关于一笔画问题的经典探讨
一笔画的由来和规律

一笔画的由来可以追溯到1736年,当时大数学家欧拉研究解决了一笔画问题。
欧拉通过分析图中的偶数点和奇数点,以及线的连接方式,找出了能够一笔画出的图形规律。
一笔画的基本规律包括以下几点:
1. 欧拉回路:一个图形中,任意两个点之间都有且仅有一条路径,则该图形被称为欧拉回路。
一笔画问题就是要找到一个欧拉回路,使得该回路的起点和终点重合。
2. 奇偶性:对于任意一个图形,其顶点可以分为奇数顶点和偶数顶点两类。
如果一个图形有偶数个顶点,则该图形可以一笔画出;如果一个图形有奇数个顶点,则该图形需要两笔画出。
3. 欧拉函数:欧拉函数是指将一个图形分解为若干个不相交的子图,使得每个子图都是一笔画出的图形,且每个子图的顶点个数不超过4个。
欧拉函数可以帮助我们判断一个图形是否可以一笔画出。
在实际应用中,一笔画问题可以应用于很多领域,如地图着色、电路设计、物流规划等。
同时,一笔画问题也是图论中的一个重要研究方向,对于理解图的结构和性质具有重要的意义。
浅谈一笔画问题

浅谈一笔画问题公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]浅谈一笔画问题摘要:一笔画问题是一个几何问题,传统意义上的几何学是研究图形的形状大小等性质,而存在一些几何问题,它们所研究的对象与图形的形状和线段的长短没关系,而只和线段的数目和它们之间的连接关系有关,比如一笔画问题就是如此。
一笔画问题是一个简单的数学游戏,即平面上由曲线段构成的一个图形能不能一笔画成,使得在每条线段上都不重复例如汉字‘日’和‘中’字都可以一笔画的,而‘田’和‘目’则不能。
关键词:一笔画规律原理早在18世纪,瑞士的着名数学家欧拉就找到了一笔画的规律。
欧拉认为,能一笔画的图形必须是连通图。
连通图就是指一个图形各部分总是有边相连的.但是,不是所有的连通图都可以一笔画的。
能否一笔画是由图的奇、偶点的数目来决定的。
一笔画问题是图论中一个着名的问题。
一笔画问题起源于柯尼斯堡七桥问题。
数学家欧拉在他1736年发表的论文《柯尼斯堡的七桥》中不仅解决了七桥问题,也提出了一笔画定理,顺带解决了一笔画问题。
一般认为,欧拉的研究是图论的开端。
与一笔画问题相对应的一个图论问题是哈密顿问题。
一、一笔画规律数学家欧拉找到一笔画的规律是:(一)凡是由偶点组成的连通图,一定可以一笔画成。
画时可以把任一偶点为起点,最后一定能以这个点为终点画完此图。
(二)凡是只有两个奇点的连通图(其余都为偶点),一定可以一笔画成。
画时必须把一个奇点为起,,另一个奇点终点。
(三)其他情况的图都不能一笔画出。
(有偶数个奇点除以二便可算出此图需几笔画成)比如附图:(a)为(1)情况,因此可以一笔画成;(b)(c)(d)则没有符合以上两种情况,所以不能一笔画成。
补充:相关名词的含义◎顶点与指数:设一个平面图形是由有限个点及有限条弧组成的,这些点称为图形的顶点,从任一顶点引出的该图形的弧的条数,称为这个顶点的指数。
◎奇顶点:指数为奇数的顶点。
◎偶顶点:指数为偶数的顶点。
不重复的路-一笔画问题

在一笔画过程中,如果起点和终点是同一点,则称该路径为欧拉回路。如果一个 图存在一个遍历其所有边且每条边只遍历一次的路径,则称该路径为欧拉路径。
一笔画问题的数学描述
图论
一笔画问题属于图论的范畴,图论是研究图 的结构、性质和应用的数学分支。在一笔画 问题中,主要关注的是图的连通性和遍历性 。
在计算机图形学中的应用
图形渲染
一笔画问题在计算机图形学中常用于绘制复杂的图形,如地 图、电路图等。通过解决一笔画问题,可以确定从一个点到 另一个点的最短路径,从而高效地渲染图形。
游戏开发
在游戏开发中,一笔画问题也具有广泛应用。例如,在角色 移动、地图导航等方面,可以利用一笔画算法找到不重复的 路径,提高游戏的流畅性和用户体验。
人才培养
为了推动一笔画问题的研究和发展,需要加强人才培养。未来可以加强图论学科的建设, 提高教师的学术水平和教学能力,培养更多具有创新能力和实践精神的人才,为解决一笔 画问题提供人才保障。Leabharlann HANKS感谢观看05
结论
一笔画问题的研究意义
理论意义
一笔画问题作为图论中的经典问题,对于推动图论学科的发展具有重要意义。通过对一笔画问题的研 究,可以深入探讨图论中的连通性、遍历性和最优化等核心问题,为图论学科的理论研究提供支持。
应用价值
一笔画问题在现实生活中具有广泛的应用价值。例如,在地图导航中,如何规划一条不重复的路径; 在电路设计中,如何避免线路交叉;在物流配送中,如何规划最优的送货路线等。因此,一笔画问题 的研究成果可以为这些领域提供理论指导和技术支持。
问题背景
起源
一笔画问题起源于文艺复兴时期 的数学游戏,后来被欧拉等人系 统化并深入研究。
一笔画完的规律

一笔画完的规律在我们的日常生活中,一笔画问题常常出现在各种场景中,如绘画、设计等领域。
所谓一笔画,就是指在不离开纸面、不重复线段的情况下,用一笔将图形勾勒出来。
本文将探讨一笔画完的规律,帮助大家更好地理解和应用这一概念。
一、一笔画的基本概念一笔画问题可以分为两类:一类是一笔画不完的图形,另一类是一笔画完的图形。
一笔画不完的图形通常具有以下特征:1.奇数个顶点的图形:例如三角形、五边形等。
2.存在奇数条边的图形:例如正方形、六边形等。
而一笔画完的图形则具有以下特征:1.偶数个顶点的图形:例如四边形、八边形等。
2.存在偶数条边的图形:例如正五边形、正六边形等。
二、一笔画完的规律应用在了解了一笔画的基本概念和图形特征后,我们可以总结出一笔画完的规律:1.当图形的顶点数为偶数且边数也为偶数时,图形可以一笔画完。
2.当图形的顶点数为奇数且边数为奇数时,图形可以一笔画完。
这一规律可以帮助我们在实际问题中快速判断一笔画是否可以完成。
三、实例分析与解答下面我们通过实例来进一步说明一笔画完的规律。
实例1:一个四边形是否可以一笔画完?解答:可以。
因为四边形的顶点数为4,边数为4,均为偶数,所以四边形可以一笔画完。
实例2:一个五边形是否可以一笔画完?解答:不可以。
因为五边形的顶点数为5,边数为5,均为奇数,所以五边形不能一笔画完。
通过以上分析,我们可以得出结论:一笔画完的规律在于图形的顶点数和边数是否为偶数。
在实际应用中,这一规律可以为我们提供快速判断的依据,帮助我们更好地解决一笔画问题。
总之,一笔画问题具有一定的规律可循。
了解这些规律,能够使我们更好地解决与此相关的问题,提高工作和生活中的效率。
第五讲一笔画问题

第五讲一笔画问题 一天,小明做完作业正在休息,收音机中播放着轻松、悦耳的音乐.他拿了支笔,信手在纸上写了“中”、“日”、“田”几个字.突然,他脑子里闪出一个念头,这几个字都能一笔写出来吗?他试着写了写,“中”和“日”可以一笔写成(没有重复的笔划),但写到“田”字,试来试去也没有成功.下面是他写的字样.(见下图) 这可真有意思!由此他又联想到一些简单的图形,哪个能一笔画成,哪个不能一笔画成呢?下面是他试着画的图样.(见下图) 经过反复试画,小明得到了初步结论:图中的(1)、(3)、(5)能一笔画成;(2)、(4)、(6)不能一笔画成.真奇怪!小明发现,简单的笔画少的图不一定能一笔画得出来.而复杂的笔画多的图有时反倒能够一笔画出来,这其中隐藏着什么奥秘呢?小明进一步又提出了如下问题: 如果说一个图形是否能一笔画出不决定于图的复杂程度,那么这事又决定于什么呢? 能不能找到一条判定法则,依据这条法则,对于一个图形,不论复杂与否,也不用试画,就能知道是不是能一笔画成? 先从最简单的图形进行考察.一些平面图形是由点和线构成的.这里所说的“线”,可以是直线段,也可以是一段曲线.而且为了明显起见,图中所有线的端点或是几条线的交点都用较大的黑点“●”表示出来了. 首先不难发现,每个图中的每一个点都有线与它相连;有的点与一条线相连,有的点与两条线相连,有的点与3条线相连等等. 其次从前面的试画过程中已经发现,一个图能否一笔画成不在于图形是否复杂,也就是说不在于这个图包含多少个点和多少条线,而在于点和线的连接情况如何——一个点在图中究竟和几条线相连.看来,这是需要仔细考察的.第一组(见下图) (1)两个点,一条线. 每个点都只与一条线相连. (2)三个点. 两个端点都只与一条线相连,中间点与两条线连. 第一组的两个图都能一笔画出来. (但注意第(2)个图必须从一个端点画起)第二组(见下图) (1)五个点,五条线. A点与一条线相连,B点与三条线相连,其他的点都各与两条线相连. (2)六个点,七条线.(“日”字图) A点与B点各与三条线相连,其他点都各与两条线相连. 第二组的两个图也都能一笔画出来,如箭头所示那样画.即起点必需是A点(或B点),而终点则定是B点(或A点). 第三组(见下图) (1)四个点,三条线. 三个端点各与一条线相连,中间点与三条线相连. (2)四个点,六条线. 每个点都与三条线相连. (3)五个点,八条线. 点O与四条线相连,其他四个顶点各与三条线相连. 第三组的三个图形都不能一笔画出来. 第四组(见下图) (1)这个图通常叫五角星. 五个角的顶点各与两条线相连,其他各点都各与四条线相连. (2)由一个圆及一个内接三角形构成. 三个交点,每个点都与四条线相连(这四条线是两条线段和两条弧线). (3)一个正方形和一个内切圆构成. 正方形的四个顶点各与两条线相连,四个交点各与四条线相连. (四条线是两条线段和两条弧线). 第四组的三个图虽然比较复杂,但每一个图都可以一笔画成,而且画的时候从任何一点开始画都可以.第五组(见下图) (1)这是“品”字图形,它由三个正方形构成,它们之间没有线相连. (2)这是古代的钱币图形,它是由一个圆形和中间的正方形方孔组成.圆和正方形之间没有线相连. 第五组的两个图形叫不连通图,显然不能一笔把这样的不连通图画出来. 进行总结、归纳,看能否找出可以一笔画成的图形的共同特点,为方便起见,把点分为两种,并分别定名: 把和一条、三条、五条等奇数条线相连的点叫做奇点;把和两条、四条、六条等偶数条线相连的点叫偶点,这样图中的要么是奇点,要么是偶点. 提出猜想:一个图能不能一笔画成可能与它包含的奇点个数有关,对此列表详查: 从此表来看,猜想是对的.下面试提出几点初步结论: ①不连通的图形必定不能一笔画;能够一笔画成的图形必定是连通图形. ②有0个奇点(即全部是偶点)的连通图能够一笔画成.(画时可以任一点为起点,最后又将回到该点). ③只有两个奇点的连通图也能一笔画成(画时必须以一个奇点为起点,而另一个奇点为终点); ④奇点个数超过两个的连通图形不能一笔画成.最后,综合成一条判定法则: 有0个或2个奇点的连通图能够一笔画成,否则不能一笔画成. 能够一笔画成的图形,叫做“一笔画”. 用这条判定法则看一个图形是不是一笔画时,只要找出这个图形的奇点的个数来就能行了,根本不必用笔试着画来画去. 看看下面的图可能会加深你对这条法则的理解.从画图的过程来看:笔总是先从起点出发,然后进入下一个点,再出去,然后再进出另外一些点,一直到最后进入终点不再出来为止.由此可见: ①笔经过的中间各点是有进有出的,若经过一次,该点就与两条线相连,若经过两次则就与四条线相连等等,所以中间点必为偶点.②再看起点和终点,可分为两种情况:如果笔无重复地画完整个图形时最后回到起点,终点和起点就重合了,那么这个重合点必成为偶点,这样一来整个图形的所有点必将都是偶点,或者说有0个奇点;如果笔画完整个图形时最后回不到起点,就是终点和起点不重合,那么起点和终点必定都是奇点,因而该图必有2个奇点,可见有0个或2个奇点的连通图能够一笔画成.。
一笔画问题

一笔画问题
1.瑞士大数学家欧拉在七桥问题的过程中,发现了一笔画原理,这一原理被命名为“欧拉定理”:
(1)能一笔画的图形必须是连通的。
(2)凡是只由偶顶点组成的连通图形,一定可以一笔画出,画时可以由任一偶顶点为起点,最后仍回到这点。
(3)凡是只有两个奇顶点的连通图形一定可以一笔画出,画时必须以一个奇顶点为起点,以另一个奇顶点为终点。
(4)奇顶点个数超过两个的图形不能一笔画出。
2.能一笔画出的图形的奇顶点数目是2或0,如果图形有奇顶点2N(n为正整数)个,那么图形最少要用N笔画出。
关于一笔画问题的经典探讨

(1)
(2)
(3)
从中,你发现了什么吗?
一、故事发生的背景
这是一段与数学有关的故事。故事发生在十八世纪俄罗 斯的一座美丽的小城哥尼斯堡。 在哥尼斯堡的中央有一条宽阔的小河,河中央有两座美 丽的小岛。连接岛与岛,岛与河岸之间一共有7座桥,景色 十分优美。于是城中的居民每天吃完晚饭后就经常沿河过 桥散步,或者在小岛上休息,生活十分惬意。
一把问题转化成数学问题二把点线图上的点分类经过思考欧拉决定吧这种完全由线条构成的图形称为点线图并把图形上线条与线条之间的交点叫做结点
听讲要求
• 保持安静,积极思考 • 积极发言有奖励: 1.积极回答: 2.回答正确:
【课前热身】你能笔尖不离纸,一笔画出下面的 每个图形吗?试试看。(不走重复线路)
(1)
(2)
(3)
(4)
(5)
•
突然有一天,人们提出这样一个问题:能不能不
重复的走遍河上的每一座桥,而且最后恰能回到出发点呢? 于是为了解决这样一个问题,人们开始进行各种各样的探索。半年 内他们已经尝试了几乎所有可能的方案,但仍然没有找出适合的路线。
渐渐地人们开始怀疑这样的路线可能根本就不存在!可是他们 怎么也想不明白为什么,于是就有人写信把这个问题告诉了当时 瑞典最伟大的数学家——欧拉。
三、欧拉的结论
• ①凡是由偶点组成的连通图,一定可以一笔画成; 画时可以任一偶结点为起点,最后一定能以这个 点为终点画完此图。 • ②凡是只有两个奇结点(其余均为偶结点)的连 通图,一定可以一笔画完;画时必须以一个奇结 点为起点,另一个奇结点为终点。
• ③其他情况的图,都不能一笔画出。
问:为什么总是找不到一条合适的路线 不重复的走完七座桥呢? 答:因为图中ABCD四个结点都是奇结点, 不符合欧拉的结论。
关于一笔画问题的经典探讨PPT培训课件

一笔画定理及其证明
一笔画定理
一个连通图形可以一笔画成当且仅当该图形中奇数个顶点的度数之和为2。
证明过程
首先,根据连通性规则,图形必须是连通的。然后,根据奇偶性规则,如果图 形中奇数个顶点的度数之和为2,则该图形可以一笔画成;如果图形中奇数个顶 点的度数之和不为2,则该图形不能一笔画成。
一笔画定理的应用实例
应用
一笔画问题在计算机科学、电子工 程、运筹学等领域都有广泛的应用。
一笔画问题的重要性和应用领域
理论价值
一笔画问题在数学理论中具有重 要的价值,是图论、组合数学等 领域的重要研究课题之一。
应用价值
一笔画问题在计算机图形学、电 路设计、物流规划等领域都有广 泛的应用,可以帮助人们解决一 系列实际问题。
06
一笔画问题的实际应用案例
地图着色问题
算法设计
解决地图着色问题需要设计一种有效的算法,能够判断给定的地图是否可以一笔画成,并找出最少所需的颜色数 量。常用的算法包括贪心算法、回溯算法等。
实例分析
地图着色问题可以通过实例来分析,例如给定一个包含多个国家的地图,如何使用最少的颜色对各个国家进行着 色,使得相邻的国家颜色不同。
判断一笔画图形
通过计算图形中奇数个顶点的度数之 和,可以判断该图形是否可以一笔画 成。
设计一笔画图案
解决实际问题
一笔画定理在计算机科学、电子工程、 机械工程等领域都有广泛的应用,例 如在电路设计和布线、机器人路径规 划等方面。
利用一笔画定理,可以设计出具有特 定形状和结构的一笔画图案。
03
一笔画问题的经典问题解析
THANKS
感谢观看
一个顶点的度数为奇数,意味着该顶点是起点或 终点。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、欧拉的做法
(一)把问题转化成数学问题
欧拉解决这个问题的方法非常巧妙.他认为:人们 关心的只是一次不重复地走遍这七座桥,而并不关心 桥的长短和岛的大小,因此,岛和岸都可以看作一个 点,而桥则可以看成是连接这些点的一条线.这样,一 个实际问题就转化为一个几何图形(如下图)能否一 笔画出的问题了.
A
(1)
(2)
(3)
(4)
(5)
•
听讲要求
• 保持安静,积极思考 • 积极发言有奖励: 1.积极回答: 2.回答正确:
【课前热身】你能笔尖不离纸,一笔画出下面的 每个图形吗?试试看。(不走重复线路)
(1)
(2)
(3)
从中,你发现了什么吗?
一、故事发生的背景
这是一段与数学有关的故事。故事发生在十八世纪俄罗 斯的一座美丽的小城哥尼斯堡。 在哥尼斯堡的中央有一条宽阔的小河,河中央有两座美 丽的小岛。连接岛与岛,岛与河岸之间一共有7座桥,景色 十分优美。于是城中的居民每天吃完晚饭后就经常沿河过 桥散步,或者在小岛上休息,生活十分惬意。
B
二、欧拉的做法
(二)把点线图上的点分类
经过思考,欧拉决定吧这种完全由线条构成的图 形称为点线图,并把图形上线条与线条之间的交点叫 做结点。 每一个结点的周围都有许多线条。 把周围有奇数条线的结点叫做奇点。 把周围有偶数条线的结点叫做偶点。
例如:
A
•
A B C
B D
C
E G (1) F (2)
在图(1)中,共有ABC三个结点,其中A是奇结点, BC是偶结点。 在图(2)中,共有ABCDEFG七个结点,其中ACDF 是奇结点,BEG是偶结点。
二、欧拉的做法
• (三)对奇偶结点进行思考
欧拉发现,凡是能用一笔画成的图形,都有这样一个特点: 每当你用笔画一条线进入中间的一个点时,你还必须画一 条线离开这个点。否则,整个图形就不可能用一笔画出。 也就是说,单独考察图中的任何一个点(除起点和终点 外),它都应该与偶数条线相连。因此,凡是能够一笔画 出的图形,除起点和终点外,其它的点一定都是偶结点。 而对于起点和终点,它们可能是偶结点,也可能是奇 结点。但无论如何,整个图形中奇结点的个数一定不会超 过两个!
三、欧拉的结论
• ①凡是由偶点组成的连通图,一定可以一笔画成; 画时可以任一偶结点为起点,最后一定能以这个 点为终点画完此图。 • ②凡是只有两个奇结点(其余均为偶结点)的连 通图,一定可以一笔画完;画时必须以一个奇结 点为起点,另一个奇结点为终点。
• ③其他情况的图,都不能一笔画出。
问:为什么总是找不到一条合适的路线 不重复的走完七座桥呢? 答:因为图中ABCD四个结点都是奇结点, 不符合欧拉的结论。
突然有一天,人们提出这样一个问题:能不能不
重复的走遍河上的每一座桥,而且最后恰能回到出发点呢? 于是为了解决这样一个问题,人们开始进行各种各样的探索。半年 内他们已经尝试了几乎所有可能的方案,但仍然没有找出适合的路线。
渐渐地人们开始怀疑这样的路线可能根本就不存在!可是他们 怎么也想不明白为什么,于是就有人写信把这个问题告诉了当时 瑞典最伟大的数学家——欧拉。
CABiblioteka BD练一练
一.填空
(1)
(3)
(4)
1.图(1)中,有----个奇点;有----个偶点? 2.图(2)中,有----奇点;有----个偶点? 3.图(3)中,有----个奇点;有----个偶点? 4.图(4)中,有----个奇点;有----个偶点?
练一练
二.在下图中,哪个图形能一笔画出?哪个不能一 笔画出?能一笔画出的,请把他们画出来。