高二数学 上学期简单线性规划问题的向量解法例题解析

合集下载

高中数学高二试题解析高二数学专题简单线性规划问题高

高中数学高二试题解析高二数学专题简单线性规划问题高

简单线性规划问题(二)复习旧知:一线性规划的步骤:根据课本87页例子填写下列空白:1在坐标内作图。

2将 化为 。

这是一条斜率为 截距为 直线。

当截距 ,z 最 。

3由图可见,当直线 经过可行域上点M 时,截距 .,z最 。

4解方程组⎩⎨⎧,得M( , ) 5 z= =二根据上例指出约束条件,目标函数,可行域,可行解,最优解。

教学目标:重点:通过各种情况分析来掌握线性规划的一般方法。

难点:一族直线平移过程中与可行域的交点情况分析。

问题探讨:在上述例子中,最后条件;(1)若生产一件甲产品获利1万元,若生产一件乙产品获利4万元,采用哪种方式利润最大?(2)若生产一件甲产品获利1万元,若生产一件乙产品获利2万元,采用哪种方式利润最大?(3)若目标函数为z=x —y ,那么Z 的取值范围为?总结:在一族直线的移动过程中,直线开始与可行域开始相交时,可能是 可能是 也可能是 直线最后与可行域开始相交时,可能 是 可能 也可能是 。

1所以最优解可能是 可能是 也可能是2此时截距 ,z 最 。

3原来线性规划的步骤可改为:(1)(2)(3)(4)把上图中的交点坐标分别代入目标函数,比较结果,得出结论:使用这种方法来解决上节复习旧知中的最后两道题。

知识拓展:已知平面区域如图,z=mx+y(m)0)在平面区域内取得最大值的最优解有无数多个,则m 的值为( )边界直线的交点:A(1,1),B(5,3),C(1,22/5)练习:1(2006年安徽卷)如果实数x y 、满足条件101010x y y x y -+≥⎧⎪+≥⎨⎪++≤⎩,那么2x y -的最大值为( )A .2B .1C .2-D .3-2(2006年湖北卷)已知平面区域D 由以()3,1A 、()2,5B 、()1,3C 为顶点的三角形内部和边界组成.若在区域D 上有无穷多个点()y x ,可使目标函数my x z +=取得最小值,则=m(C )A. 2-B. 1-C. 1D. 43(2005湖南卷)已知点P (x ,y )在不等式组⎪⎩⎪⎨⎧≥-+≤-≤-022,01,02y x y x 表示的平面区域上运动,则z =x -y 的取值范围是 ( C )A .[-2,-1]B .[-2,1]C .[-1,2]D .[1,2]。

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结

线性规划问题求解例题和知识点总结线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法。

在经济管理、交通运输、工农业生产等领域都有着广泛的应用。

下面我们通过一些具体的例题来深入理解线性规划问题,并对相关知识点进行总结。

一、线性规划的基本概念线性规划问题是在一组线性约束条件下,求一个线性目标函数的最大值或最小值的问题。

其数学模型一般可以表示为:目标函数:$Z = c_1x_1 + c_2x_2 +\cdots + c_nx_n$约束条件:$\begin{cases}a_{11}x_1 + a_{12}x_2 +\cdots +a_{1n}x_n \leq b_1 \\ a_{21}x_1 + a_{22}x_2 +\cdots +a_{2n}x_n \leq b_2 \\\cdots \\ a_{m1}x_1 + a_{m2}x_2 +\cdots + a_{mn}x_n \leq b_m \\ x_1, x_2, \cdots, x_n \geq0\end{cases}$其中,$x_1, x_2, \cdots, x_n$是决策变量,$c_1, c_2, \cdots, c_n$是目标函数的系数,$a_{ij}$是约束条件的系数,$b_1, b_2, \cdots, b_m$是约束条件的右端项。

二、线性规划问题的求解方法常见的求解线性规划问题的方法有图解法和单纯形法。

1、图解法适用于只有两个决策变量的线性规划问题。

步骤如下:画出直角坐标系。

画出约束条件所对应的直线。

确定可行域(满足所有约束条件的区域)。

画出目标函数的等值线。

移动等值线,找出最优解。

例如,求解线性规划问题:目标函数:$Z = 2x + 3y$约束条件:$\begin{cases}x + 2y \leq 8 \\ 2x + y \leq 10 \\ x \geq 0, y \geq 0\end{cases}$首先,画出约束条件对应的直线:$x + 2y = 8$,$2x + y =10$,以及$x = 0$,$y = 0$。

高二数学北师大版必修作业:简单线性规划的应用含解析

高二数学北师大版必修作业:简单线性规划的应用含解析

4.3简单线性规划的应用一、非标准1.有5辆6吨的汽车,4辆4吨的汽车,需x辆6吨汽车y辆4吨汽车,要运送最多的货物,完成这项运输任务的线性目标函数为()A.z=6x+4yB.z=5x+4yC.z=x+yD.z=4x+5y答案:A2.已知点(x,y)构成的平面区域如图阴影部分所示,z=mx+y(m为常数)在平面区域内取得最大值的最优解有无数多个,则m的值为()A.-B.C.D.解析:观察平面区域可知直线y=-mx+z与直线AC重合,则-m=k AC==-,解得m=.答案:B3.在“家电下乡”活动中,某厂要将100台洗衣机运往邻近的乡镇,现有4辆甲型货车和8辆乙型货车可供使用,每辆甲型货车运输费用400元,可装洗衣机20台;每辆乙型货车运输费用300元,可装洗衣机10台,若每辆车至少运一次,则该厂所花的最少运输费用为()A.2 000元B.2 200元C.2 400元D.2 800元解析:设需甲型货车x辆,乙型货车y辆,由题意知,作出其可行域如图,描出阴影内部整点及部分边界整点.可知目标函数z=400x+300y,在点A处取最小值z=400×4+300×2=2 200(元).答案:B4.如图,目标函数z=ax-y的可行域为四边形OACB(含边界),若C是该目标函数z=ax-y的最优解,则a的取值范围是()A. B.C. D.解析:最优解为C点,则目标函数表示的直线斜率在直线BC与AC的斜率之间.因为k BC=-,k AC=-,所以a∈.答案:B5.某公司招收男职员x名,女职员y名,x和y需满足约束条件则z=10x+10y 的最大值是()A.80B.85C.90D.95解析:先画出满足约束条件的可行域,如图阴影部分所示.由解得但x∈N,y∈N,结合图知当x=5,y=4时,z max=90,选C.答案:C6.若直线y=2x上存在点(x,y)满足约束条件则实数m的最大值为. 解析:由约束条件作出其可行域如图:由图可知当直线x=m过直线y=2x与x+y-3=0的交点(1,2)时m取得最大值,此时x=m=1. 答案:17.某公司租赁甲、乙两种设备生产A,B两类产品,甲种设备每天能生产A类产品5件和B类产品10件,乙种设备每天能生产A类产品6件和B类产品20件.已知设备甲每天的租赁费为200元,设备乙每天的租赁费为300元.现该公司至少要生产A类产品50件,B类产品140件,则所需租赁费最少为元.解析:设甲种设备需要生产x天,乙种设备需要生产y天,此时该公司所需租赁费为z元, 则z=200x+300y.又因为即画出该不等式组表示的平面区域,如图阴影部分所示.解即点A(4,5).由z=200x+300y,得直线y=-x+过点A(4,5)时,z=200x+300y取得最小值,为2 300元.答案:2 3008.设不等式组表示的平面区域为D.若指数函数y=a x的图像上存在区域D上的点,则a的取值范围是.解析:画出可行域如图阴影部分,易知a∈(0,1)时不合题意,故a>1.两直线的交点为A(2,9).由图像可知,当y=a x通过该交点A时,a取最大值,∴f(2)=a2=9,∴a=3.故a∈(1,3].答案:(1,3]9.某养鸡场有1万只鸡,用动物饲料和谷物饲料混合喂养.每天每只鸡平均吃混合饲料0.5 kg,其中动物饲料不能少于谷物饲料的.动物饲料每千克0.9元,谷物饲料每千克0.28元,饲料公司每周仅保证供应谷物饲料50 000 kg,问饲料怎样混合,才使成本最低?解:设每周需用谷物饲料x kg,动物饲料y kg,每周总的饲料费用为z元,那么而z=0.28x+0.9y,如图,作出不等式组所表示的平面区域,即可行域.作一组平行直线0.28x+0.9y=t.其中经过可行域内的点A时,z最小,又直线x+y=35 000和直线y=x的交点A.即x=,y=时,饲料费用最低.答:谷物饲料和动物饲料应按5∶1的比例混合,此时成本最低.10.要将两种大小不同的钢板截成A,B,C三种规格,每张钢板可同时截得三种规格的小钢板的块数如下表所示:钢板类型A规格B规格C规格规格类型第一种钢板 2 1 1第二种钢板 1 2 3今需要A,B,C三种规格的成品分别为15,18,27块,问各截这两种钢板多少张可得所需的三种规格成品,且使所用钢板张数最少?解:设需截第一种钢板x张,第二种钢板y张,可得且x,y都是整数,求目标函数z=x+y取最小值时的x,y.作可行域如图所示,平移直线z=x+y可知直线经过点,此时x+y=,但都不是整数,所以可行域内的点不是最优解.首先在可行域内打网格,其次描出A附近的所有整点,接着平移直线l:x+y=0,会发现当移至B(3,9),C(4,8)时,即z取得最小值12.故本题有两种截法:第一种截法是截第一种钢板3张、第二种钢板9张;第二种截法是截第一种钢板4张、第二种钢板8张.两种方法最少要截两种钢板共12张.答:截第一种钢板3张、第二种钢板9张,或截第一种钢板4张、第二种钢板8张时,所用钢板张数最少.。

高中数学332_简单的线性规划问题(有答案)

高中数学332_简单的线性规划问题(有答案)

3.3.2 简单的线性规划问题(1)一、选择题。

1. 若实数x ,y 满足不等式组{x +3y −3≥02x −y −3≤0x −y +1≥0,则x +y 的最大值为( )A.9B.157C.1D.7152. 已知点P (x,y )的坐标满足条件{x +y ≤4,y ≥x ,x ≥1,则x 2+y 2的最大值为( )A.√10B.8C.16D.103. 设变量x ,y 满足约束条件{x −y +2≥0,x −5y +8≤0,x +y −8≤0,则目标函数z =3x −4y 的最大值和最小值分别为( ) A.3,−11 B.−3,−11 C.11,−3 D.11,34. 在坐标平面上有两个区域M 和N ,其中区域M ={(x,y)|y ≥0,y ≤x,y ≤2−x },区域N ={(x,y )|t ≤x ≤t +1,0≤t ≤1},区域M 和N 公共部分的面积用函数f(t)表示,则f(t)的表达式为( ) A.−t 2+t +12B.−2t 2+2tC.1−12t 2D.12(t −2)25. 已知向量a =(x +z,3),b =(2,y −z ),且a ⊥b .若x ,y 满足不等式|x|+|y|≤1,则z 的取值范围为( ) A.[−2,2] B.[−2,3] C.[−3,2] D.[−3,3]6. 设不等式组{x ≥1,x −2y +3≥0,y ≥x所表示的平面区域是Ω1,平面区域Ω2与Ω1关于直线3x −4y −9=0对称.对于Ω1中的任意点A 与Ω2中的任意点B ,则|AB|的最小值为( ) A.285B.4C.125D.2二、填空题。

设变量x ,y 满足约束条件{x +y ≥3,x −y ≥−1,2x −y ≤3.则目标函数z =2x +3y 的最小值为________.已知−1<x +y <4且2<x −y <3,则z =2x −3y 的取值范围是________.(答案用区间表示)已知实数x 、y 满足{2x −y ≤0x +y −5≥0y −4≤0,,若不等式a(x 2+y 2)≥(x +y)2恒成立,则实数a的最小值是________. 三、解答题。

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析1.已知△ABC的顶点A(3,0),B(0,1),C(1,1),P(x,y)在△ABC内部(包括边界),若目标函数z=(a≠0)取得最大值时的最优解有无穷多组,则点(a,b)的轨迹可能是()【答案】A【解析】由线性规划问题的求解可知这三个值中有两个相等且为最大值,因为a≠0,所以,若,则(a≠0);若,则(a≠0),所以答案为A.【考点】线性规划的最优解2.已知O为坐标原点,点A(1,0),若点M(x,y)为平面区域内的一个动点,则的最小值为( ).A.3B.C.D.【答案】C【解析】作出可行域如图所示,表示到的距离;由图可知,所求最小值即是点B到直线的距离.【考点】二元一次不等式组与平面区域、平面向量的模长.3.在平面直角坐标系中,若点在直线的上方(不含边界),则实数a的取值范围是.【答案】【解析】由题意得:当时,,即【考点】不等式表示区域4.实数x,y满足,则的最小值为3,则实数b的值为()A.B.—C.D.—【答案】C【解析】试题分析:当时,根据约束条件画出可行域,可知在直线与的交点处取到最小值,则,解得,同理可得当时,b的值不存在。

【考点】(1)根据线性约束条件求目标函数的最值;(2)分类讨论思想的应用。

5.若实数满足条件,则的最大值为【答案】4【解析】满足条件的线性规划如图阴影所示:当经过时,能取到最大值4.【考点】不等式的应用、最值问题.6.若原点O和点在直线x+y=a的两侧,则实数a的取值范围是 ( )A.B.C.D.【答案】B【解析】将直线直线变形为直线。

因为两点在直线两侧,则将两点代入所得符号相反,即,解得。

故B正确。

【考点】二元一次不等式表示平面区域。

7.已知实数x,y满足,则的最小值是 .【答案】2【解析】线性不等式组表示的可行域如图:,,。

表示点与可行域内的点间的距离的平方。

,点到直线的距离为,因为,所以。

【考点】线性规划。

8.已知点满足条件,则的最小值为()A.B.C.-D.【答案】B【解析】满足约束条件的点的可行域,如图所示由图可知,目标函数在点处取得最小值,故选B.【考点】线性规划问题.9.设变量、满足约束条件,则的最大值为________.【答案】18【解析】解:变量x,y满足约束条件,表示的可行域为如图,所以z=4x+6y的最大值就是经过M即2x-y="2," x-y=-1的交点(3,4)时,所以最大值为:3×2+4×3=18.故答案为:18.【考点】线性规划点评:本题考查线性规划的应用,正确作出约束条件的可行域是解题的关键.10.若为不等式组表示的平面区域,当从连续变化到时,动直线扫过中的那部分区域的面积为()A.B.C.D.【答案】A【解析】作出可行域,如图,可知则直线扫过的面积为三角形面积的差得到,即为S=,故选A.【考点】线性规划问题点评:平面区域的面积问题是线性规划问题中一类重要题型,在解题时,关键是正确地画出平面区域,然后结合有关面积公式求解11.若满足约束条件,则目标函数的最大值是()A.B.C.D.【答案】D【解析】满足约束条件的平面区域如下图所示:由图易得,当x=2,y=-1时,目标函数z=2x+y的最大值为3,故选D【考点】本题考查了简单的线性规划点评:解此类问题的关键是画出满足约束条件的可行域,属于基础题12.(本小题满分12分)已知x,y满足条件求: (1)4x-3y的最大值(2)x2+y2的最大值(3)的最小值【答案】(1)最大值为13(2)最大值为37(3)最小值为-9【解析】解:x,y满足条件根据不等式组表示的区域可知,当目标函数过点(4,1)时目标函数的截距最大且为13,故可知)4x-3y的最大值为13。

高二数学北师大版必修作业:简单线性规划含解析

高二数学北师大版必修作业:简单线性规划含解析

4.2简单线性规划一、非标准1.设变量x,y满足约束条件则目标函数z=3x-2y的最小值为()A.-5B.-4C.-2D.3解析:由约束条件可得可行域:对于目标函数z=3x-2y,可化为y=x-z,要使z取最小值,可知过点A时取得.由即A(0,2),所以z=3×0-2×2=-4.答案:B2.设变量x,y满足约束条件则z=x-3y的最小值为()A.-2B.-4C.-6D.-8解析:作出可行域.令z=0,则l0:x-3y=0,平移l0在点M(-2,2)处z取到最小,最小值为-8.答案:D3.已知在平面直角坐标系xOy上的区域D由不等式组给定.若M(x,y)为D上的动点,点A的坐标为(,1),则z=的最大值为()A.4B.3C.4D.3解析:画出可行域,而z=x+y,∴y=-x+z.令l0:y=-x,将l0平移到过点(,2)时,截距z有最大值,故z max=+2=4.答案:C4.已知x,y满足则点P(x,y)到直线x+y=-2的距离的最小值为()A. B.2C. D.解析:不等式组所表示的可行域如图阴影部分.其中点P(1,1)到直线的距离最短,其最小值为=2,故选B.答案:B5.若点(x,y)位于曲线y=|x-1|与y=2所围成的封闭区域,则2x-y的最小值为.解析:由y=|x-1|=及y=2画出可行域如图阴影部分.令2x-y=z,则y=2x-z,画直线l0:y=2x并平移到过点A(-1,2)的直线l,此时-z最大,即z最小=2×(-1)-2=-4.答案:-46.若变量x,y满足约束条件则z=x+2y的最小值为.解析:根据得可行域如图,根据z=x+2y得y=-,平移直线y=-,在M点z取得最小值.由此时z min=4+2×(-5)=-6.答案:-67.若实数x,y满足则z=3x+2y的最小值为.解析:上述不等式组所表示的可行域如图阴影部分.令t=x+2y,则当直线y=-x+t经过原点O(0,0)时,t取最小值,也即t有最小值为0,则z=3x+2y有最小值为30=1.答案:18.如果实数x,y满足不等式组则(x+2)2+(y+1)2的最小值为.解析:画出不等式组表示的平面区域,如图阴影部分.表示可行域内的点D(x,y)与定点M(-2,-1)间的距离.显然当点P在点A(1,2)时|PM|最小,这时|PM|=3,故(x+2)2+(y+1)2的最小值是18.答案:189.求z=5x-8y的最大值,使式中的x,y满足约束条件解:作出满足不等式组的可行域,如图阴影部分.作直线l0:5x-8y=0,平移直线l0,由图可知,当平移到直线经过A点时,z取最大值.解方程组得A(6,0),所以z max=5×6-8×0=30.10.已知-4≤a-b≤-1,-1≤4a-b≤5,求9a-b的取值范围.解:如图所示,令a=x,b=y,z=9a-b,即已知-4≤x-y≤-1,-1≤4x-y≤5,求z=9x-y的取值范围,画出不等式表示的可行域如图阴影部分.由z=9x-y,得y=9x-z,当直线过点A时z取最大值,当直线过点B时z取最小值.由得A(3,7),由得B(0,1),即z max=9×3-7=20,z min=-1,所以9a-b的取值范围是[-1,20].。

简单的线性规划问题(附答案)

简单的线性规划问题(附答案)

简单的线性规划问题[学习目标] 1.了解线性规划的意义以及约束条件、目标函数、可行解、可行域、最优解等基本概念.2.了解线性规划问题的图解法,并能应用它解决一些简单的实际问题.知识点一 线性规划中的基本概念知识点二 线性规划问题 1.目标函数的最值线性目标函数z =ax +by (b ≠0)对应的斜截式直线方程是y =-a b x +z b ,在y 轴上的截距是zb ,当z 变化时,方程表示一组互相平行的直线.当b >0,截距最大时,z 取得最大值,截距最小时,z 取得最小值; 当b <0,截距最大时,z 取得最小值,截距最小时,z 取得最大值. 2.解决简单线性规划问题的一般步骤在确定线性约束条件和线性目标函数的前提下,解决简单线性规划问题的步骤可以概括为:“画、移、求、答”四步,即,(1)画:根据线性约束条件,在平面直角坐标系中,把可行域表示的平面图形准确地画出来,可行域可以是封闭的多边形,也可以是一侧开放的无限大的平面区域.(2)移:运用数形结合的思想,把目标函数表示的直线平行移动,最先通过或最后通过的顶点(或边界)便是最优解.(3)求:解方程组求最优解,进而求出目标函数的最大值或最小值. (4)答:写出答案.知识点三 简单线性规划问题的实际应用 1.线性规划的实际问题的类型(1)给定一定数量的人力、物力资源,问怎样运用这些资源,使完成的任务量最大,收到的效益最大;(2)给定一项任务,问怎样统筹安排,使完成这项任务耗费的人力、物力资源量最小. 常见问题有: ①物资调动问题例如,已知两煤矿每年的产量,煤需经两个车站运往外地,两个车站的运输能力是有限的,且已知两煤矿运往两个车站的运输价格,煤矿应怎样编制调动方案,才能使总运费最小? ②产品安排问题例如,某工厂生产甲、乙两种产品,每生产一个单位的甲种或乙种产品需要的A 、B 、C 三种材料的数量,此厂每月所能提供的三种材料的限额都是已知的,这个工厂在每个月中应如何安排这两种产品的生产,才能使每月获得的总利润最大? ③下料问题例如,要把一批长钢管截成两种规格的钢管,应怎样下料能使损耗最小? 2.解答线性规划实际应用题的步骤(1)模型建立:正确理解题意,将一般文字语言转化为数学语言,进而建立数学模型,这需要在学习有关例题解答时,仔细体会范例给出的模型建立方法.(2)模型求解:画出可行域,并结合所建立的目标函数的特点,选定可行域中的特殊点作为最优解.(3)模型应用:将求解出来的结论反馈到具体的实例中,设计出最佳的方案.题型一 求线性目标函数的最值例1 已知变量x ,y 满足约束条件⎩⎪⎨⎪⎧y ≤2,x +y ≥1,x -y ≤1,则z =3x +y 的最大值为( )A .12B .11C .3D .-1答案 B解析 首先画出可行域,建立在可行域的基础上,分析最值点,然后通过解方程组得最值点的坐标,代入即可.如图中的阴影部分,即为约束条件对应的可行域,当直线y =-3x +z 经过点A 时,z 取得最大值.由⎩⎪⎨⎪⎧ y =2,x -y =1⇒⎩⎪⎨⎪⎧x =3,y =2,此时z =3x +y =11.跟踪训练1 (1)x ,y 满足约束条件⎩⎪⎨⎪⎧x +y -2≤0,x -2y -2≤0,2x -y +2≥0,若z =y -ax 取得最大值的最优解不唯一...,则实数a 的值为( ) A.12或-1 B .2或12C .2或1D .2或-1(2)若变量x ,y 满足约束条件⎩⎪⎨⎪⎧x -y +1≤0,x +2y -8≤0,x ≥0,则z =3x +y 的最小值为________.答案 (1)D (2)1解析 (1)如图,由y =ax +z 知z 的几何意义是直线在y 轴上的截距,故当a >0时,要使z =y -ax 取得最大值的最优解不唯一,则a =2; 当a <0时,要使z =y -ax 取得最大值的最优解不唯一,则a =-1.(2)由题意,作出约束条件组成的可行域如图所示,当目标函数z =3x +y ,即y =-3x +z 过点(0,1)时z 取最小值1.题型二 非线性目标函数的最值问题例2 设实数x ,y 满足约束条件⎩⎪⎨⎪⎧x -y -2≤0,x +2y -4≥0,2y -3≤0,求(1)x 2+y 2的最小值; (2)yx的最大值. 解 如图,画出不等式组表示的平面区域ABC ,(1)令u =x 2+y 2,其几何意义是可行域ABC 内任一点(x ,y )与原点的距离的平方.过原点向直线x +2y -4=0作垂线y =2x ,则垂足为⎩⎪⎨⎪⎧x +2y -4=0,y =2x 的解,即⎝⎛⎭⎫45,85, 又由⎩⎪⎨⎪⎧x +2y -4=0,2y -3=0,得C ⎝⎛⎭⎫1,32, 所以垂足在线段AC 的延长线上,故可行域内的点到原点的距离的最小值为|OC |= 1+⎝⎛⎭⎫322=132, 所以,x 2+y 2的最小值为134.(2)令v =yx ,其几何意义是可行域ABC 内任一点(x ,y )与原点相连的直线l 的斜率为v ,即v=y -0x -0.由图形可知,当直线l 经过可行域内点C 时,v 最大,由(1)知C ⎝⎛⎭⎫1,32, 所以v max =32,所以y x 的最大值为32.跟踪训练2 已知x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥0,y ≥0,x +y ≥1,则(x +3)2+y 2的最小值为________.答案 10解析 画出可行域(如图所示).(x +3)2+y 2即点A (-3,0)与可行域内点(x ,y )之间距离的平方.显然AC 长度最小,∴AC 2=(0+3)2+(1-0)2=10,即(x +3)2+y 2的最小值为10. 题型三 线性规划的实际应用例3 某公司生产甲、乙两种桶装产品.已知生产甲产品1桶需耗A 原料1千克、B 原料2千克;生产乙产品1桶需耗A 原料2千克、B 原料1千克.每桶甲产品的利润是300元,每桶乙产品的利润是400元.公司在生产这两种产品的计划中,要求每天消耗A ,B 原料都不超过12千克.通过合理安排生产计划,从每天生产的甲、乙两种产品中,公司共可获得的最大利润是多少?解 设每天分别生产甲产品x 桶,乙产品y 桶,相应的利润为z 元,于是有⎩⎪⎨⎪⎧x +2y ≤12,2x +y ≤12,x ≥0,y ≥0,x ∈N ,y ∈N ,z =300x +400y ,在坐标平面内画出该不等式组表示的平面区域及直线300x +400y =0,平移该直线,当平移到经过该平面区域内的点(4,4)时,相应直线在y 轴上的截距达到最大,此时z =300x +400y 取得最大值, 最大值是z =300×4+400×4=2 800,即该公司可获得的最大利润是2 800元.反思与感悟 线性规划解决实际问题的步骤:①分析并根据已知数据列出表格;②确定线性约束条件;③确定线性目标函数;④画出可行域;⑤利用线性目标函数(直线)求出最优解;⑥实际问题需要整数解时,应适当调整,以确定最优解.跟踪训练3 预算用2 000元购买单价为50元的桌子和20元的椅子,希望使桌子和椅子的总数尽可能的多,但椅子数不少于桌子数,且不多于桌子数的1.5倍,问桌子、椅子各买多少才行?解 设桌子、椅子分别买x 张、y 把,目标函数z =x +y , 把所给的条件表示成不等式组,即约束条件为⎩⎪⎨⎪⎧50x +20y ≤2 000,y ≥x ,y ≤1.5x ,x ≥0,x ∈N *,y ≥0,y ∈N *.由⎩⎪⎨⎪⎧ 50x +20y =2 000,y =x ,解得⎩⎨⎧x =2007,y =2007,所以A 点的坐标为⎝⎛⎭⎫2007,2007.由⎩⎪⎨⎪⎧50x +20y =2 000,y =1.5x ,解得⎩⎪⎨⎪⎧x =25,y =752,所以B 点的坐标为⎝⎛⎭⎫25,752. 所以满足条件的可行域是以A ⎝⎛⎭⎫2007,2007,B ⎝⎛⎭⎫25,752, O (0,0)为顶点的三角形区域(如图).由图形可知,目标函数z =x +y 在可行域内的最优解为B ⎝⎛⎭⎫25,752, 但注意到x ∈N *,y ∈N *,故取⎩⎪⎨⎪⎧x =25,y =37.故买桌子25张,椅子37把是最好的选择.1.若直线y =2x 上存在点(x ,y )满足约束条件⎩⎪⎨⎪⎧x +y -3≤0,x -2y -3≤0,x ≥m ,则实数m 的最大值为( )A .-1B .1 C.32D .22.某公司招收男职员x 名,女职员y 名,x 和y 需满足约束条件⎩⎪⎨⎪⎧5x -11y ≥-22,2x +3y ≥9,2x ≤11,x ∈N *,y ∈N *,则z=10x +10y 的最大值是( ) A .80 B .85 C .90 D .953.已知实数x ,y 满足⎩⎪⎨⎪⎧y ≤1,x ≤1,x +y ≥1,则z =x 2+y 2的最小值为________.一、选择题1.若点(x, y )位于曲线y =|x |与y =2所围成的封闭区域, 则2x -y 的最小值为( ) A .-6 B .-2 C .0 D .22.设变量x ,y 满足约束条件⎩⎪⎨⎪⎧x ≥1,x +y -4≤0,x -3y +4≤0,则目标函数z =3x -y 的最大值为( )A .-4B .0 C.43 D .43.实数x ,y 满足⎩⎪⎨⎪⎧x ≥1,y ≥0,x -y ≥0,则z =y -1x的取值范围是( )A .[-1,0]B .(-∞,0]C .[-1,+∞)D .[-1,1)4.若满足条件⎩⎪⎨⎪⎧x -y ≥0,x +y -2≤0,y ≥a 的整点(x ,y )(整点是指横、纵坐标都是整数的点)恰有9个,则整数a 的值为( )A .-3B .-2C .-1D .05.已知x ,y 满足⎩⎪⎨⎪⎧x ≥1,x +y ≤4,x +by +c ≤0,目标函数z =2x +y 的最大值为7,最小值为1,则b ,c的值分别为( ) A .-1,4 B .-1,-3 C .-2,-1 D .-1,-26.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x +y ≥5,x -y +5≥0,x ≤3,使z =x +ay (a >0)取得最小值的最优解有无数个,则a 的值为( )A .-3B .3C .-1D .1二、填空题7.若x ,y 满足约束条件⎩⎪⎨⎪⎧x ≤2,y ≤2,x +y ≥2,则z =x +2y 的取值范围是________.8.已知-1≤x +y ≤4且2≤x -y ≤3,则z =2x -3y 的取值范围是________(答案用区间表示).9.已知平面直角坐标系xOy 上的区域D 由不等式组⎩⎨⎧0≤x ≤2,y ≤2,x ≤2y给定.若M (x ,y )为D上的动点,点A 的坐标为(2,1),则z =OM →·OA →的最大值为________.10.满足|x |+|y |≤2的点(x ,y )中整点(横纵坐标都是整数)有________个.11.设实数x ,y 满足不等式组⎩⎪⎨⎪⎧x -y +2≥0,2x -y -5≤0,x +y -4≥0,则z =|x +2y -4|的最大值为________.三、解答题12.已知x ,y 满足约束条件⎩⎪⎨⎪⎧x -4y ≤-3,3x +5y ≤25,x ≥1,目标函数z =2x -y ,求z 的最大值和最小值.13.设不等式组⎩⎪⎨⎪⎧x +y -11≥0,3x -y +3≥0,5x -3y +9≤0表示的平面区域为D .若指数函数y =a x 的图象上存在区域D 上的点,求a 的取值范围.14.某家具厂有方木料90 m3,五合板600 m2,准备加工成书桌和书橱出售.已知生产每张书桌需要方木料0.1 m3,五合板2 m2,生产每个书橱需要方木料0.2 m3,五合板1 m2,出售一张方桌可获利润80元,出售一个书橱可获利润120元.(1)如果只安排生产书桌,可获利润多少?(2)如果只安排生产书橱,可获利润多少?(3)怎样安排生产可使所得利润最大?当堂检测答案1.答案 B解析如图,当y=2x经过且只经过x+y-3=0和x=m的交点时,m取到最大值,此时,即(m,2m)在直线x +y -3=0上,则m =1. 2.答案 C解析 该不等式组表示的平面区域为如图所示的阴影部分.由于x ,y ∈N *,计算区域内与⎝⎛⎭⎫112,92最近的点为(5,4),故当x =5,y =4时,z 取得最大值为90.3.答案 12解析实数x ,y 满足的可行域如图中阴影部分所示,则z 的最小值为原点到直线AB 的距离的平方, 故z min =⎝⎛⎭⎫122=12.课时精练答案一、选择题 1.答案 A解析 画出可行域,如图所示,解得A (-2,2),设z =2x -y ,把z =2x -y 变形为y =2x -z , 则直线经过点A 时z 取得最小值; 所以z min =2×(-2)-2=-6,故选A. 2.答案 D解析 作出可行域,如图所示.联立⎩⎪⎨⎪⎧ x +y -4=0,x -3y +4=0,解得⎩⎪⎨⎪⎧x =2,y =2.当目标函数z =3x -y 移到(2,2)时,z =3x -y 有最大值4. 3.答案 D解析 作出可行域,如图所示,y -1x的几何意义是点(x ,y )与点(0,1)连线l 的斜率,当直线l 过B (1,0)时k l 最小,最小为-1.又直线l 不能与直线x -y =0平行,∴k l <1.综上,k ∈[-1,1).4.答案 C 解析不等式组所表示的平面区域如图阴影部分所示,当a =0时,只有4个整点(1,1),(0,0),(1,0),(2,0).当a =-1时,正好增加(-1,-1),(0,-1),(1,-1),(2,-1),(3,-1)5个整点.故选C. 5.答案 D解析 由题意知,直线x +by +c =0经过直线2x +y =7与直线x +y =4的交点,且经过直线2x +y =1和直线x =1的交点,即经过点(3,1)和点(1,-1),∴⎩⎪⎨⎪⎧ 3+b +c =0,1-b +c =0,解得⎩⎪⎨⎪⎧b =-1,c =-2.6.答案 D解析 如图,作出可行域,作直线l :x +ay =0,要使目标函数z =x +ay (a >0)取得最小值的最优解有无数个,则将l 向右上方平移后与直线x +y =5重合,故a =1,选D.二、填空题 7.答案 [2,6]解析 如图,作出可行域,作直线l :x +2y =0,将l 向右上方平移,过点A (2,0)时,有最小值2,过点B (2,2)时,有最大值6,故z 的取值范围为[2,6].8.答案 [3,8] 解析 作出不等式组⎩⎪⎨⎪⎧-1≤x +y ≤4,2≤x -y ≤3表示的可行域,如图中阴影部分所示.在可行域内平移直线2x -3y =0,当直线经过x -y =2与x +y =4的交点A (3,1)时,目标函数有最小值z min =2×3-3×1=3; 当直线经过x +y =-1与x -y =3的交点B (1,-2)时,目标函数有最大值z max =2×1+3×2=8.所以z ∈[3,8]. 9.答案 4解析 由线性约束条件 ⎩⎪⎨⎪⎧0≤x ≤2,y ≤2,x ≤2y画出可行域如图中阴影部分所示,目标函数z =OM →·OA →=2x +y ,将其化为y =-2x +z ,结合图形可知,目标函数的图象过点(2,2)时,z 最大,将点(2,2)代入z =2x +y ,得z 的最大值为4.10.答案13解析 |x |+|y |≤2可化为⎩⎪⎨⎪⎧x +y ≤2 (x ≥0,y ≥0),x -y ≤2 (x ≥0,y <0),-x +y ≤2 (x <0,y ≥0),-x -y ≤2 (x <0,y <0),作出可行域为如图正方形内部(包括边界),容易得到整点个数为13个. 11.答案 21解析 作出可行域(如图),即△ABC 所围区域(包括边界),其顶点为A (1,3),B (7,9),C (3,1)方法一 ∵可行域内的点都在直线x +2y -4=0上方, ∴x +2y -4>0,则目标函数等价于z =x +2y -4,易得当直线z =x +2y -4在点B (7,9)处,目标函数取得最大值z max =21. 方法二 z =|x +2y -4|=|x +2y -4|5·5, 令P (x ,y )为可行域内一动点,定直线x +2y -4=0,则z =5d ,其中d 为P (x ,y )到直线x +2y -4=0的距离. 由图可知,区域内的点B 与直线的距离最大, 故d 的最大值为|7+2×9-4|5=215.故目标函数z max =215·5=21. 三、解答题12.解 z =2x -y 可化为y =2x -z ,z 的几何意义是直线在y 轴上的截距的相反数,故当z 取得最大值和最小值时,应是直线在y 轴上分别取得最小和最大截距的时候.作一组与l 0:2x -y =0平行的直线系l ,经上下平移,可得:当l 移动到l 1,即经过点A (5,2)时,z max =2×5-2=8.当l 移动到l 2,即过点C (1,4.4)时,z min =2×1-4.4=-2.4.13.解 先画出可行域,如图所示,y =a x 必须过图中阴影部分或其边界.∵A (2,9),∴9=a 2,∴a =3. ∵a >1,∴1<a ≤3.14.解 由题意可画表格如下:(1)设只生产书桌x 张,可获得利润z 元,则⎩⎪⎨⎪⎧0.1x ≤90,2x ≤600,z =80x ,x ≥0⇒⎩⎨⎧x ≤900,x ≤300,x ≥0⇒0≤x ≤300.所以当x =300时,z max =80×300=24 000(元),即如果只安排生产书桌,最多可生产300张书桌,获得利润24 000元. (2)设只生产书橱y 个,可获得利润z 元,则⎩⎪⎨⎪⎧0.2y ≤90,1·y ≤600,z =120y ,y ≥0⇒⎩⎨⎧y ≤450,y ≤600,y ≥0⇒0≤y ≤450.所以当y =450时,z max =120×450=54 000(元),即如果只安排生产书橱,最多可生产450个书橱,获得利润54 000元. (3)设生产书桌x 张,书橱y 个,利润总额为z 元,则⎩⎪⎨⎪⎧0.1x +0.2y ≤90,2x +y ≤600,x ≥0,y ≥0⇒⎩⎪⎨⎪⎧x +2y ≤900,2x +y ≤600,x ≥0,y ≥0.z =80x +120y .在平面直角坐标系内作出上面不等式组所表示的平面区域,即可行域(如图).作直线l :80x +120y =0,即直线l :2x +3y =0.把直线l 向右上方平移至l 1的位置时,直线经过可行域上的点M ,此时z =80x +120y 取得最大值.由⎩⎪⎨⎪⎧x +2y =900,2x +y =600,解得,点M 的坐标为(100,400). 所以当x =100,y =400时,z max =80×100+120×400=56 000(元).因此,生产书桌100张、书橱400个,可使所得利润最大.。

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析

高二数学线性规划试题答案及解析1.已知,则的最大值为.【答案】2【解析】由题可知是一个椭圆方程,可设x+y=d,则由线性规划可知当x+y=d与只有一个交点时取最值,联立方程组可求得d=.则2为最大值【考点】椭圆方程,线性规划取最值.2.已知表示的平面区域包含点和,则实数的取值范围是()A.B.C.D.【答案】B【解析】依题意可得。

故B正确。

【考点】1不等式表示平面区域;2绝对值不等式。

3.设变量满足约束条件,则的最小值为()A.B.C.D.【答案】A【解析】作不等式组所表示的可行域如下图所示作直线,则为直线在轴上的截距加2,联立与,解得,,即点,当直线经过可行域内上的点时,直线在轴上的截距最小,此时取最小值,即,故选A【考点】简单的线性规划问题.4.设变量满足则目标函数的最小值为( )A.2B.4C.6D.以上均不对【答案】A【解析】因为变量满足,符合的x,y的可行域如图所示的阴影部分,目标函数. 其中的最小值即为直线CD在y轴的截距最小.所以通过移动直线CD可知过点B是符合题意.又因为B(1,0).所以.故选A.【考点】1.线性规划问题.2.作图的能力.3.对比归纳的思想.4.复杂问题简单化的转化过程.5.设x,y满足约束条件,则z=2x-3y的最小值是【答案】【解析】先作出约束条件的可行域,将目标函数转化为,在坐标系中作出函数的图像,考虑到函数中的系数为负号,所以将函数的图像在可行域范围内向上平移,直到可行域的最上顶点A,并求出A点坐标,将其代入目标函数即可求出的最小值(如下图所示).【考点】线性规划问题.6.若实数满足则的最大值为;【答案】9【解析】先在平面直角坐标系中画出实数的可行解范围,将目标函数化为,在直角坐标系中作出函数的图像,考虑到前的符号是“”,所以将函数的图像向上平移至可行解范围的最上顶点,此时函数的图像在轴上的截距为所求的最大值(另解:可将可行解范围的最上顶点的坐标代入目标函数可得解).如下图所示.【考点】简单线性规划问题.7.某服装制造商现有的棉布料,的羊毛料,和的丝绸料.做一条裤子需要的棉布料,的羊毛料,的丝绸料.一条裙子需要的棉布料,的羊毛料, 的丝绸料.一条裤子的纯收益是50元,一条裙子的纯收益是40元,则该服装制造商的最大收益为元.【答案】【解析】设总共生产裤子为条,裙子为条,该服装制造商的最大收益为元,则根据题意可知,满足的约束条件为,满足的约束条件表示的平面区域如下图阴影部分所示:目标函数为可化为,作出直线,将其平移,由上图可知,当把直线平移到经过点时,可使取得最大值.可解得点的坐标为,此时取得最大值,最大值为,即当生产4条裤子,2条裙子时,可使收益最大,最大收益为280元.【考点】本题主要考查了简单的线性规划问题的应用,以及二元一次不等式组表示平面区域的知识,数形结合的思想方法,属基础题.8.设实数满足,则的最大值为.【答案】【解析】由题意可得x,y的可行域为三角形ABC所围成的阴影部分,令=k,即y=kx是一条恒过原点的直线,的值即为斜率k的最大值,即为过A点的斜率,因为A点为,所以的最大值为.故填.【考点】1.线性规划问题.2.目标函数为求斜率的形式.9.已知平面区域如图,,,,在平面区域内取得最大值时的最优解有无数多个,则【答案】.【解析】由得,故是直线的纵截距,因此当直线向上平移时增加,要使得最优解有无数个,从图可知必有直线平移到与直线AC重合,因此,.【考点】线性规划.10.若直线y=2x上存在点(x,y)满足则实数m的最大值为 ( )A.-1B.1C.D.2【答案】B【解析】由题意得,y=2x,与x+y-3=0确定交点坐标为(1,2)要使直线y=2x上存在点(x,y)满足约束条件则可知m1, 由此可得结论.故选B【考点】本试题主要考查了线性规划知识的运用,考查学生的理解能力,属于基础题.点评:解决该试题的关键是对于交点的确定,然后结合图形来确定参数m的范围。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学上学期简单线性规划问题的向量解法知识点分析
●教学目标
(一)教学知识点
1.线性规划问题,线性规划的意义.
2.线性约束条件、线性目标函数、可行解、可行域、最优解等基本概念.
3.线性规划问题的图解方法.
(二)能力训练要求
1.了解简单的线性规划问题.
2.了解线性规划的意义.
3.会用图解法解决简单的线性规划问题.
(三)德育渗透目标
让学生树立数形结合思想.
●教学重点
用图解法解决简单的线性规划问题.
●教学难点
准确求得线性规划问题的最优解.
●教学方法
讲练结合法
教师可结合一些典型例题进行讲解,学生再通过练习来掌握用图解法解决一些较简单的线性规划问题.
●教具准备
多媒体课件(或幻灯片)
内容:课本P60图7—23
记作§7.4.2 A
过程:先分别作出x=1,x-4y+3=0,3x+5y-25=0三条直线,再找出不等式组所表示的平面区域(即三直线所围成的封闭区域).再作直线l0:2x+y=0.
然后,作一组与直线的平行的直线:
l:2x+y=t,t∈R
(或平行移动直线l0),从而观察t值的变化.
●教学过程
Ⅰ.课题导入
上节课,咱们一起探讨了二元一次不等式表示平面区域,下面,我们再来探讨一下如何应用其解决一些问题.
Ⅱ.讲授新课
首先,请同学们来看这样一个问题.
设z =2x +y ,式中变量x 、y 满足下列条件⎪⎩
⎪⎨⎧≥≤+-≤-1255334x y x y x
求z 的最大值和最小值.
分析:从变量x 、y 所满足的条件来看,变量x 、y 所满足的每个不等式都表示一个平面区域,不等式组则表示这些平面区域的公共区域.
(打出投影片§7.4.2 A)
[师](结合投影片或借助多媒体课件)
从图上可看出,点(0,0)不在以上公共区域内,当x =0,y =0时,z =2x +y =0. 点(0,0)在直线l 0:2x +y =0上.
作一组与直线l 0平行的直线(或平行移动直线l 0)l :2x +y =t ,t ∈R .
可知,当t 在l 0的右上方时,直线l 上的点(x ,y )满足2x +y >0,
即t >0.
而且,直线l 往右平移时,t 随之增大.
(引导学生一起观察此规律)
在经过不等式组所表示的公共区域内的点且平行于l 的直线中,以经过点A (5,2)的直线l 2所对应的t 最大,以经过点B (1,1)的直线l 1所对应的t 最小.
所以:z m ax =2×5+2=12,
z m in =2×1+3=3.
诸如上述问题中,不等式组是一组对变量x 、y 的约束条件,由于这组约束条件都是关于x 、y 的一次不等式,所以又可称其为线性约束条件.z =2x +y 是欲达到最大值或最小值所涉及的变量x 、y 的解析式,我们把它称为目标函数.由于z =2x +y 又是关于x 、y 的一次解析式,所以又可叫做线性目标函数.
另外注意:线性约束条件除了用一次不等式表示外,也可用一次方程表示.
一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题.例如:我们刚才研究的就是求线性目标函数z =2x +y 在线性约束条件下的最大值和最小值的问题,即为线性规划问题.
那么,满足线性约束条件的解(x ,y )叫做可行解,由所有可行解组成的集合叫做可行域.在上述问题中,可行域就是阴影部分表示的三角形区域.其中可行解(5,2)和(1,1)分别使目标函数取得最大值和最小值,它们都叫做这个问题的最优解.
Ⅲ.课堂练习
[师]请同学们结合课本P 64练习1来掌握图解法解决简单的线性规划问题.
(1)求z =2x +y 的最大值,使式中的x 、y 满足约束条件⎪⎩
⎪⎨⎧-≥≤+≤.1,1,y y x x y
解:不等式组表示的平面区域如图所示:
当x =0,y =0时,z =2x +y =0
点(0,0)在直线l 0:2x +y =0上.
作一组与直线l 0平行的直线
l :2x +y =t ,t ∈R .
可知,在经过不等式组所表示的公共区域内的点且平行于l
的直线中,以经过点A (2,-1)的直线所对应的t 最大
.
所以z m ax =2×2-1=3.
(2)求z =3x +5y 的最大值和最小值,使式中的x 、y 满足约束条件⎪⎩
⎪⎨⎧≥-+≤≤+.35,1,1535y x x y y x
解:不等式组所表示的平面区域如图所示:
从图示可知,直线3x +5y =t 在经过不等式组所表示的公共区域内的点时,以经过点(-2,-1)的直线所对应的t 最小,以经过点(
8
17,89)的直线所对应的t 最大. 所以z m in =3×(-2)+5×(-1)=-11. z m ax =3×89+5×8
17=14. Ⅳ.课时小结
通过本节学习,要掌握用图解法解决简单的线性规划问题的基本步骤:
1.首先,要根据线性约束条件画出可行域(即画出不等式组所表示的公共区域).
2.设z =0,画出直线l 0.
3.观察、分析,平移直线l 0,从而找到最优解.
4.最后求得目标函数的最大值及最小值.
Ⅴ.课后作业
(一)课本P 65习题7.4
(二)1.预习内容:课本P 61~64.
2.预习提纲:
怎样用线性规划的方法解决一些简单的实际问题.。

相关文档
最新文档