲过了,现在重点将对称旋转问题我们知道a,b关于x轴对称的点的坐标为a,-b,关于y轴对称的点的坐标为-a,b,关于原点对称的点的坐标为-a,-b,关于直线x=m的对称点为2m-a,b,关于直线y=n的对称点为a,2n-b,关于点m,n的对称点为2m-a,2n-b任意两点x1,y1和x2,y2的中点为对于抛物线关于x轴、y轴、x=a、y=b的对称抛物线,应该都会了吧,现在重点讲解抛物线关于某点m,n的对称抛物线解析式其他平移、关于直线对称都可以用这个方法解决,为了方便,选取抛物线的顶点式来证明例:对于一个抛物线y=ax-h2+ka≠0来说,坐标为x,y的所有点都在他的图像上,关于m,n的对称点为2m-x,2n-y,那么坐标为2m-x,2n-y都在抛物线关于m,n对称的抛物线上,我们把2m-x,2n-y代入y=ax-h2+ka≠0就可以得到它关于m,n对称的抛物线的解析式为2n-y=a2m-x-h2+k,变形为y=-ax-2m+h2+2n-k现在利用待定系数法来验证这个方法是否正确首先y=ax-h2+ka≠0和它关于点m,n的对称的抛物线的开口大小是一样的,所以二次项系数的绝对值是相同的,由于关于点对称,开口方向是相反的,故二次项系数互为相反数;其次原抛物线与对称抛物线的顶点是关于m,n对称的,原抛物线的顶点为h,k,它关于m,n的对称点的坐标为2m-h,2n-k,那么对称抛物线的解析式可以写成y=-ax-2m+h2+2n-k,和利用上述方法所得结果一致7、已知抛物线C1:y=ax2-2amx+am2+2m+1a>0,m>1的顶点为A,抛物线C2的对称轴是y轴,顶点为B,且抛物线C1和C2关于P1,3成中心对称(1)用含m的代数式表示抛物线C1的顶点坐标(2)求m的值和抛物线C2的解析式(3)设抛物线C2与x正半轴的交点是C,当△ABC为等腰三角形时,求a的值思路点拨:1很多人一看到求抛物线的顶点,习惯使用顶点的坐标公式来求,如果你熟悉因式分解和抛物线的顶点公式是如何得到的,那么这个题明显利用配方更容易得到顶点坐标,y=ax -m2+2m+1,故顶点坐标为m,2m+1(2)C1和C2关于点对称,利用上述方法容易求出C2的解析式和顶点坐标,易知m=2详解过程略。
二次函数解题思路十大技巧

二次函数解题思路十大技巧二次函数解题技巧:二次函数有点难,求点坐标是关键。
一求函数解析式,再求面积带线段。
动点问题难解决,坐标垂线走在前。
三角相似莫相忘,勾股方程解疑难。
二次函数解题思路技巧1.平移:二次函数图像经过平移变换不会改变图形的形状和开口方向,因此a值不变。
顶点位置将会随着整个图像的平移而变化,因此只要按照点的移动规律,求出新的顶点坐标即可确定其解析式。
2.轴对称:此图形变换包括x轴对称和关于y轴对称两种方式。
二次函数图像关于x轴对称的图像,其形状不变,但开口方向相反,因此a值为原来的相反数。
顶点位置改变,只要根据关于x轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
二次函数图像关于y轴对称的图像,其形状和开口方向都不变,因此a值不变。
但是顶点位置会改变,只要根据关于y轴对称的点的坐标特征求出新的顶点坐标,即可确定其解析式。
熟悉几个特殊型二次函数的图象及性质1 、通过描点,观察 y=ax2 、 y=ax2 + k 、 y=a ( x + h ) 2 图象的形状及位置,熟悉各自图象的基本特征,反之根据抛物线的特征能迅速确定它是哪一种解析式。
.2 、理解图象的平移口诀“加上减下,加左减右”。
“y=ax2 → y=a ( x + h ) 2 + k ”“加上减下”是针对 k 而言的,“加左减右”是针对 h 而言的。
.总之,如果两个二次函数的“二次项系数”相同,则它们的抛物线形状相同,由于顶点坐标不同,所以位置不同,而抛物线的平移实质上是顶点的平移,如果抛物线是一般“形式”,应先化为顶点式再平移。
3 、通过描点“画图”、图象平移,理解并明确解析式的特征与图象的特征是完全相对应的,我们在解题时要做到胸中有图,看到函数就能在头脑中反映出它的图象的基本特征;。
高一二次函数解题技巧及方法

高一二次函数解题技巧一、掌握二次函数的概念:1、二次函数是指未知数是二次的函数,形式为y=ax²+bx+c,其中中a、b、c是常数,且a≠0。
2、在二次函数中,自变量x的取值范围通常为全体实数。
二、理解二次函数的表达式:1、二次函数的表达式通常由一元二次方程给出,这个方程可以用来描述二次函数的性质。
2、例如,二次函数的顶点式y=a(x-h)²+k可以表示出函数的顶点坐标(h,k)。
三、掌握二次函数的图形特征:1、二次函数的图形是一个抛物线,其顶点坐标为(h,k),对称轴为x=h,开口方向由a的符号决定。
2、当a>0时,抛物线开口向上,当a<0时,抛物线开口向下。
四、掌握二次函数的对称轴及顶点:1、二次函数的对称轴是x=h,顶点坐标是(h,k)。
2、在解题时,可以根据对称轴和顶点坐标快速找到函数的最值或单调区间。
五、了解二次函数的增减性及最值:1、二次函数的增减性取决于a的符号。
2、当a>0时,开口向上,在对称轴的左侧,y随x的增大而减小;在对称轴的右侧,y随x的增大而增大。
3、当a<0时,开口向下,在对称轴的左侧,y随x的增大而增大;在对称轴的右侧,y随x的增大而减小。
4、最值是指函数在某个区间内的最大值或最小值。
5、对于一般形式的二次函数y=ax²+bx+c,当x=-b/2a时,取得最值(4ac-b²)/4a。
六、掌握二次函数的交点及与X轴的交点坐标:1、二次函数的交点是指与x轴交点的横坐标。
2、当函数与x轴相交时,交点的横坐标就是方程ax²+bx+c=0的根。
3、注意判别式b²-4ac的符号,当b²-4ac>0时,与x轴有两个交点;当b²-4ac=0时,与x轴有一个交点;当b²-4ac<0时,与x轴没有交点。
七、熟悉二次函数的平移规则:1、平移规则是指通过平移抛物线来改变其形状和位置。
二次函数最值问题及解题技巧(个人整理)

一、二次函数线段最值问题之阳早格格创做1、仄止于x轴的线段最值问题1)最先表示出线段二个端面的坐标2)用左侧端面的横坐标减去左侧端面的横坐标3)得到一个线段少闭于自变量的二次函数4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值2、仄止于y轴的线段最值问题1)最先表示出线段二个端面的坐标2)用上头端面的纵坐标减去底下端面的纵坐标3)得到一个线段少闭于自变量的二次函数剖析式4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值3、既没有服止于x轴,又没有服止于y轴的线段最值问题1)以此线段为斜边构制一个曲角三角形,并使此曲角三角形的二条曲角边分别仄止于x轴、y轴2)根据线段二个端面的坐标表示出曲角顶面坐标3)根据“上减下,左减左”分别表示出二曲角边少4)根据勾股定理表示出斜边的仄圆(即二曲角边的仄圆战)5)得到一个斜边的仄圆闭于自变量的二次函数6)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值7)根据所供得的斜边仄圆的最值供出斜边的最值即可二、二次函数周少最值问题1、矩形周少最值问题1)普遍会给出一面降正在扔物线上,从那面背二坐标轴引垂线形成一个矩形,供其周少最值2)可先设此面坐标,面p到x轴、y轴的距离战再乘以2,即为周少3)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值2、利用二面之间线段最短供三角形周少最值1)最先推断图形中那些边是定值,哪些边是变量2)利用二次函数轴对于称性及二面之间线段最短找到二条变更的边,并供其战的最小值3)周少最小值即为二条变更的边的战最小值加上没有变的边少三、二次函数里积最值问题1、准则图形里积最值问题(那里准则图形指三角形必有一边仄止于坐标轴,四边形必有一组对于边仄止于坐标轴)1)最先表示出所需的边少及下2)利用供里积公式表示出头积3)得到一个里积闭于自变量的二次函数4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值2、没有准则图形里积最值问题1)分隔.将已有的没有准则图形通太过隔后得到几个准则图形2)再分别表示出分隔后的几个准则图形里积,供战3)得到一个里积闭于自变量的二次函数4)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值或者1)利用大减小,没有准则图形的里积可由准则的图形里积减去一个或者几个准则小图形的里积去得到2)得到一个里积闭于自变量的二次函数3)将其化为顶面式,并根据a的正背及自变量的与值范畴推断最值。
第06讲二次函数解析式的确定(5种解题方法)(原卷版)

第06讲二次函数解析式的确定(5种解题方法)1.一般式当题目给出函数图像上的三个点时,设为一般式2y ax bx c =++(a ,b ,c 为常数,0a ≠),转化成一个三元一次方程组,以求得a ,b ,c 的值; 2.顶点式若已知抛物线的顶点或对称轴、最值,则设为顶点式()k h x a y +-=2.这顶点坐标为( h ,k ),对称轴直线x = h ,最值为当x = h 时,y 最值=k 来求出相应的系数. 3.交点式已知图像与 x 轴交于不同的两点()()1200x x ,,,,设二次函数的解析式为()()21x x x x a y --=,根据题目条件求出a 的值. 4.平移变换型将一个二次函数的图像经过上下左右的平移得到一个新的抛物线.要借此类题目,应先将已知函数的解析是写成顶点式y = a ( x – h )2+ k ,当图像向左(右)平移n 个单位时,就在x – h 上加上(减去)n ;当图像向上(下)平移m 个单位时,就在k 上加上(减去)m .其平移的规律是:h 值正、负,右、左移;k 值正负,上下移.由于经过平移的图像形状、大小和开口方向都没有改变,所以a 得值不变. 5.对称变换型根据对称的性质,显然无论作何种对称变换,抛物线的形状一定不会发生变化,因此a 永远不变.求抛物线的对称抛物线的表达式时,可以依据题意或方便运算的原则,选择合适的形式,习惯上是先确定原抛物线(或表达式已知的抛物线)的顶点坐标及开口方向,再确定其对称抛物线的顶点坐标及开口方向,然后再写出其对称抛物线的表达式.解法一:一般式1.一个二次函数的图象经过(0,0),(﹣1,﹣1),(1,9)三点,求这个二次函数的解析式.2.已知一个二次函数的图象经过(﹣1,10),(1,4),(2,7)三点.求这个二次函数的解析式,并求出它考点精讲考点考向的开口方向、对称轴和顶点坐标.3.二次函数图象过A,C,B三点,点A的坐标为(﹣1,0),点B的坐标为(4,0),点C在y轴正半轴上,且AB=OC,求二次函数的表达式.4.如图所示,四边形ABCD是平行四边形,过点A、C,D作抛物线y=ax2+bx+c(a≠0),点A,B,D的坐标分别为(﹣2,0),(3,0),(0,4),求抛物线的解析式.解法二:顶点式1.设二次函数的图象的顶点坐标为(﹣2,2),且过点(1,1),求这个函数的关系式.2.已知二次函数当x=1时有最大值是﹣6,其图象经过点(2,﹣8),求二次函数的解析式.解法三:交点式1.抛物线与x轴交点的横坐标为﹣2和1,且过点(2,8),它的关系式为()A.y=2x2﹣2x﹣4 B.y=﹣2x2+2x﹣4C.y=x2+x﹣2 D.y=2x2+2x﹣42.如果二次函数y=ax2+bx+c的图象经过点(﹣1,0),(3,0),(0,﹣6),求二次函数表达式.3.如图,在平面直角坐标系中,点A的坐标为(﹣1,0),点B,点C分别为x轴,y轴正半轴上一点,其满足OC=OB=2OA.求过A,B,C三点的抛物线的表达式;4.已知抛物线过A(1,0)和B(4,0)两点,交y轴于C点,且BC=5,求该二次函数的解析式.解法四:平移变换型1.将抛物线y=x2﹣6x+5向上平移两个单位长度,再向右平移一个单位长度后,求平移后的抛物线解析式.2.将抛物线y=2x2先向下平移3个单位,再向右平移m(m>0)个单位,所得新抛物线经过点(1,5),求新抛物线的表达式及新抛物线与y轴交点的坐标.3.已知a+b+c=0且a≠0,把抛物线y=ax2+bx+c向下平移一个单位长度,再向左平移5个单位长度所得到的新抛物线的顶点是(﹣2,0),求原抛物线的表达式.4.抛物线y=x2+2x﹣3与x轴正半轴交于A点,M(﹣2,m)在抛物线上,AM交y轴于D点,抛物线沿射线AD方向平移√2个单位,求平移后的解析式.解法五:对称变换型1.已知抛物线y=﹣2x2+8x﹣7.(1)二次函数的图象与已知抛物线关于y轴对称,求它的解析式;(2)二次函数y=ax2+bx+c的图象与已知抛物线关于原点对称,求a,b,c的值.2.已知二次函数y=12x2﹣3x+1(1)若把它的图象向右平移1个单位,向下平移3个单位,求所得图象的函数表达式.(2)若把它的图象绕它的顶点旋转180°,求所得图象的函数表达式.(3)若把它绕x轴翻折,求所得图象的表达式.3.已知抛物线C1:y=59(x+2)2−5的顶点为P,与x轴正半轴交于点B,抛物线C2与抛物线C1关于x轴对称,将抛物线C2向右平移,平移后的抛物线记为C3,C3的顶点为M,当点P、M关于点B成中心对称时,求C3的解析式.4.将抛物线C1:y=18(x+1)2﹣2绕点P(t,2)旋转180°得到抛物线C2,若抛物线C1的顶点在抛物线C2上,同时抛物线C2的顶点在抛物线C1上,求抛物线C2的解析式.一、单选题1.(2021·上海杨浦·九年级三模)将抛物线2y x 向左平移2个单位后,所得新抛物线的解析式是( )A .22y x =-B .22y x =+C .2(2)y x =-D .2(2)y x =+2.(2021·上海九年级专题练习)将二次函数2y x 的图象向左平移1个单位,则平移后的二次函数的解析式为( ) A .21y x =-B .21y x =+C .2(1)y x =-D .2(1)y x =+3.(2021·上海)抛物线2(5)1y x =+-先向右平移4个单位,再向上平移4个单位,得到抛物线的解析式为( ) A .21884y x x =++B .224y x x =++C .21876y x x =++D .222y x x =+-4.(2021·上海静安·九年级一模)将抛物线22(1)3y x =+-平移后与抛物线22y x =重合,那么平移的方法可以是( )A .向右平移1个单位,再向上平移3个单位B .向右平移1个单位,再向下平移3个单位C .向左平移1个单位,再向上平移3个单位D .向左平移1个单位,再向下平移3个单位5.(2021·上海)如果将抛物线y =x 2+2向左平移1个单位,那么所得新抛物线的解析式为( ) A .y =(x ﹣1)2+2B .y =(x+1)2+2C .y =x 2+1D .y =x 2+36.(2010·上海浦东新·七年级竞赛)如表所示,则x 与y 的关系式为( ) x 1 2 345y 3 7 13 21 31 A .y=4x1B .y=x 2+x+1C .y=(x 2+x+1)(x1)D .非以上结论巩固提升7.(2021·上海九年级专题练习)如果A(2,n),B(2,n),C(4,n+12)这三个点都在同一个函数的图像上,那么这个函数的解析式可能是 ( ) A .2y x = B .2y x=-C .2y x =-D .2y x二、填空题8.(2011·上海浦东新区·中考模拟)请写出一个图像的对称轴为y 轴,且经过点(2,-4)的二次函数解析式,这个二次函数的解析式可以是____________9.(2021·上海九年级专题练习)用“描点法”画二次函数2y ax bx c =++的图像时,列出了如下的表格:x… 0 1 2 3 4 … 2y ax bx c =++…3- 013-…那么当5x =时,该二次函数y 的值为___________.10.(2020·崇明县大同中学九年级月考)已知二次函数的图象的顶点坐标是(﹣1,﹣6),并且该图象经过点(2,3)表达式为_______.11.(2020·上海市静安区实验中学)若函数2(1)y m x =+过点(1,4),则m=_______.12.(2020·上海市静安区实验中学九年级课时练习)已知抛物线的顶点为()1,3-,且与y 轴交于点()0,1,则抛物线的解析式为______.13.(2021·上海九年级专题练习)如果抛物线()24y m x m =++经过原点,那么该抛物线的开口方向______.(填“向上”或“向下”)14.(2021·上海九年级专题练习)如果将二次函数的图像平移,有一个点既在平移前的函数图像上又在平移后的函数图像上,那么称这个点为“平衡点”.现将抛物线1C :2(1)1y x =--向右平移得到新抛物线2C ,如果“平衡点”为(3,3),那么新抛物线2C 的表达式为______.15.(2021·上海青浦·九年级二模)如果将抛物线y =﹣x 2向下平移,使其经过点(0,﹣2),那么所得新抛物线的表达式是__________.16.(2021·上海崇明·九年级二模)如图,在平面直角坐标系xOy 中,等腰直角三角形OAB 的斜边OA 在x 轴上,且OA =4,如果抛物线y =ax 2+bx +c 向下平移4个单位后恰好能同时经过O 、A 、B 三点,那么a +b +c =_____.三、解答题17.(2021·上海宝山·九年级期中)在平面直角坐标系xOy 中,抛物线()210y ax bx a =+-≠经过点()()2,0,1,0A B -和点()3,D n -,与y 轴交于点C ,(1)求该抛物线的表达式及点D 的坐标;(2)将抛物线平移,使点C 落在点B 处,点D 落在点E 处,求ODE 的面积; (3)如果点P 在y 轴上,PCD 与ABC 相似,求点P 的坐标.18.(2021·上海宝山区·九年级三模)如图,在直角坐标平面xOy 内,点A 在x 轴的正半轴上,点B 在第一象限内,且∠OAB =90°,∠BOA =30°,OB =4.,二次函数y =﹣x 2+bx 的图象经过点A ,顶点为点C . (1)求这个二次函数的解析式,并写出顶点C 的坐标;(2)设这个二次函数图象的对称轴l 与OB 相交于点D ,与x 轴相交于点E ,求DEDC的值; (3)设P 是这个二次函数图象的对称轴l 上一点,如果△POA 的面积与△OCE 的面积相等,求点P 的坐标.19.(2021·上海)如图,在平面直角坐标系xOy 中,抛物线24y ax bx =+-与x 轴交于点()4,0A -和点()2,0B ,与y 轴交于点C .(1)求该抛物线的表达式及点C 的坐标:(2)如果点D 的坐标为()8,0-,联结AC 、DC ,求ACD ∠的正切值;(3)在(2)的条件下,点P 为抛物线上一点,当OCD CAP ∠=∠时,求点P 的坐标.20.(2017·上海杨浦区·九年级一模)在平面直角坐标系xOy 中,抛物线2221y x mx m m =-+--+交 y 轴于点为A ,顶点为D ,对称轴与x 轴交于点H . (1)求顶点D 的坐标(用含m 的代数式表示);(2)当抛物线过点(1,2),且不经过第一象限时,平移此抛物线到抛物线22y x x =-+的位置,求平移的方向和距离;(3)当抛物线顶点D在第二象限时,如果∠ADH=∠AHO,求m的值.21.(2021·上海普陀区·)在平面直角坐标系xOy中(如图),已知抛物线y=12x2+bx+c与x轴交于点A(﹣2,0)、B(6,0),与y轴交于点C,点D是在第四象限内抛物线上的一个动点,直线AD与直线BC交于点E.(1)求b、c的值和直线BC的表达式;(2)设∠CAD=45°,求点E的坐标;(3)设点D的横坐标为d,用含d的代数式表示△ACE与△DCE的面积比.22.(2021·上海青浦·九年级二模)已知:如图,在平面直角坐标系xOy中,抛物线y=ax2+bx+3的图象与x轴交于点A(﹣1,0)和点B,与y轴交于点C,对称轴是直线x=1,顶点是点D.(1)求该抛物线的解析式和顶点D的坐标;(2)点P为该抛物线第三象限上的一点,当四边形PBDC为梯形时,求点P的坐标;(3)在(2)的条件下,点E为x轴正半轴上的一点,当tan(∠PBO+∠PEO)=52时,求OE的长.23.(2021·上海中考真题)已知抛物线2(0)y ax c a =+≠过点(3,0),(1,4)P Q .(1)求抛物线的解析式;轴于B,以AB为斜边在其左侧作等腰直角ABC.(2)点A在直线PQ上且在第一象限内,过A作AB x①若A与Q重合,求C到抛物线对称轴的距离;②若C落在抛物线上,求C的坐标.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
4
4
点 E 从点 A 出发,以每秒 1 个单位的速度沿 x 轴向左运动.过点 E 作 x 轴的垂线,分别交直线 AB、OD 于 P、Q 两点,以 PQ 为边
向右作正方形 PQMN.设正方形 PQMN 与△ACD 重叠部分(阴影部分)的面积为 S(平方单位),点 E 的运动时间为 t(秒).
(1)求点 C 的坐标.
y ax 2 bx c 只有一个交点;③方程组无解时 l 与 G 没有交点.
(6)抛物线与 x 轴两交点之间的距离:若抛物线 y ax 2 bx c 与 x 轴两交点为 A x1,0 ,B x2,0 ,由于 x1 、 x2 是方程
ax 2 bx c 0 的两个根,故
x1
x2
龙文教育学科教师辅导讲义
课题 教学目标
二次函数知识点总汇 介绍一些些能加快速度的计算公式
教学内容
3 求抛物线的顶点、对称轴的方法(1)公式法: y ax 2 bx c a x b 2 4ac b2 ,∴顶点是( b ,4ac b2 ),
2a
4a
2a 4a
对称轴是直线 x b . 2a
9.抛物线 y ax 2 bx c 中, a, b, c 的作用
(1) a 决定开口方向及开口大小,这与 y ax 2 中的 a 完全一样.
(2) b 和 a 共同决定抛物线对称轴的位置.由于抛物线 y ax 2 bx c 的对称轴是直线
x b ,故:① b 0 时,对称轴为 y 轴;② b 0 (即 a 、 b 同号)时,对称轴在 y 轴左侧;③ b 0 (即 a 、 b 异
点移动速度是 E 点移动速度的 2 倍,以 EF 为一边在 CB 的上方作等边△EFG.设 E 点移动距离为 x(x>0).
⑴△EFG 的边长是____(用含有 x 的代数式表示),当 x=2 时,点 G 的位置在_______;
⑵若△EFG 与梯形 ABCD 重叠部分面积是 y,求
①当 0<x≤2 时,y 与 x 之间的函数关系式;
(2)当 0<t<5 时,求 S 与 t 之间的函数关系式.
(3)求(2)中 S 的最大值.
9
(4)当 t>0 时,直接写出点(4, )在正方形 PQMN 内部时 t 的取值范围.
2
【参考公式:二次函数 y=ax2+bx+c 图象的顶点坐标为(
b
4ac b2 ,
).】
2a 4a
解:(1)由题意,得
;若不在此范围内,则需要考虑函数在 x1
x
x2 范围内的
2、函数平移规律(中考试题中,只占 3 分,但掌握这个知识点,对提高答题速度有很大帮助,可以大大节省做题的时间)
3、直线斜率:k来自tan y2y1
x2 x1
b为直线在y轴上的截距
4、直线方程:
一般两点斜截距
1,一般 一般 直线方程 ax+by+c=0
2a
a
a
号)时,对称轴在 y 轴右侧.
(3) c 的大小决定抛物线 y ax 2 bx c 与 y 轴交点的位置.
当 x 0 时, y c ,∴抛物线 y ax 2 bx c 与 y 轴有且只有一个交点(0, c ):
① c 0 ,抛物线经过原点; ② c 0 ,与 y 轴交于正半轴;③ c 0 ,与 y 轴交于负半轴.
式方程,简称截距式: x y 1 ab
记牢可大幅提高运算速度
5、设两条直线分别为, l1 : y k1x b1 l2 : y k2 x b2
若 l1 // l2 ,则有 l1 // l2 k1 k2 且 b1 b2 。
若 l1 l2 k1 k2 1
6、点P(x0,y0)到直线y=kx+b(即:kx-y+b=0)
A 由于在 Rt△NMG 中,∠G=60°,
所以,此时 y=
3
x2-
3 (3x-6)2= 7
3 x2 9
3 x9
3 .
48
8
2
2
Ⅱ.当 3≤x≤6 时,如图 2,点 E 在线段 BC 上,点 F 在射线 CH 上,
△EFG 与梯形 ABCD 重叠部分为△ECP, B
∵EC=6-x,
∴y=
3
(6-x)2=
(3)点 P(x,y)到原点的距离等于 x 2 y 2
5、反比例函数中反比例系数的几何意义
如下图,过反比例函数 y k (k 0) 图像上任一点 P 作 x 轴、y 轴的垂线 PM,PN,则所得的矩形 PMON 的面积 S=PM PN= x
y x xy 。 y k , xy k, S k 。 x
②当 2<x≤6 时,y 与 x 之间的函数关系式;
⑶探求⑵中得到的函数 y 在 x 取含何值时,存在最大值,并求出最大值.
A
D
G
B E→ F→
C
解:⑴ x,D 点
⑵ ①当 0<x≤2 时,△EFG 在梯形 ABCD 内部,所以 y= 3 x2; 4
②分两种情况: Ⅰ.当 2<x<3 时,如图 1,点 E、点 F 在线段 BC 上, △EFG 与梯形 ABCD 重叠部分为四边形 EFNM, ∵∠FNC=∠FCN=30°,∴FN=FC=6-2x.∴GN=3x-6.
根.抛物线与 x 轴的交点情况可以由对应的一元二次方程的根的判别式判定: ①有两个交点 0 抛物线与 x 轴相交; ②有一个交点(顶点在 x 轴上) 0 抛物线与 x 轴相切; ③没有交点 0 抛物线与 x 轴相离. (4)平行于 x 轴的直线与抛物线的交点 同(3)一样可能有 0 个交点、1 个交点、2 个交点.当有 2 个交点时,两交点的纵坐标相等,设纵坐标为 k ,则横坐标是
b a
,
x1
x2
c a
AB x1 x2
x1 x2 2
x1 x2 2 4x1x2
b 2 4c a a
b2 4ac
a
a
6、点到坐标轴及原点的距离 点 P(x,y)到坐标轴及原点的距离:
(1)点 P(x,y)到 x 轴的距离等 y (2)点 P(x,y)到 y 轴的距离等于 x
3 x2 3
3 x9
3 .
8
8
2
2
G D
M
N
E 图1
FC
3 ⑶当 0<x≤2 时,∵y= x2 在 x>0 时,y 随 x 增大而增大,
4
∴x=2 时,y 最大= 3 ;
当 2<x<3 时,∵y= 7
3 x2 9
3 x9
3
18
9
在 x= 时,y 最大=
3
;
G
8
2
2
7
7
当 3≤x≤6 时,∵y=
3
10
当 0<t≤ 时,S=t(10-2t),即 S=-2t2+10t.
3
10
当 ≤t<5 时,S=(10-2t)2,即 S=4t2-40t+100.
3
10
5 25 5
25
(3)当 0<t≤ 时,S=-2(t- )2+ ,∴t= 时,S 最大值= .
3
22
2
2
10
当 ≤t<5 时,S=4(t-5)2,∵t<5 时,S 随 t 的增大而减小,
(2)令 y=0,得二次函数 y x2 4x 5 的图象与 x 轴
的另一个交点坐标 C(5, 0).……………5 分
由于 P 是对称轴 x 2 上一点,
连结 AB,由于 AB OA2 OB2 26 ,
要使△ABP 的周长最小,只要 PA PB 最小.…………………………………6 分 由于点A 与点C 关于对称轴 x 2 对称,连结 BC 交对称轴于点 P,则 PA PB = BP+PC =BC,根据两点之间,线段最短,可得 PA PB
(1)求该二次函数的解析式;
(2)已知该函数图象的对称轴上存在一点 P,使得△ABP 的周长最小.请求出点 P 的坐标.
0 a (1)2 4 (1) c,
解:(1)根据题意,得
5
a
02
4
0
c.
…2 分
a 1, 解得 c 5.
…………………………3 分
∴二次函数的表达式为 y x2 4x 5 .……4 分
(2)配方法:运用配方的方法,将抛物线的解析式化为 y a x h 2 k 的形式,得到顶点为( h , k ),对称轴是直线 x h .
(3)运用抛物线的对称性:由于抛物线是以对称轴为轴的轴对称图形,所以对称轴的连线的垂直平分线是抛物线的对称轴,对称轴与 抛物线的交点是顶点. 用配方法求得的顶点,再用公式法或对称性进行验证,才能做到万无一失.
的距离:
d
kx0 y0 b k 2 (1)2
kx0 y0 b k2 1
对于点 P(x0,y0)到直线滴一般式方程 ax+by+c=0 滴距离有
d ax0 by0 c a2 b2
常用记牢
2、 如图,已知二次函数 y ax2 4x c 的图象与坐标轴交于点 A(-1, 0)和点
B(0,-5).
3 8
x2
33 2
x
93 2
在
x<6
时,y
随
x
增大而A减小,
D
93
∴x=3 时,y 最大=
.
8
P
18
93
综上所述:当 x= 时,y 最大=
7
7
B
E
C
F
H
图2
如图,直线 y 3 x 6 分别与 x 轴、y 轴交于 A、B 两点;直线 y 5 x 与 AB 交于点 C,与过点 A 且平行于 y 轴的直线交于点 D.