运放的超前补偿

运放的超前补偿
运放的超前补偿

运放的超前补偿

TI 的运放手册《Op Amps For Everyone 》的第八章“电压反馈运放的补偿”讲过运放的超前补偿,个人觉得讲得不是很明白,以下用几个图和公式来更清楚地说明这个问题,作者水平有限欢迎各位指正。

in out aV V = (2)

out f g g

return V C

R R R V //+=

(3)

其中a 是运放的增益,注意推导开环增益不能使用“虚短”“虚断”的概念,假设运放的反相输入端2脚断开,通过求Vreturn 和Vin 的关系可以算出开环增益,综合(1),(2),(3)可以得出:

理想的同相运放开环增益如(5)式所示;

g

f g R R R a

A +=β (5)

一般运放的增益a 可以用二阶式子代替(假设1/1τ<1/2τ):

)

1)(1(1

21++=

s s a ττ (6)

同理,比较(4)式和(5)

式,超前补偿则可理解为,开环传函引入了一个新的零点和一个新的极点,但是Rf>Rg||Rf ,所以在波特图上,零点的位置总是在极点位置的左边,可

补偿的时候,我们总是设法让(4)式中的零点与极点1/2τ相抵消。下面从波特图上分析,波特图如下图所示:

dB

0dB

1/R

F C

1/(R F ||R G )C

lg(f)

图 2

图中可以看出,补偿后的开环传递函数增益明显“上移”,联想到运放的增益补偿就可以初步推断:开环增益增大一般会导致闭环增益减小,从而闭环波特图下移,带宽减小,噪声减小,稳定性增加。

可以计算得出,经过补偿后,系统的闭环传递函数为:

(7) 图1所示电路图若采用反相结构,则闭环传递函数为:

(8)

而未补偿的理想的闭环传递函数为:

(9)

分析(7)、(8)两式均可以发现,相对于未补偿之前的运放,反相运放引入了极点,同相

运放引入的极点总是在引入的零点左边。故反映到闭环波特图上就能发现,它们的带宽均减小,带宽减小故噪声减小。实际上,这就是一个一阶低通滤波器。

下面看超前补偿对于运放寄生电容的补偿示例:

如图3所示,加电容C 的目的是为了消除运放输入寄生电容Cs 对稳定性的影响。Cs 来自哪里? ——来自封装的引脚,或者PCB 走线,又或者图中Rg 的寄生电容。Cs 的大小一般在几pF

左右。分析的时候可以用一个电容并联在Rg 两端来等效该寄生电容。

图 3

可以初步判断,一旦输入信号Vin 的频率较高,C1的影响便不可忽略了。

可见,系统开环传递函数引入了一个极点,这个极点有可能导致系统不稳定。

下面推导引入了补偿的运放的开环传递函数,电路图如下图:

图 4

由图可知,

21212

11211//////////C C C C R R C C R R R C R R a C R C R C R a V V A f g f g g

g f f g g in return

++++

=+==

(β

=21212

11//C C C C R R C C C R R R R a

f g f f g g

++++)

对上面的结果进行拉氏变换求得开环传递函数:

1

//1

212++++=s C C R R s C R R R R a

A f g f f g g

β (11)

为了让C2完全补偿掉C1的影响,必须让2C R f =)(21//C C R R f g +,化简后可得补偿的条件:

2C R f =1C R g (12)

这里的补偿跟前面所讲的“超前补偿”又有所区别,因为这里零点的位置并没有要求与极点1/2τ的位置一致,这是需要注意的地方。

当然,这只是式子,实际应用中C1并不知道具体值,所以补偿电容得凭经验和实

际调试去选择。

前面的分析相必都不难,仔细观察(9)式,你会发现什么?

如果你了解阻容分压的原理,你会发现,这不就是阻容分压器么?

可以推出条件

2211C R C R =

可以发现,这个条件跟咱们超前补偿的条件是一模一样的,有没有发现,知识都是相通的,通过阻容分压器反过来去理解运放的超前补偿,不就是在反馈电阻并联一个电容,使得运放的反馈点的电压不随频率变化,而只随幅值变化么?想必,你已经有更多的理解了吧!

理解运放的频率补偿和单位增益稳定

运放的电压追随电路,如图1所示,利用虚短、虚断,一眼看上去简单 明了,没有什么太多内容需要注意,那你可能就大错特错了。理解好运放的 电压追随电路,对于理解运放同相、反相、差分、以及各种各样的运放的电路,都有很大的帮助。 图1 运放电压追随电路 电压追随电路分析 如果我们连接运放的输出到它的反相输入端,然后在同相输入端施加一 个电压信号,我们会发现运放的输出电压会很好的追随着输入电压。 假设初始状态运放的输入、输出电压都为0V,然后当Vin从0V开始增 加的时候,Vout也会增加,而且是往正电压的方向增加。这是因为假设Vin 突然增大,Vout还没有响应依然是0V的时候,Ve=Vin-Vout是大于0的, 所以乘上运放的开环增益,Vout=Ve*A,使得运放的输出Vout开始往正电压 的方向增加。 当随着Vout增加的时候,输出电压被反馈回到反相输入端,然后会减 小运放两个输入端之间的压差,也就是Ve会减小,在同样的开环增益的情 况下,Vout自然会降低。最终的结果就是,无论输入是多大的输入电压(当 然是在运放的输入电压范围内),运放始终会输出一个十分接近Vin的电压,但是这个输出电压Vout是刚好低于Vin的,以保证的运放两个输入端之间 有足够的电压差Ve,来维持运放的输出,也就是Vout=Ve*A。 运放电路中的负反馈 这个电路很快就会达到一个稳定状态,输出电压的幅值会很准确的维持 运放两个输入端之间的压差,这个压差Ve反过来会产生准确的运放输出电 压的幅值。将运放的输出与运放的反相输入端连接起来,这样的方式被称为 负反馈,这是使系统达到自稳定的关键。这不仅仅适用于运放,同样适用于 任何常见的动态系统。这种稳定使得运放具备工作在线性模式的能力,而不 是仅仅处于饱和的状态,全“开”或者全“关”,就像它被用于没有任何负 反馈的比较器一样。 由于运放的增益很高,在运放反相输入端维持的电压几乎与Vin相等。 举例来说,一个运放的开环增益为200 000。如果Vin等于6V,这时输出电 压会是5.999 970 000 149 999V。这在运放的输入端产生了足够的电压差 Ve=6V-5.999 970 000 149 999V=29.999 85uV,这个电压会被放大然后在 输出端产生幅值为5.999 970 000 149 999V的电压,从而这个系统会稳定 在这里。正如你所见,29.999 85uV是一个很小的电压,因此对于实际计算 来说,我们可以认为由负反馈维持的运放两个输入端之间的压差Ve=0V,整 个过程如图2所示。这也就是我们熟悉的“虚短”,而由于运放的两个输入

运放的超前补偿

运放的超前补偿 TI 的运放手册《Op Amps For Everyone 》的第八章“电压反馈运放的补偿”讲过运放的超前补偿,个人觉得讲得不是很明白,以下用几个图和公式来更清楚地说明这个问题,作者水平有限欢迎各位指正。 in out aV V = (2) out f g g return V C R R R V //+= (3) 其中a 是运放的增益,注意推导开环增益不能使用“虚短”“虚断”的概念,假设运放的反相输入端2脚断开,通过求Vreturn 和Vin 的关系可以算出开环增益,综合(1),(2),(3)可以得出: 理想的同相运放开环增益如(5)式所示; g f g R R R a A +=β (5)

一般运放的增益a 可以用二阶式子代替(假设1/1τ<1/2τ): ) 1)(1(1 21++= s s a ττ (6) 同理,比较(4)式和(5) 式,超前补偿则可理解为,开环传函引入了一个新的零点和一个新的极点,但是Rf>Rg||Rf ,所以在波特图上,零点的位置总是在极点位置的左边,可 补偿的时候,我们总是设法让(4)式中的零点与极点1/2τ相抵消。下面从波特图上分析,波特图如下图所示: dB 0dB 1/R F C 1/(R F ||R G )C lg(f) 图 2 图中可以看出,补偿后的开环传递函数增益明显“上移”,联想到运放的增益补偿就可以初步推断:开环增益增大一般会导致闭环增益减小,从而闭环波特图下移,带宽减小,噪声减小,稳定性增加。 可以计算得出,经过补偿后,系统的闭环传递函数为: (7) 图1所示电路图若采用反相结构,则闭环传递函数为: (8) 而未补偿的理想的闭环传递函数为:

自控课设MATLAB超前滞后校正概要

课程设计任务书 学生姓名: 张弛 专业班级: 电气1002班 指导教师: 刘志立 工作单位: 自动化学院 题 目: 用MATLAB 进行控制系统的滞后-超前校正设计 初始条件:已知一单位反馈系统的开环传递函数是 ) 2)(1()(++= s s s K s G 要求系统的静态速度误差系数110-≥S K v , 45≥γ。 要求完成的主要任务: (包括课程设计工作量及其技术要求,以及说明书撰写等具体要 求) 1、 M ATLAB 作出满足初始条件的最小K 值的系统伯德图,计算系统的幅值裕量和相位裕量。 2、前向通路中插入一相位滞后-超前校正,确定校正网络的传递函数。 3、用MATLAB 画出未校正和已校正系统的根轨迹。 4、用Matlab 对校正前后的系统进行仿真分析,画出阶跃响应曲线,计算其时域性能指标。 5、课程设计说明书中要求写清楚计算分析的过程,列出MATLAB 程序和MATLAB 输出。说明书的格式按照教务处标准书写。 时间安排: 指导教师签名: 年 月 日 系主任(或责任教师)签名: 年 月 日

摘要 (3) 1基于频率响应法校正设计概述 (4) 2串联滞后-超前校正原理及步骤 (5) 2.1滞后超前校正原理 (5) 2.2滞后-超前校正的适用范围 (6) 2.3串联滞后-超前校正的设计步骤 (6) 3串联滞后-超前校正的设计 (7) 3.1待校正系统相关参数计算及稳定性判别 (7) 3.1.1判断待校正系统稳定性 (7) 3.1.2绘制待校正系统的伯德图 (8) 3.1.3绘制待校正系统的根轨迹图 (9) 3.1.4绘制待校正系统的单位阶跃响应曲线 (10) 3.1.5利用SIMULINK进行控制系统建模仿真 (11) 3.2滞后超前-网络相关参数的计算 (12) 3.3对已校正系统的验证及稳定性分析 (15) 3.3.1绘制已校正系统的伯德图 (15) 3.3.2判断已校正系统的稳定性 (16) 3.3.3绘制已校正系统的根轨迹图 (17) 3.3.4绘制已校正系统的单位阶跃响应曲线 (18) 3.3.5利用SIMULINK进行控制系统建模仿真 (19) 3.3.6串联滞后-超前校正设计小结 (20) 4心得体会 (21) 参考文献 (21) 附录 (22)

CMOS二级密勒补偿运算放大器的设计

课程设计报告 设计课题: CMOS二级密勒补偿运算放大器的设计 姓名: XXX 专业:集成电路设计与集成系统 学号: 1115103004 日期 2015年1月17日 指导教师: XXX 国立华侨大学信息科学与工程学院

一:CMOS二级密勒补偿运算放大器的设计 1:电路结构 最基本的CMOS二级密勒补偿运算跨导放大器的结构如下图,主要包括四部分:第一级PMOS输入对管差分放大电路,第二级共源放大电路,偏置电路和相位补偿电路。 2:电路描述: 输入级放大电路由M1~M5组成。M1和M2组成PMOS差分输入对管,差分输入与单端输入相比可以有效抑制共模信号干扰;M3和M4为电流镜有源负载;M5为第一级放大电路提供恒定偏置电流。 输出级放大电路由M6和M7组成,M6为共源放大器,M7为其提供恒定偏置电流同时作为第二级输出负载。 偏置电路由M8~M13和Rb组成,这是一个共源共栅电流源,M8和M9宽长比相同。M12和M13相比,源级加入了电阻Rb,组成微电流源,产生电流Ib。对称的M11和M12构成共源共栅结构,减少了沟道长度调制效应造成的电流误差。在提供偏置电流的同时,还为M14栅极提供偏置电压。 相位补偿电路由M14和Cc组成,M14工作在线性区,可等效为一个电阻,与电容Cc一起跨接在第二级输入输出之间,构成RC密勒补偿。

3:两级运放主体电路设计 由于第一级差分输入对管M1与M2相同,有 R1表示第一级输出电阻,其值为 则第一级的电压增益 对第二级,有 第二级的电压增益 故总的直流开环电压增益为

所以 4:偏置电路设计 偏置电路由 M8~M13 构成,其中包括两个故意失配的晶体管M12 和M13,电阻RB 串联在M12 的源极,它决定着偏置电流和gm12,所以一般为片外电阻以保证其精确稳定。为了最大程度的降低M12 的沟道长度调制效应,采用了Cascode 连接的M10以及用与其匹配的二极管连接的M11 来提供M10 的偏置电压。最后,由匹配的PMOS器件M8 和M9 构成的镜像电流源将电流IB 复制到M11 和M13,同时也为M5 和M7提供偏置。 下面进行具体计算。镜像电流源M8 和M9 使得M13 的电流与M12 的电流相等,都为IB,从而有 而由电路可知 联立上式可以得到:

串联滞后校正装置的设计

学号09750201 (自动控制原理课程设计) 设计说明书 串联滞后校正装置的设计起止日期:2012 年 5 月28 日至2012 年 6 月1 日 学生姓名安从源 班级09电气2班 成绩 指导教师(签字) 控制与机械工程学院 2012年6 月1 日

天津城市建设学院 课程设计任务书 2011 —2012 学年第 2 学期 控制与机械工程 学院 电气工程及其自动化 系 09-2 班级 课程设计名称: 自动控制原理课程设计 设计题目: 串联滞后校正装置的设计 完成期限:自 2012 年 5 月 28 日至 2012 年 6 月 1 日共 1 周 设计依据、要求及主要内容: 设单位反馈系统的开环传递函数为:) 2()(+= s s K s G 要求系统的速度误差系数为120-≥s K v ,相角裕度 45≥γ,试设计串联滞后校正装置。 基本要求: 1、对原系统进行分析,绘制原系统的单位阶跃响应曲线, 2、绘制原系统的Bode 图,确定原系统的幅值裕度和相角裕度。 3、绘制原系统的Nyquist 曲线。 4、绘制原系统的根轨迹。 5、设计校正装置,绘制校正装置的Bode 图。 6、绘制校正后系统的Bode 图、确定校正后系统的幅值裕度和相角裕度。 7、绘制校正后系统的单位阶跃响应曲线。 8、绘制校正后系统的Nyquist 曲线。 9、绘制校正后系统的根轨迹。 指导教师(签字): 系主任(签字): 批准日期:2012年5月25日

目录 一、绪论 (4) 二、原系统分析 (5) 2.1原系统的单位阶跃响应曲线 (5) 2.2 原系统的Bode图 (5) 2.3 原系统的Nyquist曲线 (5) 2.4 原系统的根轨迹 (5) 三、校正装置设计 (5) 3.1 校正装置参数的确定 (5) 四、校正后系统的分析 (6) 4.1校正后系统的单位阶跃响应曲线 (6) 4.2 校正后系统的Bode图 (6) 4.3 校正后系统的Nyquist曲线 (6) 4.4 校正后系统的根轨迹 (6) 五、总结 (7) 六、参考文献 (7) 七、附图 (8)

东南大学模电实验六多级放大器的频率补偿和反馈

实验六多级放大器的频率补偿和反馈 实验目的: 1. 掌握多级放大器的设计,通过仿真了解集成运算放大器内部核心电路结构; 2. 掌握多级放大器基本电参数的定义,掌握基本的仿真方法; 3. 熟悉多级放大器频率补偿的基本方法; 4. 掌握反馈对放大器的影响。 实验内容: 1. 多级放大器的基本结构及直流工作点设计 基本的多级放大器如图 1 所示,主要由偏置电路,输入差分放大器和输出级构成,是构成集成运算放大器核心电路的电路结构之一。其中偏置电路由电阻 R1 和三极管Q4 构成,差分放大器由三极管Q3、NPN 差分对管U2 以及PNP 差分对管U1 构成,输出级由三极管 Q2 和PNP 差分对管U3 构成。 实验任务: 图 1. 基本的多级放大器

○1 若输入信号的直流电压为2V,通过仿真得到图1 中节点1,节点2 和节点3 的直流工作点电压; V1(V)V2(V)V3(V) ○2 若输出级的NPN 管Q2 采两只管子并联,则放大器的输出直流电压为多少结合仿真结果给出输出级直流工作点电流的设置方法。

V1(V)V2(V)V3(V) 解:将①和②对比可以发现,V3的数值产生明显的变化。Q2之所以采用单只管子,是因为这样可以增大输出直流电压,使得工作点更稳定,提高直流工作点。 2. 多级放大器的基本电参数仿真 实验任务: ○差模增益及放大器带宽 将输入信号V2 和V3 的直流电压设置为2V,AC 输入幅度都设置为,相位相差180°, 采用AC 分析得到电路的低频差模增益A,并提交输出电压V(3)的幅频特性和相频特性仿真结果图;在幅频特性曲线中标注出电路的-3dB 带宽,即上限频率f;在相频特性曲线中标注出0dB 处的相位。 解: 低频差模增益AvdI= 电压V(3)的幅频特性和相频特性仿真结果图:

运放相位(频率)补偿电路设计

集成运放的内部是一个多级放大器。其对数幅频特性如图...1所示中的曲线①(实线)。对数幅频特性曲线在零分贝以上的转折点称为极点。图中,称P1 P2点为极点。极点对应的频率称为转折频率,如fp1,fp2,第一个极点,即频率最低的极点称为主极点。在极点处,输出信号比输入信号相位滞后45°,幅频特性曲线按-20dB/10倍频程斜率变化,每十倍频程输出信号比输入信号相位滞后90。极点越多,越容易自激,即越不稳定。为使集成运放工作稳定,需进行相位(频率)补偿。 按补偿原理分滞后补偿、超前补偿及滞后一超前补偿等。 滞后补偿:凡是使相移增大的补偿即被称为滞后补偿。滞后补偿使主极点频率降低,即放大器频带变窄。如补偿后只有一个极点,则被称为单极点,如图2.21(a)所示中的曲 线②。 超前补偿:凡是使相移减小的补偿即被称为超前补偿,超前补偿使幅频特性曲线出现零点,即放大器频带变宽。在零点处输出信号比输入信号相位超前45°,幅频特性曲线按+20dB/10倍频程斜率变化。补偿办法是将零点与补偿前的一个极点重合,如图2.21(a)中的P2点,补偿后的幅频特性曲线如图2.21(a)所示中的曲线③,补偿后频带展宽。

1.输入端的滞后补偿网络(外部滞后补偿) 在集成运放的两输入端之问并一串联的电阻(RB)、电容(CB)的网络被称为输入端的滞后补偿。这种补偿使通频带变窄,适用于对频带要求不高的电路。这种方法也有助于提高集成运放的上升速率。 RB,CB的估算方法(I) 在放大器增益给定的条件下暂时短接CB,在集成运放两输入端之间并联RB,RB的值由大到小的改变,直至放大器进入临界稳定状态。这时可用示波器看到近似正弦波。并用示波器水平(时间)轴测出振荡周期,换算出振荡频率fo实际是放大器的放大倍数等于1时的频率。补偿电容CB的值可按下式估算,即 CB》1/(RB*f)

MATLAB滞后-超前校正器

基于MATLAB 的滞后-超前校正器的设计 摘要:对控制系统的校正设计方法进行了简单的介绍;介绍了基于MATLAB 的 滞后-超前校正器的设计过程,并用仿真实例验证了该方法比传统的方法节省了相当大的工作量,实现起来非常的方便。利用MATLAB 软件中的控制系统工具箱和Simulink 工具箱可以很方便的对控制系统进行建模、分析和设计。 关键词:MATLAB;滞后-超前校正器;设计 1 引言 MATLAB(Matrix Laboratory 即“矩阵实验室”)是集数值分析、矩阵运算、信号处理和图形显示于一体,构成了一个方便的、界面友好的用户环境,其强大的科学计算与可视化功能,简单易用的开放式可扩展环境,使得MATLAB 成为控制领域内被广泛采用的控制系统计算与仿真软件。“自动控制原理”是工科类专业一门重要的课程,其所需数学基础宽而深、控制原理抽象、计算复杂且繁琐以及绘图困难等原因,使学生学习感觉枯燥并有畏难情绪。将MATLAB 软件应用到该门课程教学中,可以解决深奥繁琐的计算,简单、方便又精确的绘图,并可以用丰富多彩的图形来说明抽象的控制原理,可以提高学生的学习兴趣。早期的校正器设计利用试凑法,其计算量非常大,而且还要手工绘制系统的频率特性图,很难达到满意的结果。将MATLAB 软件应用到校正器设计中,则大大提高了设计的效率,并能很方便的达到满意的效果。本文介绍在MATLAB 环境下进行滞后-超前校正器的设计方法。 2 控制系统校正设计概述 在经典控制理论中,系统校正设计,就是在给定的性能指标下,对于给定的对象模型,确定一个能够完成系统满足的静态与动态性能指标要求的控制器(常称为校正器或补偿控制器),即确定校正器的结构与参数。控制系统经典校正设计方法有基于根轨迹校正设计法、基于频率特性的Bode 图校正设计法及PID 校正器设计法。按照校正器与给定被控对象的连接方式,控制系统校正可分为串联校正、反馈校正、前馈校正和复合校正四种。串联校正控制器的频域设计方法中,使用的校正器有超前校正器、滞后校正器、滞后-超前校正器等。超前校正设计方法的特点是校正后系统的截止频率比校正前的大,系统的快速性能得到提高,这种校正设计方法对于要求稳定性好、超调量小以及动态过程响应快的系统被经常采用。滞后校正设计方法的特点是校正后系统的截止频率比校正前的小,系统的快速性能变差,但系统的稳定性能却得到提高,因此,在系统快速性要求不是很高,而稳定性与稳态精度要求很高的场合,滞后校正设计方法比较适合。滞后-超前校正设计是指既有滞后校正作用又有超前校正作用的校正器设计。它既具有了滞后校正高稳定性能、高精确度的好处,又具有超前校正响应快、超调小的优点,这种设计方法在要求较高的场合经常被采用。 3 滞后-超前校正器的设计 3.1 滞后-超前校正器

滞后超前校正控制器设计说明

《计算机控制》课程设计报告 题目: 滞后-超前校正控制器设计 : 胡志峰 学号: 100230105 2013年7月12日

《计算机控制》课程设计任务书 指导教师签字:系(教研室)主任签字: 2013年 7 月 5 日

一、实验目的 完成滞后 - 超前校正控制器设计 二、实验要求 熟练掌握 MATLAB 设计仿真滞后-超前校正控制器、运用Protel 设计控制器硬件电路图,以及运用MCS-51单片机C 或汇编语言完成控制器软件程序编程。 三、设计任务 设单位反馈系统的开环传递函数为 )160 )(110()(0++= s s s K s G ,采用模拟设 计法设计滞后-超前校正数字控制器,使校正后的系统满足如下指标: (1) 当t r = 时,稳态误差不大于1/126; (2) 开环系统截止频率 20≥c ω rad/s ; (3) 相位裕度o 35≥γ 。 四、 实验具体步骤 4.1 相位滞后超前校正控制器的连续设计 校正方案主要有串联校正、并联校正、反馈校正和前馈校正。确定校正装置的结构和参数的方法主要有两类:分析法和综合法。分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。 超前校正的作用在于提高系统的相对稳定性和响应的快速性,滞后校正的主要作用是在不影响系统暂态性能的前提下,提高低频段的增益,改善系统的稳态特性,而滞后超前校正环节则可以同时改善系统的暂态特性和稳态特性。这种校正的实质是综合利用了滞后和超前校正的各自特点,利用其超前部分改善暂态特性,而利用滞后部分改善稳态特性,两者各司其职,相辅相成。 (1)调整开环增益 K,使其满足稳态误差不大于1/126; 00 lim (s)126v s K s G K →===g

运放的反馈和补偿_intersil

放大器的反馈和补偿 前言:这是我翻译的第二篇文章,前面翻译过电流型运放的应用笔记,只是翻译了一遍,没做修改。后来发现翻译的不是很好,而且还有很多的错别字。原本觉得别人翻译的很不好,现在发现自己翻译的也不怎么样。翻译确实不是一件容易的事情,不是说每个单词,每句话读懂就能翻译的好的。其实翻译是整段的意译(甚至是整篇文章的),而不是逐句的翻译。因为不同的语言表述的方法是不同的,做好翻译不仅要懂英语,而且要很深的专业知识。说的明白一点就是,把别人的文章读懂,然后重新写一篇文章,这才是翻译的正道。前几天读文章,很明显的能感觉到那是中国人写的英语文章。原本想把这篇文章好好的把整片文章的思想好好翻译一下,翻译出一篇好的文章。从现在看来是不太可能了,因为时间还有我很懒,现在离我翻译完这篇文章都好久了,一直没有时间再去管他。我觉得以后不会在整理了,所以决定就这样发到网上吧。这篇文章也只是翻译了一遍,只是前面大概8页,稍加整理过,后面的翻译完基本就没有再看了。后面补偿那一部分建议再去看一下国半的AN1604——Decompensated Operational Amplifiers,毕竟不是同一家公司,里面的符号可能不同,注意一点就行。本想也翻译一下国半的这篇文章,现在看来希望渺茫。这些两篇文章都很好,只是有细节地方可能有错误,建议读一下原文。 By:惜荷 介绍 反馈的电路中有很多优良的性能[1],但是反馈电路设计复杂,而且搞不好还会振荡。本文用作图的方法简化了计算,这样就可以更容易的设计处稳定且性能优良的电路,而不必担心反馈电路的振荡和振铃现象了。 一般反馈方程 如Figure 1所示,几乎所有反馈电路都可以化简为Figure1的框图形式[2]。假设上一级的输出阻抗远小于输入阻抗,得方程EQ.1、EQ.2、EQ.3。一般情况下这种假设可以满足我们平时的计算。解方程EQ.1、EQ.2、EQ.3得EQ.4、EQ.5,这两个方程就是反馈系统的方程。 开环增益A一般由像运放这样的有源器件决定,β为反馈系数,通常反馈部分只包含无源器件。开环增益A接近与无穷,Aβ远远大于1,忽略EQ.4分母上的1,EQ.4可近似为 EQ.6. V0/V i称作闭环增益。EQ.6不包含直接增益A,所以闭环增益与放大器的参数(A)无

基于MATLAB进行控制系统的滞后-超前校正设计要点

计算机控制技术 ------滞后-超前校正控制器设计 系别:电气工程与自动化 专业:自动化 班级:B110411 学号:B11041104 姓名:程万里

目录 一、 滞后-超前校正设计目的和原理 (1) 1.1 滞后-超前校正设计目的......................................................... 1 1.2 滞后-超前校正设计原理......................................................... 1 二、滞后-超前校正的设计过程 (3) 2.1 校正前系统的参数 (3) 2.1.1 用MATLAB 绘制校正前系统的伯德图................................. 3 2.1.2 用MATLAB 求校正前系统的幅值裕量和相位裕量.................. 4 2.1.3 用MATLAB 绘制校正前系统的根轨迹................................. 5 2.1.4 对校正前系统进行仿真分析.............................................5 2.2 滞后-超前校正设计参数计算 (6) 2.2.1 选择校正后的截止频率c ω............................................. 6 2.2.2 确定校正参数β、2T 和1T (6) 2.3 滞后-超前校正后的验证 (7) 2.3.1 用MATLAB 求校正后系统的幅值裕量和相位裕量..................7 2.3.2 用MATLAB 绘制校正后系统的伯德图.................................8 2.3.3 用MATLAB 绘制校正后系统的根轨迹.................................9 2.3.4 用MATLAB 对校正前后的系统进行仿真分析 (10) 三、前馈控制 3.1 前馈控制原理..................................................................... 12 3.2控制对象的介绍及仿真......................................................... 12 四、 心得体会.............................................................................. 16 参考文献.......................................................................................17 附录 (18)

串联超前滞后校正装置课程设计

课题:串联超前滞后校正装置专业:电气工程及其自动化班级:一班 学号: 姓名: 指导教师: 设计日期:2013.12.6-2013.12.12成绩:

自动控制原理课程设计报告 一、设计目的 () (1)掌握控制系统设计与校正的步骤和方法。 (2)掌握对控制系统相角裕度、稳态误差、剪切频率、相角穿越频率以及增益裕度的求取方法。 (3)掌握利用Matlab对控制系统分析的技能。熟悉MATLAB这一解决具体工程问题的标准软件,能熟练地应用MATLAB软件解决控制理论中的复杂和工程实际问题,并给以后的模糊控制理论、最优控制理论和多变量控制理论等奠定基础。 (4)提高控制系统设计和分析能力。 (5)所谓校正就是在系统不可变部分的基础上,加入适当的校正元部件,使系统满足给定的性能指标。校正方案主要有串联校正、并联校正、反馈校正和前馈校正。确定校正装置的结构和参数的方法主要有两类,分析法和综合法。分析法是针对被校正系统的性能和给定的性能指标,首先选择合适的校正环节的结构,然后用校正方法确定校正环节的参数。在用分析法进行串联校正时,校正环节的结构通常采用超前校正、滞后校正和滞后-超前校正这三种类型。超前校正通常可以改善控制系统的快速性和超调量,但增加了带宽,而滞后校正可以改善超调量及相对稳定度,但往往会因带宽减小而使快速性下降。滞后-超前校正兼用两者优点,并在结构设计时设法限制它们的缺点。 二、设计要求(姬松) 1.前期基础知识,主要包括MATLAB系统要素,MATLAB语言的变量与语句,MATLAB的矩阵和矩阵元素,数值输入与输出格式,MATLAB系统工作空间信息,以及MATLAB的在线帮助功能等。 2.控制系统模型,主要包括模型建立、模型变换、模型简化,Laplace变换等等。 3.控制系统的时域分析,主要包括系统的各种响应、性能指标的获取、零

自控大作业超前滞后校正

自动控制原理大作业 已知单位反馈控制系统如图所示,其中0()(1) K G s s s = +。

1、试用频率法设计串联超前校正网络()c G s ,满足:单位斜坡输入时,位置输出稳态误差1 9 ss e = ,开环截止频率 4.5/c rad s ω''=,相角裕度50γ''≥,请写出校正具体步骤: 解: 1.求开环增益K 传递函数为:0()(1) K G s s s = + 此系统为为Ⅰ型系统,且系统稳定,故由稳态误差91 1e ss == K 知:K=9 校正前系统传递函数为)() (1s s 9 s o +=G (1)根据校正前系统Bode 图,确定校正前系统相角裕度和开环截止频率: 0w c =)(L 0w 9 lg 202c = s /rad 3w c = 43.18arctanw -90-180)w (180r c c o ==+=? (2)计算校正网络的参数a 和τ: 已知开环截止频率 4.5/c rad s ω''= 取s /rad 5.4w w c m =" =

c o lg 20lga 10-5 .4==)(L 06.5 0988 .006 .5*5.41 a *w 1m === τ 10988.01 s 5.01s 1s a s c ++= ++=s G ττ) ( (3)验算校正后的性能指标是否满足设计要求: ) 1s 0988.0)(1s (s ) 1s 5.0(9)s ()s ()s (c o +++= =G G G 6.549 7.23-47.77-04.6690)w *098 8.0(arctan -arctanw -90-)w *5.0(arctan 180)w (180r c c c c =+=" " "+="+=''? 满足设计要求。 2、用MATLAB 画出校正前系统、校正装置和校正后系统的Bode 图: -100 100 M a g n i t u d e (d B )10 10 10 10 10 10 -180 -135-90-45045P h a s e (d e g ) Bode Diagram Frequency (rad/sec) MATLAB 程序: G1=tf(9,[1,1,0]); G2=tf(9*[0.5,1],conv([1,1,0],[0.0988,1])); G3=tf([0.5 1],[0.0988 1]) bode(G1) hold bode(G2,'--')

运放基本应用电路

运放基本应用电路 运放基本应用电路 运算放大器是具有两个输入端,一个输出端的高增益、高输入阻抗的电压放大器。若在它的输出端和输入端之间加上反馈网络就可以组成具有各种功能的电路。当反馈网络为线性电路时可实现乘、除等模拟运算等功能。运算放大器可进行直流放大,也可进行交流放大。 R f 使用运算放大器时,调零和相位补偿是必 须注意的两个问题,此外应注意同相端和反相端到地的直流电阻等,以减少输入端直流偏流 U I 引起的误差。 U O 1.反相比例放大器 电路如图1所示。当开环增益为 ∞(大于104以上)时,反相放大器的闭环增益为: 1 R R U U A f I O uf -== (1) 图1 反相比例放大器 由上式可知,选用不同的电阻比值R f / R 1,A uf 可以大于1,也可以小于1。 若R 1 = R f , 则放大器的输出电压等于输入电压的负值,因此也称为反相器。 放大器的输入电阻为:R i ≈R 1 直流平衡电阻为:R P = R f // R 1 。 其中,反馈电阻R f 不能取得太大,否则会 产生较大的噪声及漂移,其值一般取几十千欧 到几百千欧之间。 R 1的值应远大于信号源的 O 内阻。 2.同相比例放大器、同相跟随器 同相放大器具有输入电阻很高,输出电阻 很低的特点,广泛用于前置放大器。电路原理 图如图2所示。当开环增益为 ∞(大于104以上 图2 同相比例放大器 )时,同相放大器的闭环增益为: 1111R R R R R U U A f f I O uf +=+== (2) 由上式可知,R 1为有限值,A u f 恒大于1。 同相放大器的输入电阻为:R i = r ic 其中: r ic 是运放同相端对地的共模输入电阻,一般为108 Ω;放大器同相端的直流平衡电阻为:R P = R f // R 1。 若R 1 ∞(开路),或R f = 0,则A u f 为1,于是同相放大器变为同相跟随器。此时由于放大器几乎不从信号源吸取电流,因此 U 可视作电压源,是比较理想的阻抗变换器。 3.加(减)法器

一种用于CMOS运算放大器的改进的频率补偿技术

一种用于CMOS运算放大器的改进的频率补偿技术 BHUPENDRA K. AHUIJ 摘要:一般常用的CMOS两级运算放大器由于二阶RC补偿网络的存在使其两方面的基本性能受到了限制.第一,这种频率补偿技术只在有限的容性负载范围内使系统稳定工作;第二,电源抑制能力在开环极点外会有严重的退化,这里要介绍的技术可以使电路在更宽的容性负载范围内稳定工作,同时V BB电源抑制能力也有了很大提高,可以在很宽的带宽内保持较强的电源抑制能力.本文首先在其频率特性和噪声特性方面做了数学推导,然后由N阱CMOS工艺实现了此技术.实验结果显示此技术可使电路的负电源抑制比在10kHz时达到70dB,1kHz时输入噪声密度为50 nV/√Hz. Ⅰ简介 线性CMOS技术在过去的5年内取得了显著的进展,它可以提供高性能低功耗的模拟电路模块,如运算放大器、比较器、缓冲器等.这些电路能以较小的面积和较低的功耗获得可与双极型电路相比较的性能,这使得单片集成高标准的复杂的滤波器、A/D与D/A转换器等成为可能.CMOS技术由于具有相对简单的电路结构和灵活的设计,比NMOS技术更有优势,并且正在作为未来线性模拟集成电路的主要技术而被迅速接受,特别是在远程通信领域[1][2].运算放大器作为任何模拟集成电路的重要模块,两种技术都对其制成做过报道[3][6].典型的CMOS运算放大器为两级增益结构,第一级为差分输入单端输出级,第二级为A类或AB类输出倒相级.通常每一级的增益都被设计在40~100的范围之内.图1(a)所示为典型的CMOS运算放大器电路结构,图1(b)为其早期的交流等效模型.此结构是国内IC中使用的最合适驱动容性负载的结构.简单的说,M1~M5形成了差分输入级,而M6、M7形成了输出倒相级.第二级增益处的RC 网络为运算放大器提供频率补偿.这种电路,已经被很多学者分析过[5][7],包含一个主极点、两个复杂的高频级点和一个零点,该零点可以通过增大补偿电阻RZ 从频谱图的右半平面移动到左半平面,如图1(c)所示.在高频时由于补偿电容的存在使第一级输出与运算放大器输出间形成一个没有反相的前馈通路,所以运算放大器的表现出如下的性能退化: 1)负载电容达到补偿电容的量级时,电路的稳定性会大幅降低(C L必须远小于g m2C C/g m1以避免在单位增益带宽产生第二个极点). 2)在PMOS管作为差分信号的输入端时,负电源在单位增益带宽内主极点处会表现出一个零点.这会导致那些采用高频开关稳压器产生他们供电电源的数据采样系统在性能上出现严重的退化.(在NMOS管作为差分信号输入端时,正电源会使电路性能出现相同的退化),如图1(d)所示.

运算放大器输入输出两端加电容的作用补偿作用

运放的相位补偿 为了让运放能够正常工作,电路中常在输入与输出之间加一相位补偿电容。 1,关于补偿电容 理论计算有是有的,但是到了设计成熟阶段好象大部分人都是凭借以前的调试经验了,一般对于电容大小的取值要考虑到系统的频响(简单点说加的电容越大,带宽越窄),然后就是振荡问题;如果你非要计算,可以看看运放的输入端的分布电容是多大,举个例子,负反馈放大电路就是要保证输入端的那个电阻阻值和分布电容的乘积=反馈电阻的阻值和你要加的电容的乘积...... 2,两个作用 1. 改变反馈网络相移,补偿运放相位滞后 2. 补偿运放输入端电容的影响(其实最终还是补偿相位……) 因为我们所用的运放都不是理想的。 一般实际使用的运算放大器对一定频率的信号都有相应的相移作用,这样的信号反馈到输入端将使放大电路工作不稳定甚至发生振荡,为此必须加相应的电容予以一定的相位补偿。在运放内部一般内置有补偿电容,当然如果需要的话也可在电路中外加,至于其值取决于信号频率和电路特性 运放输入补偿电容 一般线性工作的放大器(即引入负反馈的放大电路)的输入寄生电容Cs会影响电路的稳定性,其补偿措施见图。放大器的输入端一般存在约几皮法的寄生电容Cs,这个电容包括运放的输入电容和布线分布电容,它与反馈电阻Rf组成一个滞

后网络,引起输出电压相位滞后,当输入信号的频率很高时,Cs的旁路作用使放大器的高频响应变差,其频带的上限频率约为: ωh=1/(2πRfCs) 若Rf的阻值较大,放大器的上限频率就将严重下降,同时Cs、Rf引入的附加滞后相位可能引起寄生振荡,因而会引起严重的稳定性问题。对此,一个简单的解决方法是减小Rf的阻值,使ωh高出实际应用的频率范围,但这种方法将使运算放大器的电压放大倍数下降(因Av=-Rf/Rin)。为了保持放大电路的电压放大倍数较高,更通用的方法是在Rf上并接一个补偿电容Cf,使RinCf网络与RfCs网络构成相位补偿。RinCf将引起输出电压相位超前,由于不能准确知道Cs的值,所以相位超前量与滞后量不可能得到完全补偿,一般是采用可变电容Cf,用实验和调整Cf的方法使附加相移最小。若Rf=10kΩ,Cf的典型值丝边3~10pF。对于电压跟随器而言,其Cf值可以稍大一些。 运放输出电容的补偿 对于许多集成运算放大电路,若输出负载电容CL的值比100pF大很多,由于输出电容(包括寄生电容)与输出电阻将造成附加相移,这个附加相移的累加就可能产生寄生振荡,使放大器工作严重不稳定。解决这一问题的方法是在运放的输出端串联一个电阻Ro,使负载电容CL与放大电路相隔离,如图所示,在Ro的后面接反馈电阻Rf,这样可以补偿直流衰减,加反馈电容Cf会降低高频闭环电压放大倍数,Cf的选取方法是:使放大电路在单位增益频率fT时的容抗Xcf≤Rf /10,又Xf=l/(2πfTCf),一般情况下,Ro=50~200Ω,Cf约为3~10pF。 除了上述不稳定因素之外,还存在其他一些不稳定因素,有些是来自集成芯片自身。有些是源于系统电路(例如电源的内阻抗的耦合问题)。有时使用很多方法都难以解决不稳定问题,但采用适当的补偿方法后可使问题迎刃而解。例如。当放大器不需要太宽的频带和最佳转换速率时,对集成运放采用过补偿的方法会取得很好的效果,如将补偿电容增加9倍或为实现稳定性所需要的倍数,对μA301型运放而言,其效果一般都较好。

TL431相位补偿

前言:回授迴路的設計需要仔細地思考與分析。未被發現的不良回授路徑很容易被忽略,並且會危害電路設計。本文將探討一種常見的回授電路,與設計人員所面臨的潛在問題,並將提出這些問題的解決方案。 TL431/光耦合器回授電路 TL431與光耦合器是電源轉換器設計人員常用的一種組合。但若不謹慎思考與設計,此組合會讓工程師感到十分棘手。本文將討論許多經驗不足甚至連部份有經驗的設計人員皆容易落入的窠臼。 圖1是典型電路。R1與R2組成的電阻分壓器在輸出電壓達到目標值時,會讓R1與R2的接點電壓剛好等於TL431的內部參考電壓。電阻R3以及電容C1與C2提供TL431所需的回授迴路補償以便穩定控制迴路。迴路增益值決定後,即可計算這些元件值並將它們加在一起。 圖1:典型的TL431回授電路。

圖1的TL431電路增益可由下列公式計算: 其中Zfb等於: ω則代表角速度(radians/sec)。 光耦合器迴路增益=(R6/R4)×光耦合器電流轉換比(Current Transfer Ratio;CTR),設計人員必須知道光耦合器的電流轉換比,才能計算該增益。 但實際轉移函數是由光耦合器的LED電流決定,所以圖1的TL431電路總增益還包括另一因數。該函數是(Vout-Vcathode)/R4,其中Vout等於進入TL431的Vsense電壓,這使得TL431與光耦合器的「總增益方程式」等於: 上式的+1項在本文裡代表「隱藏」的回授路徑,只要Zfb/R1遠大於1即可忽略。在後面的示波器圖片中,將進一步解釋和顯示該項的影響,我們現在先假設這個公式是正確的。 設計人員只要將電源轉換器的各項增益元素相乘,就能得到不考慮回授電路影響下的轉換器開迴路增益。這些元素包括:變壓器圈數比;PWM主動輸出濾波器元件效應和TL431增益以外的相關負載效應;以及光耦合器的影響。 轉換器會在特定的開關頻率下操作。設計人員知道開迴路總增益須在低於該頻率6分之1的某個點跨過0dB,因此多數設計人員會留下適當的元件公差,其它人則會將跨越點設計在大約該頻率10分之1的位置。在此例中,我們假設開關頻率固定為100kHz。 由於已知控制到輸出增益(control-to-output gain)在目標跨越頻率點的增益值,接下來只要讓TL431回授迴路和光耦合器的增益等於該增益值的倒數即可。

多级运放稳定性分析及补偿方法

多级运算放大器的频率补偿分析 Bo yang 2009-5-3 由于单级运算放大器cascode不能满足低电压的要求,而且短沟道效应和深亚微米CMOS的本征增益下降,所以要使用多级放大,这样就涉及到频率补偿的问题。大部分的频率补偿拓扑结构都是采用极点分离和零极点抵消技术(使用电容和电阻)。对于两级运算放大器而言这样的补偿无论是在理论分析还是在实际电路中都是可行的,但是对于多级放大器而言,要考虑的因素很多(电容面积,功耗,压摆率等)。而且理论的分析不一定都适用于实际的电路。所以对于多级放大器的频率补偿,这里给出了几种拓扑结构。 由于系统结构,传输函数都很复杂,所以在分析这些拓扑结构之前先给出一些假设条件:1):假设每一级的增益都远远大于1; 2):假设负载电容和补偿电容都大于寄生集总电容; 3):每一级之间的寄生电容忽略不计。 以上这些假设都是很容易满足,而且在大部分电路中都是满足这些条件条件的。 一single stage 对于单级放大器而言,其频率响应比较好,只有一个左半平面得极点,没有零点,所以 整个系统是稳定的。极点位置为:。其增益带宽积为GBW=gmL/CL.所以可以通过增大跨导,减小输出电容的方式来增大带宽。实际上它的相位裕度没有90度,是因为存在着寄生的零极点。二这些寄生的零极点于信号路径上的偏置电流和器件的尺寸有关,所以单位增益带宽也不能无限制的增加,而是等于寄生最小极点或者零点的一半为比较合适的,而且大的偏置电流和小的器件尺寸对于稳定性是必要的 二 two stage 对于两级的运放,就是采用简单的米勒补偿(SMC)。其补偿的结构如下所示: 对于这种结构的传递函数可以表述如下 从传递函数中很容易知道零极点位置。其中一个右半平面得零点和两个极点。为了保证系统稳定性,次极点和零点要在比单位增益频率大的地方,这样就要求Cm很大并把主极点推的很低,这样增益带宽积就要减小,要保持同样的速度即单位增益带宽,就要求大的功耗(增加跨导)通常选择次极点在单位增益频率两倍的位置。同时在这里要注意一点的是,零点的位置一定要比次级点位置高,要不就会出现稳定性问题。为了维持系统稳定,次级点 是GBW的1/2。所以。同样则有通过以上两个关系式不难发现,GBW并不随第一级的跨导的增大而增大,因为补偿电容也在同比增大。所以,要增大GBW 就要增大第二级跨导和减小输出电容。

带你了解反馈电路中的相位补偿

带你了解反馈电路中的相位补偿 2004年,帮朋友做镍氢充电器,利用镍氢电池充满电时电压有一个微小的下降这个特点来识别是否已经充满,比如1.2V的镍氢电池,快充满的时候,电压在1.35V,之后逐步下降,电压可以低于1.30V。所以需要单片机间歇检测电池两端电压,大概充3秒钟电再停止,之后检测电池两端电压。因为需要识别下降的微小电压,所以需要加一级运放,放大这个下降的幅度,如下图: 那个时候刚进入社会,实践经验不足,为了更好的提升放大性能提高稳定性,想当然的在运放的反相输入端并了一颗小电容,我记得大概是10nF,如下图: 调试程序的时候发现,电池降压的信号很难检测到,往往电池充满发热很久才能检测到,这个问题困扰了一段时间没有解决,朋友带回香港,跟一个硬件人员一起调试,用示波器一个个脚的看信号,最终发现运放输出存在短时间的振荡,而这个振荡导致了信号采样问题,于是我很快想到是自己加了这颗电容的问题,并且在脑子中想象了整个振荡过程,给朋友做了分析。这个画蛇添足行为,最终导致了这个项目失败。上几年做红外温度测试仪,温度范围是400~1200度,采用PID红外传感器,电流转电压放大部分电路如下图: 测试中发现,在700度附近温度测量不准,最后用示波器看输出,发现在这个温度点上,输出出现了振荡,这个时候马上想到,因为PID传感器,内阻高,寄生电容大,等价于在反相输入上并联了一颗电容,类似镍氢电池的放大了,所以马上按如下电路改进: 在做手机期间,测试发现一些劣质手机充电器,用示波器测量发现,其输出电压的纹波,除了100KHz附近的开关纹波外,还有一个5K附近的正弦波基于5V附近波动,比如输出电压5V,实际则是在4.8~5.2V之间按5KHz的频率波动,当时很奇怪怎么产生这个波动的?以上三个案例是我碰到的,虽然前两个问题解决了,但是还留有困惑,随着自己对运放理解的深入,认识到这些问题的出现,都是跟相位有关,但是看很多运放方面的书,

相关文档
最新文档