应变应变率超声测量技术
应变应变率超声测量技术

应变应变率超声测量技术应变( strain) , 是指心肌发生形变的能力, 即心肌长度的变化值占心肌原长度的百分数, 公式为: s=(l - lo)/lo=Δl/lo 式中l 为心肌纤维长度变化后( 收缩或者舒张) 两点之间的瞬时距离, l o 为心肌纤维长度变化( 收缩或者舒张) 前两点之间的原始距离, �l 为两点之间距离的变化值, s 为该心肌纤维的应变。
s 为负值代表心肌纤维缩短或者变薄, 为正值代表心肌纤维延长或者增厚。
应变率( strain rate) 是指心肌发生形变的速度, 是心肌运动在超声束方向上的速度梯度, 即局部两点之间的速度差除以两点之间的距离, 公式表示为: SR =(va - v b)/d 其中, SR 即距离为d 的两点间心肌的应变率, v a 和vb 指距离为d 的两点的心肌缩短速度,。
一.多普勒组织成像技术(Doppler Tissue Imaging,DTI)是在传统的探查心腔内血流的彩色多普勒仪器的基础上改变多普勒滤波系统,出去血流产生的高速低振幅的频移信号,保留心肌运动产生的低速高振幅的频移信号,并经相关系统处理以彩色编码显示出来,能定量测量室壁运动速度。
超声的组织多普勒成像(TDI)能够在高帧频的情况下提供实时的局部速度信息,同时在二维模式下具有高的轴向和足够的侧向分辨率,可以实时测量心肌各点的运动速度,根据两点间的运动速度变化和距离变化得到心肌的应变率,但目前此种方法还仅限于显示纵行心肌的运动。
众所周知,心肌的机械运动是一种螺旋扭转运动,这与心肌纤维独特的螺旋状排列结构有关,而这种心肌纤维结构在心室扭转运动中起到关键作用,它使心脏在心动周期中发生纵向、环向和径向三个方向的运动,每种运动对心脏功能都有很大的影响。
因此TDI技术测定应变及应变率具有其局限性。
局限性:多普勒组织成像技术运用多普勒原理,存在于多普勒血流显像相似的局限性,多普勒声束与心肌运动方向间夹角,心脏在心动周期中的整体运动,呼吸运动,仪器增益调节等均可影响其测量结果。
心肌应变参数

心肌应变参数心肌应变参数是用来评估心脏肌肉在收缩和舒张过程中的变化和功能的指标。
它可以通过超声心动图技术来测量,对于评估心脏功能和心脏病的诊断和治疗具有重要的临床意义。
本文将从心肌应变参数的定义、测量方法、临床应用等方面进行阐述。
一、心肌应变参数的定义心肌应变参数是指心肌在收缩和舒张过程中的变化量和速率。
它可以通过超声心动图中的应变率和应变图来反映心肌的收缩和舒张功能。
心肌应变参数包括纵向应变、横向应变和径向应变等。
心肌应变参数的测量依赖于超声心动图技术。
在超声心动图中,可以通过应变率和应变图来测量心肌的收缩和舒张变化。
应变率是指心肌在单位时间内的应变速率,可以通过测量心肌的变形速度来计算得出。
应变图则是将心肌的收缩和舒张变化以图形的形式展示出来,可以直观地观察心肌的变化情况。
三、心肌应变参数的临床应用心肌应变参数在临床上有广泛的应用价值。
首先,它可以用于评估心脏功能。
通过测量心肌的应变率和应变图,可以了解心肌的收缩和舒张功能是否正常,从而评估心脏的整体功能状态。
其次,心肌应变参数对于心脏病的诊断和治疗也具有重要的意义。
心肌应变参数可以帮助医生判断心肌是否存在异常变化,进一步确定心脏病的类型和程度,并指导后续的治疗方案。
此外,心肌应变参数还可以用于评估心脏手术的效果。
通过术前和术后的心肌应变参数比较,可以判断手术的疗效和恢复情况。
在临床应用过程中,心肌应变参数还需注意一些问题。
首先,应正确选择测量方法和指标。
不同的心肌应变参数具有不同的临床意义,选择合适的参数进行评估十分重要。
其次,应注意测量的准确性和可重复性。
心肌应变参数的测量结果可能受到多种因素的影响,如操作技术、设备性能等,因此需要确保测量的准确性和可靠性。
最后,心肌应变参数的解读需要结合临床情况进行综合分析。
心肌应变参数只是评估心脏功能的一项指标,其结果需结合患者的病史、体征和其他检查结果来进行综合判断。
心肌应变参数是评估心脏功能和心脏病的重要指标,通过超声心动图技术可以测量心肌在收缩和舒张过程中的变化和功能。
低应变和声波透射法比例

低应变和声波透射法比例摘要:一、低应变和声波透射法的定义及原理二、低应变和声波透射法的比例关系三、比例在实际工程中的应用与优势四、注意事项及建议正文:随着建筑行业的不断发展,结构检测技术也在不断更新和完善。
其中,低应变和声波透射法作为一种无损检测方法,在结构工程领域得到了广泛的应用。
本文将探讨低应变和声波透射法的比例关系,以及在实际工程中的应用与优势。
一、低应变和声波透射法的定义及原理1.低应变法:低应变法是一种基于应变测量的动态检测方法,通过对构件施加激振力,使其产生应变,然后通过应变计测量应变值,从而评估构件的性能。
2.声波透射法:声波透射法是一种基于声波传播的检测方法,通过发射器向构件中发射声波,接收器接收穿过构件的声波,分析声波的传播特性,从而判断构件的性能。
二、低应变和声波透射法的比例关系低应变和声波透射法在实际应用中,通常会按照一定的比例进行结合使用。
一般来说,低应变法适用于检测混凝土构件的缺陷和性能,而声波透射法适用于检测混凝土构件的厚度、空洞等。
两者结合使用,可以更全面地评估构件的性能。
在比例关系的确定上,主要依据构件的实际情况和检测目的。
一般情况下,低应变法和声波透射法的比例为1:10至1:50。
具体比例需根据工程实际情况和检测要求进行调整。
三、比例在实际工程中的应用与优势1.提高检测准确性:低应变和声波透射法的结合使用,可以有效地检测出构件的缺陷和性能,提高检测准确性。
2.降低检测成本:两种方法相互补充,减少了单一方法的局限性,降低了检测成本。
3.提高工程质量:通过对构件进行全面检测,有利于发现潜在问题,为工程质量提供保障。
4.缩短检测周期:低应变和声波透射法具有较高的检测效率,可以缩短检测周期,有利于工程进度。
四、注意事项及建议1.在选择检测方法时,应充分了解构件的实际情况和检测目的,合理选择低应变和声波透射法的比例。
2.检测设备的选择和使用应符合相关规范要求,确保检测结果的准确性。
桩基检测方案(低应变、超声波、钻芯及高应变法) 2

桩基检测方案工程名称:建设单位:检测方法:低应变法、声波透射法、钻芯法及高应变法编制单位:编制人:审批人:编制日期:一、工程概况本项目位于广东省,采用冲孔灌注桩基础,桩径为φ1200~φ1800mm,设计混凝土强度为C35,总桩数为72根。
二、检测目的和依据2.1 检测依据根据国家行业标准《建筑基桩检测技术规范》JGJ106-2003,现提供基桩检测的详细施测方案。
2.2 检测目的根据相关规范、规程要求及本项目的特点,确定采用以下检测方法进行检测:(1)低应变法检测:目的是检测桩身结构完整性,并为高应变和钻芯检测桩确定桩位提供依据。
(2)声波透射法检测:目的是检测桩身结构完整性。
(3)钻芯法检测:目的是检验桩身砼质量、桩身砼强度是否满足设计要求;桩底沉渣是否符合设计及施工验收规范要求;桩底持力层是否符合设计要求;施工记录桩长是否属实。
(4)高应变法检测:目的是检测单桩竖向抗压承载力是否满足设计要求。
三、检测项目和具体内容3.1 低应变检测3.1.1 检测数量根据本项目的要求,确定抽检数量为37根。
检测桩号由相关单位确定3.1.2 检测设备检测仪器采用岩海公司出产的RS-1616K(p)基桩动测仪。
3.1.3 检测原理基桩反射波法检测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的到时、幅值和波形特征,就能判断桩的完整性。
假设桩为一维线性弹性杆,其长度为L,横截面积为A,弹性模量为E,质量密度为ρ,弹性波速为C(C2 = E/ρ),广义波阻抗为Z=AρC,推导可得桩的一维波动方程:∂2u/∂t2=C2∂2u/∂x2-R/ρA假设桩中某处阻抗发生变化,当应力波从介质I(阻抗为Z1)进入介质II(阻抗为Z2)时,将产生速度反射波Vr和速度透射波Vt。
令桩身质量完好系数β=Z2/Z1,则有Vr=Vi×(1-β) /(1+β)Vt=Vi×2/(1+β)缺陷的程度根据缺陷反射的幅值定性确定,缺陷位置根据反射波的时间tx由下式确定Lx=C×tx/23.1.4 技术要求1、检测桩头处理(由施工单位完成)(1)凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,使桩顶表面平整干净无且无水。
应变应变率超声测量技术

应变应变率超声测量技术应变( strain) , 是指心肌发生形变的能力, 即心肌长度的变化值占心肌原长度的百分数, 公式为: s=(l - lo)/lo=Δl/lo 式中l 为心肌纤维长度变化后( 收缩或者舒张) 两点之间的瞬时距离, l o 为心肌纤维长度变化( 收缩或者舒张) 前两点之间的原始距离, l 为两点之间距离的变化值, s 为该心肌纤维的应变。
s 为负值代表心肌纤维缩短或者变薄, 为正值代表心肌纤维延长或者增厚。
应变率( strain rate) 是指心肌发生形变的速度, 是心肌运动在超声束方向上的速度梯度, 即局部两点之间的速度差除以两点之间的距离, 公式表示为: SR =(va - v b)/d 其中, SR 即距离为d 的两点间心肌的应变率, v a 和vb 指距离为d 的两点的心肌缩短速度,。
一.多普勒组织成像技术(Doppler Tissue Imaging,DTI)是在传统的探查心腔内血流的彩色多普勒仪器的基础上改变多普勒滤波系统,出去血流产生的高速低振幅的频移信号,保留心肌运动产生的低速高振幅的频移信号,并经相关系统处理以彩色编码显示出来,能定量测量室壁运动速度。
超声的组织多普勒成像(TDI)能够在高帧频的情况下提供实时的局部速度信息,同时在二维模式下具有高的轴向和足够的侧向分辨率,可以实时测量心肌各点的运动速度,根据两点间的运动速度变化和距离变化得到心肌的应变率,但目前此种方法还仅限于显示纵行心肌的运动。
众所周知,心肌的机械运动是一种螺旋扭转运动,这与心肌纤维独特的螺旋状排列结构有关,而这种心肌纤维结构在心室扭转运动中起到关键作用,它使心脏在心动周期中发生纵向、环向和径向三个方向的运动,每种运动对心脏功能都有很大的影响。
因此TDI技术测定应变及应变率具有其局限性。
局限性:多普勒组织成像技术运用多普勒原理,存在于多普勒血流显像相似的局限性,多普勒声束与心肌运动方向间夹角,心脏在心动周期中的整体运动,呼吸运动,仪器增益调节等均可影响其测量结果。
桩基检测方案(低应变、超声波、钻芯及高应变法)

桩基检测方案工程名称:建设单位:检测方法:低应变法、声波透射法、钻芯法及高应变法编制单位:编制人:审批人:编制日期:一、工程概况本项目位于广东省,采用冲孔灌注桩基础,桩径为φ1200~φ1800mm,设计混凝土强度为C35,总桩数为72根。
二、检测目的和依据2.1 检测依据根据国家行业标准《建筑基桩检测技术规范》JGJ106-2003,现提供基桩检测的详细施测方案。
2.2 检测目的根据相关规范、规程要求及本项目的特点,确定采用以下检测方法进行检测:(1)低应变法检测:目的是检测桩身结构完整性,并为高应变和钻芯检测桩确定桩位提供依据。
(2)声波透射法检测:目的是检测桩身结构完整性。
(3)钻芯法检测:目的是检验桩身砼质量、桩身砼强度是否满足设计要求;桩底沉渣是否符合设计及施工验收规范要求;桩底持力层是否符合设计要求;施工记录桩长是否属实。
(4)高应变法检测:目的是检测单桩竖向抗压承载力是否满足设计要求。
三、检测项目和具体内容3.1 低应变检测3.1.1 检测数量根据本项目的要求,确定抽检数量为37根。
检测桩号由相关单位确定3.1.2 检测设备检测仪器采用岩海公司出产的RS-1616K(p)基桩动测仪。
3.1.3 检测原理基桩反射波法检测桩身结构完整性的基本原理是:通过在桩顶施加激振信号产生应力波,该应力波沿桩身传播过程中,遇到不连续界面(如蜂窝、夹泥、断裂、孔洞等缺陷)和桩底面时,将产生反射波,检测分析反射波的到时、幅值和波形特征,就能判断桩的完整性。
假设桩为一维线性弹性杆,其长度为L,横截面积为A,弹性模量为E,质量密度为ρ,弹性波速为C(C2 = E/ρ),广义波阻抗为Z=AρC,推导可得桩的一维波动方程:∂2u/∂t2=C2∂2u/∂x2-R/ρA假设桩中某处阻抗发生变化,当应力波从介质I(阻抗为Z1)进入介质II(阻抗为Z2)时,将产生速度反射波Vr和速度透射波Vt。
令桩身质量完好系数β=Z2/Z1,则有Vr=Vi×(1-β) /(1+β)Vt=Vi×2/(1+β)缺陷的程度根据缺陷反射的幅值定性确定,缺陷位置根据反射波的时间tx由下式确定Lx=C×tx/23.1.4 技术要求1、检测桩头处理(由施工单位完成)(1)凿去桩顶浮浆、松散或破损部分,露出坚硬的混凝土表面,使桩顶表面平整干净无且无水。
超声心肌应变率显像技术

超声心肌应变率显像技术及其临床应用作者:胡才宝影像之星/gehjm 2008-12-01 10:58:51心肌应变率显像心肌应变率显像(strain rate imaging, SRI)是一项定量评价心肌功能的组织多普勒超声技术,可进行毫米级定量,是评价心脏舒缩功能和室壁运动的新方法。
本文对这一技术的基本原理和临床应用情况作一简述。
1 SRI的相关参数和检测1.1 应变和应变率:应变(strain,ε)是指物体的形变,即:ε=△L/(L/L0)/L0。
ε为纵向应变,△L为长度变化绝对值,L0为基线长度。
ε负值表示缩短,正值表示延长;应变率(strain rate, SR)是指单位时间内的应变。
心肌应变反映的是心肌在张力作用下发生变形的能力;应变率则反映心肌发生变形的速度。
1.2 SRI的常规检测方法:在心尖四腔和胸骨旁短轴切面,采集彩色多谱勒心肌图像,接心电图,根据心电图R-R间期采集连续3-5个心动周期图像,存储图象,用于后续脱机分析,可获得ε和SR。
2 SRI的临床应用2.1 冠心病患者局部心肌功能评价:Kukulski[1]等对61例稳定型心绞痛患者行PTCA期间进行SRI 研究,发现后冠状动脉或回旋支阻塞时,其横向和纵向的收缩期速度、SR降低。
Voigt等发现心肌缺血节段都存在收缩后短缩时间(PSS),认为PSS与最大ε的比值是识别负荷期间缺血的最佳定量指标[2]。
收缩舒张转换时间(T-CEC)也是评价心肌缺血的敏感指标,T-CEC在缺血节段延长,且不受缺血持续时间的影响;标准化的T-CEC分析能定量缺血心肌的范围。
此外,SRI可用于鉴定同一心肌缺血患者心脏中的三种心肌节段;缺血、顿抑和疤痕区,其有效性已经被多巴酚丁胺负荷超声、冠脉造影、正电子发射断层造影所证实。
2.2 在多巴酚丁胺负荷试验中的应用:SRI技术与多巴酚丁胺负荷试验结合,可以提高冠心病的诊断水平。
Voigt[2]等发现多巴酚丁胺负荷试验可以提高SRI诊断冠心病的敏感度和特异度。
应变应变率超声量技术

应变应变率超声测量技术应变( strain) , 是指心肌发生形变的能力, 即心肌长度的变化值占心肌原长度的百分数, 公式为: s=(l - lo)/lo=Δl/lo 式中l 为心肌纤维长度变化后( 收缩或者舒张) 两点之间的瞬时距离, l o 为心肌纤维长度变化( 收缩或者舒张) 前两点之间的原始距离, �l 为两点之间距离的变化值, s 为该心肌纤维的应变。
s 为负值代表心肌纤维缩短或者变薄, 为正值代表心肌纤维延长或者增厚。
应变率( strain rate) 是指心肌发生形变的速度, 是心肌运动在超声束方向上的速度梯度, 即局部两点之间的速度差除以两点之间的距离, 公式表示为: SR =(va - v b)/d 其中, SR 即距离为d 的两点间心肌的应变率, v a 和vb 指距离为d 的两点的心肌缩短速度,。
一.多普勒组织成像技术(Doppler Tissue Imaging,DTI)是在传统的探查心腔内血流的彩色多普勒仪器的基础上改变多普勒滤波系统,出去血流产生的高速低振幅的频移信号,保留心肌运动产生的低速高振幅的频移信号,并经相关系统处理以彩色编码显示出来,能定量测量室壁运动速度。
超声的组织多普勒成像(TDI)能够在高帧频的情况下提供实时的局部速度信息,同时在二维模式下具有高的轴向和足够的侧向分辨率,可以实时测量心肌各点的运动速度,根据两点间的运动速度变化和距离变化得到心肌的应变率,但目前此种方法还仅限于显示纵行心肌的运动。
众所周知,心肌的机械运动是一种螺旋扭转运动,这与心肌纤维独特的螺旋状排列结构有关,而这种心肌纤维结构在心室扭转运动中起到关键作用,它使心脏在心动周期中发生纵向、环向和径向三个方向的运动,每种运动对心脏功能都有很大的影响。
因此TDI技术测定应变及应变率具有其局限性。
局限性:多普勒组织成像技术运用多普勒原理,存在于多普勒血流显像相似的局限性,多普勒声束与心肌运动方向间夹角,心脏在心动周期中的整体运动,呼吸运动,仪器增益调节等均可影响其测量结果。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
应变应变率超声测量技术
应变( strain) , 是指心肌发生形变的能力, 即心肌长度的变化值占心肌原长度的百分数, 公式为: s=(l - lo)/lo=Δl/lo 式中l 为心肌纤维长度变化后( 收缩或者舒张) 两点之间的瞬时距离, l o 为心肌纤维长度变化( 收缩或者舒张) 前两点之间的原始距离, �l 为两点之间距离的变化值, s 为该心肌纤维的应变。
s 为负值代表心肌纤维缩短或者变薄, 为正值代表心肌纤维延长或者增厚。
应变率( strain rate) 是指心肌发生形变的速度, 是心肌运动在超声束方向上的速度梯度, 即局部两点之间的速度差除以两点之间的距离, 公式表示为: SR =(va - v b)/d 其中, SR 即距离为d 的两点间心肌的应变率, v a 和vb 指距离为d 的两点的心肌缩短速度,。
一.多普勒组织成像技术(Doppler Tissue Imaging,DTI)是在传统的探查心腔内血流的彩色多普勒仪器的基础上改变多普勒滤波系统,出去血流产生的高速低振幅的频移信号,保留心肌运动产生的低速高振幅的频移信号,并经相关系统处理以彩色编码显示出来,能定量测量室壁运动速度。
超声的组织多普勒成像(TDI)能够在高帧频的情况下提供实时的局部速度信息,同时在二维模式下具有高的轴向和足够的侧向分辨率,可以实时测量心肌各点的运动速度,根据两点间的运动速度变化和距离变化得到心肌的应变率,但目前此种方法还仅限于显示纵行心肌的运动。
众所周知,心肌的机械运动是一种螺旋扭转运动,这与心肌纤维独特的螺旋状排列结构有关,而这种心肌纤维结构在心室扭转
运动中起到关键作用,它使心脏在心动周期中发生纵向、环向和径向三个方向的运动,每种运动对心脏功能都有很大的影响。
因此TDI技术测定应变及应变率具有其局限性。
局限性:多普勒组织成像技术运用多普勒原理,存在于多普勒血流显像相似的局限性,多普勒声束与心肌运动方向间夹角,心脏在心动周期中的整体运动,呼吸运动,仪器增益调节等均可影响其测量结果。
二.速度向量成像(velocity vector imaging,VVI)应变率可以通过心肌运动速度计算得出:
SR = (Va - Vb)/d,
单位:1/s,其(V a−V b)表示a、b两点的即时组织速度差,d 表示两点之间的即时距离。
心肌运动示意图
因此,测得了心肌即时的组织速度,就可以求得心肌应变力和应变率,以二维动态图像为基础(而不是使用组织多普勒的方法),利用室壁追踪技术来测定组织动速度,从而创建了全新的心肌矢量应变力和应变率成像方法。
在二维动态图像上,操作者手动描记心内膜后,设备以图像亮度为基础逐个象素自动分析和补偿心脏的局部运动平移,拉长和增厚)并获得瞬时速度,速度在二维图像上以矢量方式叠加显示,箭头长度表示速度的大小,箭头方向表示运动方向(图一)。
图一心肌运动向量图
根据从二维图像所获得的组织速度,可以通过室壁追踪技术求得心肌全切面、扇区、节段和各点的应变力、应变率等,并将其以彩色
编码图、主体拓朴及曲线等形式显示(图二),也可以将心肌局部节段应变力采用三维立体拓朴图形式显示。
图二心肌速度应变力应变率
三。
应变率成像技术( strain rate imaging, SRI) 是在组织多普勒基础上发展起来的判断心肌上两点间运动速度阶差的新技术。
用于评价心动周期中心及长度随时间的变化情况,反映局部心肌组织受力后的形变能力。
SRI有彩色二维显像剂彩色M型显像两种现象方式,前者应变率的显示可用彩色图表示,即对心肌形变的大小和方向进行编码。
用黄-红色彩编码浮想应变率,用蓝绿-蓝色编码正向应变率,低应变率或无应变用绿色编码。
颜色的深浅与应变能力的大小一致,即颜色越深,应变能力越大。
后者能显示心肌空间与时间分布的关系,可同时得到心及不同阶段的应变率,按照M型的应变率进行彩色编码。
在收缩期,形变指向心尖为负值,以黄到红色便是。
在舒张期,形变背向心尖为政治,用蓝色表示。
应变率曲线和应变曲线显示的是心肌某一部分在心动周期内的形变情况,应变率曲线的纵轴是形变速率,单位是S-1, 横轴是时间信息。
SR的时间积分就是应变曲线。
SRI技术可从时间和空间两个方面反映心及本身的组织特性,可用心肌速度的空间梯度来评估。
其测量结果不受心脏整体运动,心脏旋转及相邻心肌节段运动或限制效应的影响。
通过SRI的应用,可以准确反映心肌纤维应变的程度,科学地定量评价室壁运动和心肌缺血。
SRI技术可定量心肌的变形程度,能提供关于心及收缩起点和峰值时间的信息。
相对于组织多普勒来说,。