2014人教A版数学必修一第1章《集合与函数概念》(3.2奇偶性)示范教案

合集下载

人教A版数学必修一第1章《集合与函数概念》(1.3《集合的基本运算》第2课时)示范教案

人教A版数学必修一第1章《集合与函数概念》(1.3《集合的基本运算》第2课时)示范教案

河北省青龙满族自治县逸夫中学高中数学必修1第1章 集合与函数概念-3.示范教案(1.3 集合的基本运算第2课时)导入新课问题:①分别在整数范围和实数范围内解方程(x-3)(x 3-)=0,其结果会相同吗? ②若集合A={x|0<x<2,x∈Z },B={x|0<x<2,x∈R },则集合A 、B 相等吗?学生回答后,教师指明:在不同的范围内集合中的元素会有所不同,这个“范围”问题就是本节学习的内容,引出课题. 推进新课 新知探究 提出问题①用列举法表示下列集合:A={x∈Z |(x-2)(x+31)(x 2-)=0}; B={x∈Q|(x -2)(x+31)(x 2-)=0};C={x∈R|(x-2)(x+31)(x 2-)=0}.②问题①中三个集合相等吗?为什么? ③由此看,解方程时要注意什么?④问题①,集合Z,Q,R 分别含有所解方程时所涉及的全部元素,这样的集合称为全集,请给出全集的定义.⑤已知全集U={1,2,3},A={1},写出全集中不属于集合A 的所有元素组成的集合B. ⑥请给出补集的定义.⑦用Venn 图表示 A.活动:组织学生充分讨论、交流,使学生明确集合中的元素,提示学生注意集合中元素的范围. 讨论结果: ①A={2},B={2,31-},C={2,31-,2}. ②不相等,因为三个集合中的元素不相同.③解方程时,要注意方程的根在什么范围内,同一个方程,在不同的范围其解会有所不同.④一般地,如果一个集合含有我们所研究问题中涉及的所有元素,那么就称这个集合为全集,通常记为U.⑤B={2,3}.⑥对于一个集合A,全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集.集合A 相对于全集U 的补集记为A,即A={x|x ∈U,且x A}. ⑦如图1-1-3-9所示,阴影表示补集.图1-1-3-9应用示例思路11.设U={x|x 是小于9的正整数},A={1,2,3},B={3,4,5,6},求A,B.活动:让学生明确全集U 中的元素,回顾补集的定义,用列举法表示全集U,依据补集的定义写出A, B.解:根据题意,可知U={1,2,3,4,5,6,7,8},所以A={4,5,6,7,8};B={1,2,7,8}.点评:本题主要考查补集的概念和求法.用列举法表示的集合,依据补集的含义,直接观察写出集合运算的结果.常见结论:(A∩B)=(A)∪(B);(A∪B)=(A)∩(B). 变式训练1.2007吉林高三期末统考,文1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∩(B)等于( )A.{1,6}B.{4,5}C.{2,3,4,5,7}D.{1,2,3,6,7}分析:思路一:观察得(A)∩(B)={1,3,6}∩{1,2,6,7}={1,6}.思路二:A∪B={2,3,4,5,7},则(A)∩(B)=(A∪B)={1,6}. 答案:A2.2007北京东城高三期末教学目标抽测一,文1设集合U={1,2,3,4,5},A={1,2,4},B={2},则A∩(B)等于( )A.{1,2,3,4,5}B.{1,4}C.{1,2,4}D.{3,5} 答案:B3.2005浙江高考,理1设全集U={1,2,3,4,5,6,7},P={1,2,3,4,5},Q ={3,4,5,6,7},则P∩(Q )等于( )A.{1,2}B.{3,4,5}C.{1,2,6,7}D.{1,2,3,4,5} 答案:A2.设全集U={x|x 是三角形},A={x|x 是锐角三角形},B={x|x 是钝角三角形}.求A∩B,(A∪B). 活动:学生思考三角形的分类和集合的交集、并集和补集的含义.结合交集、并集和补集的含义写出结果.A∩B 是由集合A,B 中公共元素组成的集合,(A∪B)是全集中除去集合A∪B 中剩下的元素组成的集合.解:根据三角形的分类可知 A∩B=∅,A∪B={x|x 是锐角三角形或钝角三角形},(A∪B)={x|x 是直角三角形}.变式训练1.已知集合A={x|3≤x<8},求 A.解:A={x|x<3或x≥8}.2.设S={x|x 是至少有一组对边平行的四边形},A={x|x 是平行四边形},B={x|x 是菱形},C={x|x 是矩形},求B∩C,B,A.解:B∩C={x|正方形},B={x|x 是邻边不相等的平行四边形},A={x|x 是梯形}.3.已知全集I=R ,集合A={x|x 2+ax+12b=0},B={x|x 2-ax+b=0},满足(A)∩B={2},(B)∩A={4},求实数a 、b 的值. 答案:a=78,b=712-. 4.设全集U=R ,A={x|x≤2+3},B={3,4,5,6},则(A)∩B 等于…( )A.{4}B.{4,5,6}C.{2,3,4}D.{1,2,3,4} 分析:∵U=R ,A={x|x≤2+3},∴A={x|x>2+3}.而4,5,6都大于2+3,∴(A)∩B={4,5,6}. 答案:B思路21.已知全集U=R,A={x|-2≤x≤4},B={x|-3≤x≤3},求:(1)A,B;(2)(A)∪(B),(A∩B),由此你发现了什么结论?(3)(A)∩(B),(A∪B),由此你发现了什么结论?活动:学生回想补集的含义,教师指导学生利用数轴来解决.依据补集的含义,借助于数轴求得.在数轴上表示集合A,B.解:如图1-1-3-10所示,图1-1-3-10(1)由图得A={x|x<-2或x>4},B={x|x<-3或x>3}.(2)由图得(A)∪(B)={x|x<-2或x>4}∪{x|x<-3或x>3}={x|x<-2或x>3};∵A∩B={x|-2≤x≤4}∩{x|-3≤x≤3}={x|-2≤x≤3},∴(A∩B)={x|-2≤x≤3}={x|x<-2或x>3}.∴得出结论(A∩B)=(A)∪(B).(3)由图得(A)∩(B)={x|x<-2或x>4}∩{x|x<-3或x>3}={x|x<-3或x>4};∵A∪B={x|-2≤x≤4}∪{x|-3≤x≤3}={x|-3≤x≤4},∴(A∪B)={x|-3≤x≤4}={x|x<-3或x>4}.∴得出结论(A∪B)=(A)∩(B).变式训练1.2006重庆高考,理1已知集合U={1,2,3,4,5,6,7},A={2,4,5,7},B={3,4,5},则(A)∪(B)等于( )A.{1,6}B.{4,5}C.{1,2,3,4,5,7}D.{1,2,3,6,7}答案:D2.2005江西高考,理1设集合I={x||x|<3,x∈Z},A={1,2},B={-2,-1,2},则A∪(B)等于( )A.{1}B.{1,2}C.{2}D.{0,1,2}答案:D2.设全集U={x|x≤20,x∈N,x是质数},A∩(B)={3,5},(A)∩B={7,19},(A)∩(B)={2,17},求集合A、B.活动:学生回顾集合的运算的含义,明确全集中的元素.利用列举法表示全集U,根据题中所给的条件,把集合中的元素填入相应的Venn图中即可.求集合A、B的关键是确定它们的元素,由于全集是U,则集合A、B中的元素均属于全集U,由于本题中的集合均是有限集并且元素的个数不多,可借助于Venn图来解决.解:U={2,3,5,7,11,13,17,19},由题意借助于Venn图,如图1-1-3-11所示,图1-1-3-11∴A={3,5,11,13},B={7,11,13,19}.点评:本题主要考查集合的运算、Venn图以及推理能力.借助于Venn图分析集合的运算问题,使问题简捷地获得解决,将本来抽象的集合问题直观形象地表现出来,这正体现了数形结合思想的优越性. 变式训练1.2007临沂高三期末统考,文1图1-1-3-12设I为全集,M、N、P都是它的子集,则图1-1-3-12中阴影部分表示的集合是( )A.M∩[(N)∩P]B.M∩(N∪P)C.[(M)∩(N)]∩PD.M∩N∪(N∩P)分析:思路一:阴影部分在集合M内部,排除C;阴影部分不在集合N内,排除B、D.思路二:阴影部分在集合M内部,即是M的子集,又阴影部分在P内不在集合N内即在(N)∩P内,所以阴影部分表示的集合是M∩[(N)∩P].答案:A2.设U={1,2,3,4,5,6,7,8,9},(A)∩B={3,7},(B)∩A={2,8},(A)∩(B)={1,5,6},则集合A=________,B=________.分析:借助Venn,如图1-1-3-13,把相关运算的结果表示出来,自然地就得出集合A、B了.图1-1-3-13答案:{2,4,8,9} {3,4,7,9}知能训练课本P11练习4.【补充练习】1.设全集U=R,A={x|2x+1>0},试用文字语言表述A的意义.解:A={x|2x+1>0}即不等式2x+1>0的解集,A中元素均不能使2x+1>0成立,即A中元素应当满足2x+1≤0.∴A即不等式2x+1≤0的解集.2.如图1-1-3-14所示,U是全集,M,P,S是U的三个子集,则阴影部分表示的集合是_______.图1-1-3-14分析:观察图可以看出,阴影部分满足两个条件:一是不在集合S内;二是在集合M,P的公共部分内,因此阴影部分表示的集合是集合S的补集与集合M,P的交集的交集,即(S)∩(M∩P).答案:(S)∩(M∩P)3.2007安徽淮南一模,理1设集合A、B都是U={1,2,3,4}的子集,已知(A)∩(B)={2},(A)∩B={1},则A等于( )A.{1,2}B.{2,3}C.{3,4}D.{1,4}分析:如图1-1-3-15所示.图1-1-3-15由于(A)∩(B)={2},(A)∩B={1},则有A={1,2}.∴A={3,4}.答案:C4.2006安徽高考,文1设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A.∅B.{2,4,7,8}C.{1,3,5,6}D.{2,4,6,8}分析:直接观察(或画出Venn图),得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}.答案:B5.2007河北石家庄一模,文1已知集合I={1,2,3,4},A={1},B={2,4},则A∪(B)等于( )A.{1}B.{1,3}C.{3}D.{1,2,3}分析:∵B={1,3},∴A∪(B)={1}∪{1,3}={1,3}.答案:B拓展提升问题:某班有学生50人,解甲、乙两道数学题,已知解对甲题者有34人,解对乙题者有28人,两题均解对者有20人,问:(1)至少解对其中一题者有多少人?(2)两题均未解对者有多少人?分析:先利用集合表示解对甲、乙两道数学题各种类型,然后根据题意写出它们的运算,问题便得到解决.解:设全集为U,A={只解对甲题的学生},B={只解对乙题的学生},C={甲、乙两题都解对的学生}, 则A∪C={解对甲题的学生},B∪C={解对乙题的学生},A∪B∪C={至少解对一题的学生},(A∪B∪C)={两题均未解对的学生}.由已知,A∪C有34个人,C有20个人,从而知A有14个人;B∪C有28个人,C有20个人,所以B有8个人.因此A∪B∪C有N1=14+8+20=42(人),(A∪B∪C)有N2=50-42=8(人).∴至少解对其中一题者有42个人,两题均未解对者有8个人.课堂小结本节课学习了:①全集和补集的概念和求法.②常借助于数轴或Venn图进行集合的补集运算.作业课本P12习题1.1A组9、10,B组4.设计感想本节教学设计注重渗透数形结合的思想方法,因此在教学过程中要重点指导学生借助于数轴或Venn 图进行集合的补集运算.由于高考中集合常与以后学习的不等式等知识紧密结合,本节也对此也予以体现,可以利用课余时间学习有关解不等式的知识.习题详解(课本P5练习)1.(1)中国∈A,美国∉A,印度∈A,英国∉A.(2)∵A={x|x 2=x}={0,1},∴-1∉A.(3)∵B={x|x 2+x-6=0}={-3,2},∴3∉A.(4)∵C={x∈N|1≤x≤10}={1,2,3,4,5,6,7,8,9,10}, ∴8∈C,9.1∉C.2.(1){x|x 2=9}或{-3,3}; (2){2,3,5,7};(3){(x,y)|⎩⎨⎧+=+=6-2x y 3x y }或{(1,4)};(4){x∈R |4x-5<3}或{x|x<2}.(课本P 7练习)1.∅,{a},{b},{c},{a,b},{a,c},{b,c},{a,b,c}.2.(1)a∈{a,b,c}.(2)∵x 2=0,∴x=0.∴{x|x 2=0}={0}. ∴0∈{0}.(3)∵x 2+1=0,∴x 2=-1.又∵x∈R ,∴方程x 2=-1无解.∴{x∈R |x 2+1=0}=∅.∴∅=∅.(4).(5)∵x 2=x,∴x=0或x=1.∴{x|x 2=x}={0,1}. ∴{0}{0,1}.(6)∵x 2-3x+2=0,∴x=1或x=2.∴{x|x 2-3x+2=0}={1,2}. ∴{2,1}={1,2}.3.(1)由于1是任何正整数的公约数,任何正整数都是自身的公约数,所以8的公约数是1,2,4,8,即B={1,2,4,8}.∴A B.(2)显然B ⊆A,又∵3∈A,且3∉B,∴B A.(3)4与10的最小公倍数是20,4与10的公倍数应是20的倍数,显然A=B. (课本P 11练习)1.A∩B={5,8},A∪B={3,5,6,7,8}.2.∵x 2-4x-5=0, ∴x=-1或x=5.∵A={x|x 2-4x-5=0}={-1,5}, 同理,B={-1,1}.∴A∪B={-1,5}∪{-1,1}={-1,1,5}, A∩B={-1,5}∩{-1,1}={-1}.3.A∩B={x|x 是等腰直角三角形},A∪B={x|x 是等腰三角形或直角三角形}. 4.∵B={2,4,6},A={1,3,6,7},∴A∩(B)={2,4,5}∩{2,4,6}={2,4},(A)∩(B)={1,3,6,7}∩{2,4,6}={6}. (课本P 11习题1.1)A 组1.(1)∈ (2)∈ (3)∉ (4)∈ (5)∈ (6)∈2.(1)∈ (2)∉ (3)∈3.(1){2,3,4,5};(2){-2,1};(3){0,1,2}.(3)∵-3<2x-1≤3,∴-2<2x≤4.∴-1<x≤2.又∵x∈Z ,∴x=0,1,2.∴B={x∈Z |-3<2x-1≤3}={0,1,2}. 4.(1){y|y≥-4}; (2){x|x≠0}; (3){x|x≥54}. 5.(1)∵A={x|2x -3<3x}={x|x>-3},B={x|x≥2}, ∴-4∉B,-3∉A,{2}B,B A.(2)∵A={x|x 2-1=0}={-1,1},∴1∈A,{-1}A,∅A,{1,-1}=A. (3);.6.∵B={x|3x -7≥8-2x}={x|x≥3},∴A∪B={x|2≤x<4}∪{x|x≥3}={x|x≥2}, A∩B={x|2≤x<4}∩{x|x≥3}={x|3≤x<4}. 7.依题意,可知A={1,2,3,4,5,6,7,8},所以A∩B={1,2,3,4,5,6,7,8}∩{1,2,3}={1,2,3}=B, A∩C={1,2,3,4,5,6,7,8}∩{3,4,5,6}={3,4,5,6}=C. 又∵B∪C={1,2,3}∪{3,4,5,6}={1,2,3,4,5,6}.∴A∩(B∪C)={1,2,3,4,5,6,7,8}∩{1,2,3,4,5,6}={1,2,3,4,5,6}. 又∵B∩C={1,2,3}∩{3,4,5,6}={3},∴A∪(B∩C)={1,2,3,4,5,6,7,8}∪{3}={1,2,3,4,5,6,7,8}=A. 8.(1)A∪B={x|x 是参加一百米跑的同学或参加二百米跑的同学}. (2)A∩C={x|x 是既参加一百米跑又参加四百米跑的同学}. 9.B∩C={x|x 是正方形},B={x|x 是邻边不相等的平行四边形}, A={x|x 是梯形}.10.∵A∪B={x|3≤x<7}∪{x|2<x<10}={x|2<x<10}, ∴(A∪B)={x|x≤2或x≥10}.又∵A∩B={x|3≤x<7}∩{x|2<x<10}={x|3≤x<7}, ∴(A∩B)={x|x<3或x ≥7}.(A)∩B={x|x<3或x≥7}∩{x|2<x<10}={x|2<x<3或7≤x<10},A∪(B)={x|3≤x<7}∪{x|x≤2或x≥10}={x|x≤2或3≤x<7或x≥10}.B 组1.∵A={1,2},A∪B={1,2}, ∴B ⊆A.∴B=∅,{1},{2},{1,2}.2.集合D={(x,y)|2x-y=1}∩{(x,y)|x+4y=5}表示直线2x-y=1与直线x+4y=5的交点坐标; 由于D={(x,y)|⎩⎨⎧=+=54y x 1y -2x }={(1,1)},所以点(1,1)在直线y=x 上,即D C. 3.B={1,4},当a=3时,A={3},则A∪B={1,3,4},A∩B=∅; 当a≠3时,A={3,a},若a=1,则A∪B={1,3,4},A∩B={1};若a=4,则A∪B={1,3,4},A∩B={4};若a≠1且a≠4,则A∪B={1,a,3,4},A∩B=∅.综上所得,当a=3时,A∪B={1,3,4},A∩B=∅;当a=1,则A∪B={1,3,4},A∩B={1};当a=4,则A∪B={1,3,4},A∩B={4};当a≠3且a≠1且a≠4时,A∪B={1,a,3,4},A∩B=∅.4.作出韦恩图,如图1-1-3-16所示,图1-1-3-16由U=A∪B={x∈N|0≤x≤10},A∩(B)={1,3,5,7},可知B={0,2,4,6,8,9,10}.。

2014人教A版数学必修一第1章《集合与函数概念》(3.2奇偶性)备课资料

2014人教A版数学必修一第1章《集合与函数概念》(3.2奇偶性)备课资料

河北省青龙满族自治县逸夫中学高中数学必修1第1章 集合与函数概念-7.备课资料(3.2 奇偶性)(1)奇偶函数的定义域关于原点对称;奇函数的图象关于原点对称,偶函数的图象关于y 轴对称.(2)奇偶性是函数的整体性质,对定义域内任意一个x 都必须成立.(3)f(-x)=f(x)⇔f(x)是偶函数,f(-x)=-f(x)⇔f(x)是奇函数.(4)f(-x)=f(x)⇔f(x)-f(-x)=0,f(-x)=-f(x)⇔f(x)+f(-x)=0.(5)两个奇函数的和(差)仍是奇函数,两个偶函数的和(差)仍是偶函数.奇偶性相同的两个函数的积(商、分母不为零)为偶函数,奇偶性相反的两个函数的积(商、分母不为零)为奇函数;如果函数y=f(x)和y=g(x)的奇偶性相同,那么复合函数y=f [g(x)]是偶函数,如果函数y=f(x)和y=g(x)的奇偶性相反,那么复合函数y=f [g(x)]是奇函数,简称为“同偶异奇”.(6)如果函数y=f(x)是奇函数,那么f(x)在区间(a,b)和(-b,-a)上具有相同的单调性;如果函数y=f(x)是偶函数,那么f(x)在区间(a,b)和(-b,-a)上具有相反的单调性.(7)定义域关于原点对称的任意函数f(x)可以表示成一个奇函数与一个偶函数的和,即 f(x)=2)()(2)()(x f x f x f x f -++--. (8)若f(x)是(-a,a)(a >0)上的奇函数,则f(0)=0;若函数f(x)是偶函数,则f(x)=f(-x)=f(|x|)=f(-|x|).若函数y=f(x)既是奇函数又是偶函数,则有f(x)=0.(设计者:韩双影)本章复习整体设计教学分析本节课是对第一章的基本知识和方法的总结与归纳,从整体上来把握本章,使学生的基本知识系统化和网络化,基本方法条理化.本章三部分内容是独立的,但是又相互联系,集合是基础,用集合定义函数,将函数拓展为映射,层层深入,环环相扣,组成了一个完整的整体. 三维目标通过总结和归纳集合与函数的知识,能够使学生综合运用知识解决有关问题,培养学生分析、探究和思考问题的能力,激发学生学习数学的兴趣,培养分类讨论的思想和抽象思维能力. 重点难点教学重点:①集合与函数的基本知识.②含有字母问题的研究.③抽象函数的理解.教学难点:①分类讨论的标准划分.②抽象函数的理解.课时安排1课时教学过程导入新课思路1.建设高楼大厦的过程中,每建一层,都有质量检查人员验收,合格后,再继续建上一层,否则返工重建.我们学习知识也是这样,每学完一个章节都要总结复习,引出课题. 思路2.为了系统掌握第一章的知识,教师直接点出课题.推进新课新知探究提出问题①第一节是集合,分为几部分?②第二节是函数,分为几部分?③第三节是函数的基本性质,分为几部分?④画出本章的知识结构图.活动:让学生自己回顾所学知识或结合课本,重新对知识整合,对没有思路的学生,教师可以提示按课本的章节标题来分类.对于画知识结构图,学生可能比较陌生,教师可以引导学生先画一个本班班委的结构图或学校各个处室的关系结构图,待学生了解了简单的画法后,再画本章的知识结构图.讨论结果:①分为:集合的含义、集合间的基本关系和集合的运算三部分.②分为:定义、定义域、解析式、值域四部分;其中又把函数的概念拓展为映射.③分为:单调性、最值和奇偶性三部分.④第一章的知识结构图如图1-1所示,图1-1应用示例思路1例1若P={x|y=x2},Q={(x,y)|y=x2,x∈R},则必有( )A.P∩Q=∅B.P QC.P=QD.P Q分析:从选项来看,本题是判断集合P,Q的关系,其关键是对集合P,Q的意义的理解.集合P是函数y=x2的定义域,则集合P是数集,集合Q是函数y=x2的图象上的点组成的集合,则集合Q是点集,∴P∩Q=∅.答案:A点评:判断用描述法表示的集合间关系时,一定要搞清两集合的含义,明确集合中的元素.形如集合{x|x∈P(x),x∈R}是数集,形如集合{(x,y)|x、y∈P(x,y),x、y∈R}是点集,数集和点集的交集是空集.变式训练1.2007山东威海一模,文1设集合M={x| x>1},P={x| x2-6x+9=0},则下列关系中正确的是( ) A.M=P B.P M C.M P D.M∩P=R分析:P={3},∵3>1,∴3∈M.∴P M.答案:B2.2007河南周口高三期末调研,理6定义集合A 与B 的运算A*B={x|x∈A 或x∈B,且x ∉A∩B},则(A*B)*A 等于( )A.A∩BB.A∪BC.AD.B分析:设A={1,2,3,4},B={1,2,5,6,7},则A*B={3,4,5,6,7},于是(A*B)*A={1,2,5,6,7}=B. 答案:D点评:解决新定义集合运算问题的关键是抓住新运算定义的本质,本题A*B 的本质就是集合A 与B 的并集中除去它们公共元素组成的集合.例2求函数y=x 2+1的最小值.分析:思路一:利用实数运算的性质x 2≥0,结合不等式的性质得函数的最小值;思路二:直接利用二次函数的最值公式,写出此函数的最小值.解:方法一(观察法)∵函数y=x 2+1的定义域是R ,∴观察到x 2≥0.∴x 2+1≥1.∴函数y=x 2+1的最小值是1.方法二:(公式法)函数y=x 2+1是二次函数,其定义域是x∈R ,则函数y=x 2+1的最小值是f(0)=1.点评:求函数最值的方法:观察法:当函数的解析式中仅含有x 2或|x|或x 时,通常利用常见的结论x 2≥0,|x|≥0,x ≥0等,直接观察写出函数的最值; 公式法:求基本初等函数(正、反比例函数,一次、二次函数)的最值时,应用基本初等函数的最值结论(看成最值公式),直接写出其最值.例3求函数y=432+x x 的最大值和最小值. 分析:把变量y 看成常数,则函数的解析式可以整理成必有实数根的关于x 的方程,利用判别式的符号得关于y 的不等式,解不等式得y 的取值范围,从而得函数的最值.解:(判别式法)由y=432+x x 得yx 2-3x+4y=0, ∵x∈R ,∴ 关于x 的方程yx 2-3x+4y=0必有实数根.当y=0时,则x=0.故y=0是一个函数值;当y≠0时,则关于x 的方程yx 2-3x+4y=0是一元二次方程,则有Δ=(-3)2-4×4y 2≥0.∴0<y 2≤169.∴43-≤y<0或0<y≤43. 综上所得,43-≤y≤43. ∴ 函数y=432+x x 的最小值是43-,最大值是43. 点评:形如函数y=fcx dx c bx ax ++++22(d≠0),当函数的定义域是R (此时e 2-4df<0)时,常用判别式法求最值,其步骤是①把y 看成常数,将函数解析式整理为关于x 的方程的形式mx 2+nx+k=0;②分类讨论m =0是否符合题意;③当m≠0时,关于x 的方程mx 2+nx+k=0中有x∈R ,则此一元二次方程必有实数根,得n 2-4mk≥0即关于y 的不等式,解不等式组⎩⎨⎧≠≥-.0,042m mk n 此不等式组的解集与②中y 的值取并集得函数的值域,从而得函数的最大值和最小值.例42007河南开封一模,文10函数f(x)=x 2-2ax+a 在区间(-∞,1)上有最小值,则函数g(x)=xx f )(在区间(1,+∞)上一定( ) A.有最小值 B.有最大值 C.是减函数 D.是增函数分析:函数f(x)=x 2-2ax+a 的对称轴是直线x=a ,由于函数f(x)在开区间(-∞,1)上有最小值,所以直线x=a 位于区间(-∞,1)内,即a<1.g(x)=x x f )(=2-+x a x ,下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.设1<x 1<x 2,则g(x 1)-g(x 2)=(x 1+1x a -2)-(x 2+2x a -2) =(x 1-x 2)+(-1x a 2x a )=(x 1-x 2)(121x x a -)=(x 1-x 2)2121x x a x x -. ∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1>0.又∵a<1,∴x 1x 2>a.∴x 1x 2-a>0.∴g(x 1)-g(x 2)<0.∴g(x 1)<g(x 2).∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值. 答案:D点评:定义法判断函数f(x)的单调性的步骤是①在所给区间上任取两个变量x 1、x 2;②比较f(x 1)与f(x 2)的大小,通常利用作差比较它们的大小,先作差,后将差变形,变形的手段是通分、分解因式,变形的结果常是完全平方加上一个常数或因式的积(商)等;③由②中差的符号确定函数的单调性.注意:函数f(x)在开区间D 上是单调函数,则f(x)在开区间D 上没有最大值,也没有最小值.变式训练求函数f(x)=1-x 2的单调区间.分析:函数f(x)是复合函数,利用口诀“同增异减”来求单调区间.解:函数的定义域是(-∞,-1]∪[1,+∞).设y=u ,u=x 2-1, 当x≥0时,u=x 2-1是增函数,y=u 也是增函数, 又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f(x)=1-x 2在[1,+∞)上是增函数.当x≤0时,u=x 2-1是减函数,y=u 也是增函数, 又∵函数的定义域是(-∞,-1]∪[1,+∞),∴函数f(x)=1-x 2在(-∞,-1]上是减函数,即函数f(x)的单调递增区间是[1,+∞),单调递减区间是(-∞,-1].点评:复合函数是指由若干个函数复合而成的函数,它的单调性与构成它的函数的单调性有密切联系,其单调性的规律为:“同增异减”,即复合函数y=f [g(x)],如果y=f(u),u=g(x)有相同的单调性时,函数y=f [g(x)]为增函数,如果具有相异(即相反)的单调性,则函数y=f [g(x)]为减函数.讨论复合函数单调性的步骤是:①求复合函数的定义域;②把复合函数分解成若干个常见的基本初等函数并判断其单调性;③依据复合函数的单调性规律口诀:“同增异减”,判断或写出函数的单调性或单调区间.注意:本题如果忽视函数的定义域,会错误地得到单调递增区间是[0,+∞),单调递减区间是(-∞,0].其避免方法是讨论函数的性质要遵守定义域优先的原则.思路2例1集合A={x|x 2-3x-4=0},B={x|mx-1=0},若B ⊆A ,则实数m =________.分析:集合B 是关于x 的方程mx-1=0的解集,∵B ⊆A ,∴B=∅或B≠∅.当B=∅时,关于x 的方程mx-1=0无解,则m=0;当B≠∅时,x=m 1∈A,则有(m 1)2m 3--4=0,即4m 2+3m-1=0.解得m=-1,41. 答案:-1,0,41 黑色陷阱:本题任意忽视B=∅的情况,导致出现错误m=-1,41.避免此类错误的方法是考虑问题要全面,要注意空集是任何集合的子集.变式训练已知集合A={x|⎩⎨⎧≥-≥+0502x x },B={x|p+1≤x≤2p -1},若A∩B=B,求实数p 的取值范围.分析:理解集合A 是不等式组⎩⎨⎧≥-≥+05,02x x 的解集是关键,又A∩B=B 说明了B ⊆A ,包含=∅和B≠∅两种情况,故要分类讨论解决问题.解:A={x|-2≤x≤5},∵A∩B=B,∴B ⊆A.∴B=∅或B≠∅.当B=∅时,p+1>2p-1,解得p<2.当B≠∅时,则有⎪⎩⎪⎨⎧≤--≥+-<+.512,21,121p p p p 解得2≤p≤3.综上所得实数p 的取值范围是p<2或2≤p≤3,即(-∞,3].点评:本题是已知集合运算的结果,求参数的值,解决此类问题的关键是依据集合运算的含义,观察明确各集合中的元素,要注意集合元素的互异性在解决含参数集合问题中的作用;空集是一个特殊的集合,是任何集合的子集,求解有关集合间的关系问题时一定要首先考虑空集;要重视常见结论A∩B=B ⇔A∪B=A ⇔B ⊆A 的应用,此时通常要分类讨论解决集合问题,分类讨论时要考虑全面,做到不重不漏.例2求函数y=|x+2|-|x-2|的最小值.分析:思路一:画出函数的图象,利用函数最小值的几何意义,写出函数的最小值;思路二:利用绝对值的几何意义,转化为数轴上的几何问题:数轴上到±2两点的距离和的最小值.解:方法一(图象法):y=|x+2|-|x-2|=⎪⎩⎪⎨⎧≥<<--≤-.2,4,22,2,2,4x x x x -4,2x,4, x≤-2,-2<x<2,x≥2.其图象如图1-2所示:图1-2由图象,得函数的最小值是-4,最大值是4.方法二(数形结合):函数的解析式y=|x+2|-|x-2|的几何意义是:y 是数轴上任意一点P 到±2的对应点A 、B 的距离的差,即y=|PA|-|PB|,如图1-3所示,图1-3观察数轴,可得-|AB|≤|PA|-|PB|≤|AB|,即函数y=|x+2|-|x-2|有最小值-4,最大值4. 点评:求函数最值的方法:图象法:如果能够画出函数的图象,那么可以依据函数最值的几何意义,借助图象写出最值.其步骤是①画函数的图象;②观察函数的图象,找出图象的最高点和最低点,并确定它们的纵坐标;③由最高点和最低点的纵坐标写出函数的最值.数形结合:如果函数的解析式含有绝对值或根号,那么能将函数的解析式赋予几何意义,结合图形利用其几何意义求最值.其步骤是:①对函数的解析式赋予几何意义;②将函数的最值转化为几何问题;③应用几何知识求最值.例3求函数y=x+x4,x∈[1,3]的最大值和最小值. 分析:利用函数的单调性来求得函数的最值.转化为讨论函数的单调性. 解:可以证明当x∈[1,2]时,函数y=x+x 4是减函数, 此时函数的最大值是f(1)=5,最小值是f(2)=4.可以证明当x∈[2,3]时,函数y=x+x 4是增函数, 此时函数的最大值是f(3)=313,最小值是f(2)=4. 综上所得,函数y=x+x4,x∈[1,3]的最大值为5,最小值为4. 点评:如果能够确定函数的单调性,那么可以利用函数的单调性求函数最值,这种方法称为单调法,主要应用以下结论:函数y=f(x)在区间[a,b ]上是减函数,在区间[b,c ]上是增函数,那么函数y=f(x)在区间[a,c ]上的最大值是f(a)与f(c)的最大值,最小值是f(b);函数y=f(x)在区间[a,b ]上是增函数,在区间[b,c ]上是减函数,那么函数y=f(x)在区间[a,c ]上的最小值是f(a)与f(c)的最大值,最大值是f(b).单调法求函数最值的难点是确定函数的单调区间,借助于函数的图象,常用单调性的定义来判断,还要靠经验的积累.例4求函数y=x 4+2x 2-2的最小值.解:函数的定义域是R ,设x 2=t ,则t≥0.则y=t 2+2t-2=(t+1)2-3,t≥0,则当t=0时,y 取最小值-2,所以函数y=x 4+2x 2-2的最小值为-2.点评:求形如函数y=ax 2m +bx m +c(ab≠0)或y=ax+c bx +(ab≠0)的最值时,常用设x m =t 或c bx +=t ,利用换元法转化为求二次函数等常见函数的最值问题,这种求最值的方法称为换元法.此时要注意换元后函数的定义域.例52007江西金太阳全国第二次大联考,理22定义在(-1,1)上的函数f(x)满足:对任意x,y∈(-1,1),都有f(x)+f(y)=f(xyy x ++1). (1) 求证:函数f(x)是奇函数;(2) 若当x∈(-1,0)时,有f(x)>0,求证:f(x)在(-1,1)上是减函数.分析:(1)定义法证明,利用赋值法获得f(0)的值进而取x=-y 是解题关键;(2)定义法证明,其中判定21121x x x x --的范围是关键. 解: (1)函数f(x)的定义域是(-1,1),由f(x)+f(y)=f(xyy x ++1),令x=y=0,得f(0)+f(0)=f(0100++),∴f(0)=0. 令y=-x,得f(x)+f(-x)=f(21x x x --)=f(0)=0, ∴f(-x)=-f(x). ∴f(x)为奇函数.(2)先证f(x)在(0,1)上单调递减,令0<x 1<x 2<1,则f(x 1)-f(x 2)=f(x 1)+f(-x 2)=f(21211x x x x --)=f(21121x x x x ---). ∵0<x 1<x 2<1,∴x 2-x 1>0,1-x 1x 2>0,∴21121x x x x -->0. 又(x 2-x 1)-(1-x 1x 2)=(x 2-1)(x 1+1)<0,∴0<x 2-x 1<1-x 1x 2.∴-1<21121x x x x ---<0.由题意知f(21121x x x x ---)>0, ∴f(x 1)>f(x 2).∴f(x)在(0,1)上为减函数,又f(x)为奇函数,∴f(x)在(-1,1)上也是减函数.点评:对于抽象函数的单调性和奇偶性问题时,必用单调性和奇偶性的定义来解决,即定义法是解决抽象函数单调性和奇偶性问题的通法;判断抽象函数的奇偶性与单调性时,在依托定义的基础上,用好赋值法,注意赋值的科学性、合理性,知能训练1.2006陕西高考,文1已知集合P={x∈N |1≤x≤10},集合Q ={x∈R |x 2+x-6=0},则P∩Q 等于( )A.{1,2,3}B.{2,3}C.{1,2}D.{2}分析:明确集合P 、Q 的运算,依据交集的定义求P={1,2,3,4,5,6,7,8,9,10},Q ={-3,2},则P∩Q ={2}.答案:D点评:解决本题关键是集合P 是大于等于1且小于等于10的自然数组成的集合,集合Q 是方程x 2+x-6=0的解集,将这两个集合化简后再运算.2.2006安徽高考,文1设全集U={1,2,3,4,5,6,7,8},集合S={1,3,5},T={3,6},则(S∪T)等于( )A. B.{2,4,7,8} C.{1,3,5,6} D.{2,4,6,8} 分析:直接观察(或画出Venn 图)得S∪T={1,3,5,6},则(S∪T)={2,4,7,8}. 答案:B点评:求解用列举法表示的数集运算时,首先看清集合元素的特征,理解并确定集合中的元素,最后通过观察或借助于数轴、Venn 图写出运算结果.3.已知二次函数f (x )满足条件f (0)=1和f (x +1)-f (x )=2x.(1)求f (x );(2)求f (x )在区间[-1,1]上的最大值和最小值.分析:(1)由于已知f (x )是二次函数,用待定系数法求f (x );(2)结合二次函数的图象,写出最值.解:(1)设f (x )=ax 2+bx +c ,由f (0)=1,可知c =1.而f (x +1)-f (x )=[a (x +1)2+b (x +1)+c ]-(ax 2+bx +c )=2ax +a +b.由f (x +1)-f (x )=2x ,可得2a =2,a +b =0.因而a =1,b =-1.故f (x )=x 2-x +1.(2)∵f(x)=x 2-x+1=(x-21)2+43, ∴当x∈[-1,1]时,f (x )的最小值是f(21)=43,f (x )的最大值是f (-1)=3. 拓展提升问题:某人定制了一批地砖.每块地砖 (如图14所示)是边长为0.4米的正方形ABCD ,点E 、F 分别在边BC 和CD 上,△CFE、△ABE 和四边形AEFD 均由单一材料制成,制成△CFE、△ABE 和四边形AEFD 的三种材料的每平方米价格之比依次为3∶2∶1.若将此种地砖按图15所示的形式铺设,能使中间的深色阴影部分成四边形EFGH.(1) 求证:四边形EFGH 是正方形;(2) E 、F 在什么位置时,定制这批地砖所需的材料费用最省?图1-4图1-5思路分析:(1)由于四块地砖拼出了四边形EFGH ,只需证明△CFE、△CFG、△CGH、△CEH 为等腰直角三角形即可;(2)建立数学模型,转化为数学问题.设CE=x ,每块地砖的费用为W ,求出函数W=f(x)的解析式,转化为讨论求函数的最小值问题.解:(1)图1-5可以看成是由四块如图1-4所示地砖绕点C 按顺时针旋转90°后得到,则有CE=CF ,∠ECF=90°,∴△CFE 为等腰直角三角形,同理可得△CFG、△CGH、△CEH 为等腰直角三角形.∴ 四边形EFGH 是正方形.(2)设CE=x ,则BE=0.4-x ,每块地砖的费用为W ,设制成△CFE、△ABE 和四边形AEFD 三种材料的每平方米价格依次为3a 、2a 、a(元), W=21x 2·3a+21×0.4×(0.4-x)×2a+[0.16-21x 2-21×0.4×(0.4-x)]a =a(x 2-0.2x+0.24)=a [(x-0.1)2+0.23](0<x<0.4).由于a>0,则当x=0.1时,W 有最小值,即总费用为最省.即当CE=CF=0.1米时,总费用最省.课堂小结本节课学习了:总结了第一章的基本知识并形成知识网络,归纳了常见的解题方法. 作业复习参考题任选两题.设计感想本节在设计过程中,注重了两点:一是体现学生的主体地位,注重引导学生思考,让学生学会学习;二是为了满足高考的要求,对课本内容适当拓展,例如关于函数值域的求法,课本中没有专题学习,本节课对此进行了归纳和总结.。

高一数学必修1第一章集合全章教案

高一数学必修1第一章集合全章教案

第一章集合与函数概念§1.1集合教学目标:(1)了解集合的含义,体会元素与集合的属于关系;(2)知道常用数集及其专用记号;(3)了解集合中元素的确定性•互异性.无序性;(4)会用集合语言表示有关数学对象;教学重点•难点重点:集合的含义与表示方法•难点:表示法的恰当选择•1.1.1集合的含义与表示(一)集合的有关概念:1. 定义:一般地,把一些能够确定的不同的对象看成一个整体,就说这个整体是由这些对象的全体构成的集合(或集),构成集合的每个对象叫做这个集合的元素(或成员)。

2•表示方法:集合通常用大括号{}或大写的拉丁字母A,B,C…表示,而元素用小写的拉丁字母a,b,c…表示。

3. 集合相等:构成两个集合的元素完全一样。

4. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于两种)⑴若a是集合A中的元素,则称a属于集合A,记作a_A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a ' A o5. 常用的数集及记法:非负整数集(或自然数集),记作N ;正整数集,记作N*或N + ; N内排除0的集.整数集,记作Z; 有理数集,记作Q; 实数集,记作R ;6. 关于集合的元素的特征⑴确定性:给定一个集合,那么任何一个元素在不在这个集合中就确定了。

女口:“地球上的四大洋”(太平洋,大西洋,印度洋,北冰洋)。

“中国古代四大发明”(造纸,印刷,火药,指南针)可以构成集合,其元素具有确定性;而“比较大的数”,“平面点P周围的点”一般不构成集合,因为组成它的元素是不确定的•⑵互异性:一个集合中的元素是互不相同的,即集合中的元素是不重复出现的。

如:方程(x-2)(x-1) 2=0的解集表示为:1,-2 ?,而不是「1,1,-2 ?⑶无序性:即集合中的元素无顺序,可以任意排列、调换。

练1:判断以下元素的全体是否组成集合,并说明理由:⑶ 大于3小于11的偶数;⑵我国的小河流;⑶非负奇数;⑷某校2011级新生;⑸ 血压很高的人;7. 元素与集合的关系:(元素与集合的关系有“属于•”及“不属于”两种⑴若a是集合A中的元素,则称a属于集合A,记作a A ;⑵若a不是集合A的元素,则称a不属于集合A,记作a: A°例如,我们A表示1~20以内的所有质数”组成的集合,则有3(A , 4老A,等等。

高中数学人教A版必修1 第一章1.3.2 函数的奇偶性教案

高中数学人教A版必修1 第一章1.3.2 函数的奇偶性教案

优质资料---欢迎下载1.3.2函数的奇偶性(1)年级:高一年级版本:人教A版模块:必修一【教材分析】在“函数的奇偶性”这一节中,“数”与“形”有着密切的联系。

因此,本节课没有一开始就给出定义,而是先让学生观察一组图形,从中寻找它们的共性,目的是先让学生有个直观上的认识。

为了引导学生由图形的直观认识上升到数量关系的精确描述,先提示学生图形是由点组成的,找出其间的关系后,建立概念,目的是为了培养学生从特殊到一般的概括能力。

【教学目标】一、知识与技能1.从形和数两方面进行引导,使学生理解函数的奇偶性及其几何意义,学会判断函数的奇偶性;2.通过函数奇偶性概念的形成过程,培养学生观察、归纳、抽象的能力,渗透数形结合的数学思想。

二、过程与方法师生共同探究,从代数的角度来严格推证。

三、情感态度与价值观从生活中的对称联想到数学中的对称,再通过严密的代数形式去表达、推理。

【教学重难点】教学重点:函数奇偶性的概念及函数奇偶性的判定教学难点:判断函数奇偶性的方法与格式【教学过程】12(一)创设情景,揭示课题回顾轴对称图形和中心对称图形的概念,和点出“对称”是大自然的一种美,这种“对称美”在数学中也有大量的反映,让我们看看下列各函数有什么共性?请从对称的角度对下列函数进行分类。

④O xy()x f 1=③O xy①②xyxx f =)(oO yx-1f x |x |=通过讨论归纳:函数①③关于y 轴对称,函数②④关于原点对称。

(二)新知探究观察下列两个函数图象并思考以下问题: (1)这两个函数图象有什么共同特征吗?(2)相应的两个函数值对应表是如何体现这些特征的?归纳:若点(,())x f x 在函数图象上,则相应的点(,())x f x -也在函数图象上,即函数图象上横坐标互为相反数的点,它们的纵坐标一定相等.函数的奇偶性定义: 1.偶函数3一般地,对于函数()f x 的定义域内的任意一个x ,都有()()f x f x -=,那么()f x 就叫做偶函数.(学生活动)依照偶函数的定义给出奇函数的定义.概念辨析:问题1:研究函数优先考虑定义域,偶函数的定义域有什么要求? (定义域关于原点对称) 问题2:为什么强调任意和都有? (说明具有一般性,避免特殊性) 问题3:偶函数的图像有什么特点? (关于y 轴对称) f(x)为偶函数f(x)的图像关于y 轴对称问题4:如何判断一个是否为奇函数?1 形----观察函数图像是否关于y 轴或原点对称。

人教A版高中数学必修1教案完整版

人教A版高中数学必修1教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn 图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn 图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

数学知识点人教A版数学必修一第1章《集合与函数概念》(3.2奇偶性)示范教案-总结

数学知识点人教A版数学必修一第1章《集合与函数概念》(3.2奇偶性)示范教案-总结

河北省青龙满族自治县逸夫中学高中数学必修1第1章集合与函数概念-7.示范教案(3.2 奇偶性)教学分析本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情景,会使数与形的结合更加自然. 值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x 与y=2x-1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明.三维目标1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力.2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想.重点难点教学重点:函数的奇偶性及其几何意义.教学难点:判断函数的奇偶性的方法与格式.课时安排1课时教学过程导入新课思路1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称.)数学中对称的形式也很多,这节课我们就同学们谈到的与y轴对称的函数展开研究.思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性.推进新课新知探究提出问题①如图1-3-2-1所示,观察下列函数的图象,总结各函数之间的共性.图1-3-2-1②那么如何利用函数的解析式描述函数的图象关于y轴对称呢?填写表1和表2,你发现这两个函③请给出偶函数的定义? ④偶函数的图象有什么特征?⑤函数f(x)=x 2,x∈[-1,2]是偶函数吗? ⑥偶函数的定义域有什么特征? ⑦观察函数f(x)=x 和f(x)=x1的图象,类比偶函数的推导过程,给出奇函数的定义和性质? 活动:教师从以下几点引导学生: ①观察图象的对称性.②学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数. ③利用函数的解析式来描述.④偶函数的性质:图象关于y 轴对称.⑤函数f(x)=x 2,x∈[-1,2]的图象关于y 轴不对称;对定义域[-1,2]内x=2,f(-2)不存在, 即其函数的定义域中任意一个x 的相反数-x 不一定也在定义域内,即f(-x)=f(x)不恒成立. ⑥偶函数的定义域中任意一个x 的相反数-x 一定也在定义域内,此时称函数的定义域关于原点对称.⑦先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质.给出偶函数和奇函数的定义后,要指明:(1)函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;(2)由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称);(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称;(4)可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;(5)函数的奇偶性是函数在定义域上的性质是“整体”性质,而函数的单调性是函数在定义域的子集上的性质是“局部”性质. 讨论结果:①这两个函数之间的图象都关于y 轴对称.这两个函数的解析式都满足: f(-3)=f(3); f(-2)=f(2); f(-1)=f(1).可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内一个x ,都有f(-x)=f(x).③一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数. ④偶函数的图象关于y 轴对称. ⑤不是偶函数.⑥偶函数的定义域关于原点轴对称.⑦一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫做奇函数.奇函数的图象关于原点中心对称,其定义域关于原点轴对称. 应用示例思路1例1判断下列函数的奇偶性:(1)f(x)=x 4;(2)f(x)=x 5; (3)f(x)=x+x1; (4)f(x)=21x . 活动:学生思考奇偶函数的定义,利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f(-x)=f(x)或f(-x)=-f(x).解:(1)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)4=x 4=f(x),所以函数f(x)=x 4是偶函数.(2)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)5=-x 5=-f(x),所以函数f(x)=x 4是奇函数.(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f(-x)=-x+x-1=-(x+x1)=-f(x), 所以函数f(x)=x+x1是奇函数. (4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f(-x)=)(12x -=21x=f(x), 所以函数f(x)= 21x是偶函数.点评:本题主要考查函数的奇偶性.函数的定义域是使函数有意义的自变量的取值范围,对定义域内任意x ,其相反数-x 也在函数的定义域内,此时称为定义域关于原点对称. 利用定义判断函数奇偶性的格式步骤:①首先确定函数的定义域,并判断其定义域是否关于原点对称; ②确定f(-x)与f(x)的关系; ③作出相应结论:若f(-x)=f(x)或f(-x)-f(x)=0,则f(x)是偶函数; 若f(-x)=-f(x)或f(-x)+f(x)=0,则f(x)是奇函数. 变式训练2006辽宁高考,理2设f(x)是R 上的任意函数,则下列叙述正确的是( ) A.f(x)f(-x)是奇函数 B.f(x)|f(-x)|是奇函数 C.f(x)-f(-x)是偶函数 D.f(x)+f(-x)是偶函数分析:A 中设F(x)=f(x)f(-x),则F(-x)=f(-x)f(x)=F(x),即函数F(x)=f(x)f(-x)为偶函数; B 中设F(x)=f(x)|f(-x)|,F(-x)=f(-x)|f(x)|,此时F(x)与F(-x)的关系不能确定,即函数F(x)=f(x)|f(-x)|的奇偶性不确定;C 中设F(x)=f(x)-f(-x),F(-x)=f(-x)-f(x)=-F(x),即函数F(x)=f(x)-f(-x)为奇函数;D 中设F(x)=f(x)+f(-x),F(-x)=f(-x)+f(x)=F(x),即函数F(x)=f(x)+f(-x)为偶函数. 答案:D例22006上海春季高考,6已知函数f(x)是定义在(-∞,+∞)上的偶函数.当x∈(-∞,0)时,f(x)=x-x 4,则当x∈(0,+∞)时,f(x)=_______.活动:学生思考偶函数的解析式的性质,考虑如何将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值.利用偶函数的性质f(x)=f(-x),将在区间(0,+∞)上的自变量对应的函数值,转化为区间(-∞,0)上的自变量对应的函数值. 分析:当x∈(0,+∞)时,则-x<0.又∵当x∈(-∞,0)时,f(x)=x-x 4,∴f(x)=(-x)-(-x)4=-x-x 4.答案:-x-x 4点评:本题主要考查函数的解析式和奇偶性.已知函数的奇偶性,求函数的解析式时,要充分利用函数的奇偶性,将所求解析式的区间上自变量对应的函数值转化为已知解析式的区间上自变量对应的函数值. 变式训练已知函数f(x)是定义在R 上的奇函数,当x>0时,f(x)=x 2+3x ,求f(x).解:当x=0时,f(-0)=-f(0),则f(0)=0; 当x<0时,-x>0,由于函数f(x)是奇函数,则f(x)=-f(-x)=-[(-x)2+3x -]=-x 2+3x ,综上所得,f(x)=⎪⎩⎪⎨⎧<+-=>+.0,,0,0,0,3232x x x x x x x思路2例1判断下列函数的奇偶性.(1)f(x)=x 2,x∈[-1,2];(2)f(x)=122--x x x ;(3)f (x )=42-x +24x -;(4)f (x )=111122+++-++x x x x .活动:学生思考奇偶函数的定义和函数的定义域的求法.先判断函数的定义域是否关于原点对称,再判断f(-x)与f(x)的关系.在(4)中注意定义域的求法,对任意x∈R ,有2x 1+>2x =|x|≥-x ,则2x 1++x>0.则函数的定义域是R .解:(1)因为它的定义域关于原点不对称,函数f(x)=x 2,x∈[-1,2]既不是奇函数又不是偶函数.(2)因为它的定义域为{x|x∈R 且x≠1},并不关于原点对称,函数f(x)=122--x x x 既不是奇函数又不是偶函数.(3)∵x 2-4≥0且4-x 2≥0, ∴x=±2,即f (x )的定义域是{-2,2}. ∵f(2)=0,f (-2)=0,∴f(2)=f (-2),f (2)=-f (2).∴f(-x )=-f (x ),且f (-x )=f (x ). ∴f(x )既是奇函数也是偶函数. (4)函数的定义域是R . ∵f(-x)+f(x)=111111112222+++-++++-+--+x x x x x x x x=)11)(11()1(1)1(1222222++++-+--+++-+x x x x x x x x=)11)(11(121121222222++++-+-+-++---+x x x x x x x x x x=0,∴f(-x )=-f (x ). ∴f(x )是奇函数.点评:本题主要考查函数的奇偶性.定义法判断函数奇偶性的步骤是(1)求函数的定义域,当定义域关于原点不对称时,则此函数既不是奇函数也不是偶函数,当定义域关于原点对称时,判断f(-x)与f(x)或-f(x)是否相等;(2)当f(-x)=f(x)时,此函数是偶函数;当f(-x)=-f(x)时,此函数是奇函数;(3)当f(-x)=f(x)且f(-x)=-f(x)时,此函数既是奇函数又是偶函数;(4)当f(-x)≠f(x)且f(-x)≠-f(x)时,此函数既不是奇函数也不是偶函数.判断解析式复杂的函数的奇偶性时,如果定义域关于原点对称时,通常化简f(-x)+f(x)来判断f(-x)=f(x)或f(-x)=-f(x)是否成立. 变式训练2007河南开封一模,文10函数f(x)=x 2-2ax+a 在区间(-∞,1)上有最小值,则函数g(x)=xx f )(在区间(1,+∞)上一定( ) A.有最小值 B.有最大值 C.是减函数 D.是增函数分析:函数f(x)=x 2-2ax+a 的对称轴是直线x=a , 由于函数f(x)在开区间(-∞,1)上有最小值, 所以直线x=a 位于区间(-∞,1)内,即a<1.g(x)=xx f )(=x+x a-2,下面用定义法判断函数g(x)在区间(1,+∞)上的单调性.设1<x 1<x 2, 则g(x 1)-g(x 2)=(x 1+-1x a 2)-(x 2+-2x a 2)=(x 1-x 2)+(1x a 2x a -)=(x 1-x 2)(121x x a-) =(x 1-x 2)2121x x ax x -.∵1<x 1<x 2,∴x 1-x 2<0,x 1x 2>1>0.又∵a<1,∴x 1x 2>a.∴x 1x 2-a>0.∴g(x 1)-g(x 2)<0. ∴g(x 1)<g(x 2).∴函数g(x)在区间(1,+∞)上是增函数,函数g(x)在区间(1,+∞)上没有最值. 答案:D例2已知函数f(x)的定义域是x≠0的一切实数,对定义域内的任意x 1、x 2都有f(x 1·x 2)=f(x 1)+f(x 2),且当x>1时f(x)>0,f(2)=1, (1)求证:f(x)是偶函数;(2)求证:f(x)在(0,+∞)上是增函数; (3)试比较f(25-)与f(47)的大小.活动:(1)转化为证明f(-x)=f(x),利用赋值法证明f(-x)=f(x);(2)利用定义法证明单调性,证明函数单调性的步骤是“去比赛”;(3)利用函数的单调性比较它们的大小,利用函数的奇偶性,将函数值f(25-)和f(47)转化为同一个单调区间上的函数值.解:(1)令x 1=x 2=1,得f(1)=2f(1),∴f(1)=0.令x 1=x 2=-1,得f(1)=f [-1×(-1)]=f(-1)+f(-1),∴2f(-1)=0. ∴f(-1)=0.∴f(-x)=f(-1·x)=f(-1)+f(x)=f(x). ∴f(x)是偶函数. (2)设x 2>x 1>0,则f(x 2)-f(x 1)=f(x 1·12x x )-f(x 1)=f(x 1)+f(12x x )-f(x 1)=f(12x x ). ∵x 2>x 1>0,∴12x x >1.∴f(12x x)>0,即f(x 2)-f(x 1)>0.∴f(x 2)>f(x 1).∴f(x)在(0,+∞)上是增函数.(3)由(1)知f(x)是偶函数,则有f(25-)=f(25).由(2)知f(x)在(0,+∞)上是增函数,则f(25)>f(47).∴f(25-)>f(47).点评:本题是抽象函数问题,主要考查函数的奇偶性和单调性及其综合应用.判断抽象函数的奇偶性和单调性通常应用定义法,比较抽象函数值的大小通常利用抽象函数的单调性来比较.其关键是将所给的关系式进行有效的变形和恰当的赋值. 变式训练2007广东中山高三期末统考,理19已知f(x)是定义在(-∞,+∞)上的不恒为零的函数,且对定义域内的任意x 、y,f(x)都满足f(xy)=yf(x)+xf(y). (1)求f(1)、f(-1)的值;(2)判断f(x)的奇偶性,并说明理由.分析:(1)利用赋值法,令x=y=1得f(1)的值,令x=y=-1,得f(-1)的值;(2)利用定义法证明f(x)是奇函数,要借助于赋值法得f(-x)=-f(x).解:(1)∵f(x)对任意x 、y 都有f(x·y)=yf(x)+xf(y), ∴令x=y=1时,有f(1·1)=1·f(1)+1·f(1). ∴f(1)=0.∴令x=y=-1时,有f [(-1)·(-1)]=(-1)·f(-1)+(-1)·f(-1). ∴f(-1)=0. (2)是奇函数.∵f(x)对任意x 、y 都有f(x·y)=yf(x)+xf(y), ∴令y=-1,有f(-x)=-f(x)+xf(-1). 将f(-1)=0代入得f(-x)=-f(x), ∴函数f(x)是(-∞,+∞)上的奇函数. 知能训练课本P 36练习1、2. [补充练习]1.2007上海春季高考,5设函数y=f(x)是奇函数.若f(-2)+f(-1)-3=f(1)+f(2)+3,则f(1)+f(2)=_____.分析:∵函数y=f(x)是奇函数,∴f(-2)=-f(2),f(-1)=-f(1). ∴-f(2)-f(1)-3=f(1)+f(2)+3.∴2[f(1)+f(2)]=-6.∴f(1)+f(2)=-3.答案:-32.f (x )=ax 2+bx+3a+b 是偶函数,定义域为[a -1,2a ],则a=_________,b=________. 分析:∵偶函数定义域关于原点对称, ∴a-1+2a=0.∴a=31. ∴f(x )=31x 2+bx+1+b.又∵f(x )是偶函数,∴b=0. 答案:310 3.2006山东高考,理6已知定义在R 上的奇函数f(x)满足f(x+2)=-f(x),则f(6)的值为( ) A.-1 B.0 C.1 D.2 分析:f(6)=f(4+2)=-f(4)=-f(2+2)=f(2)=f(2+0)=-f(0). 又f(x)是定义在R 上的奇函数,∴f(0)=0. ∴f(6)=0.故选B. 答案:B 拓展提升问题:基本初等函数的奇偶性.探究:利用判断函数的奇偶性的方法:定义法和图象法,可得 正比例函数y=kx(k≠0)是奇函数; 反比例函数y=xk(k≠0)是奇函数; 一次函数y=kx+b(k≠0),当b=0时是奇函数,当b≠0时既不是奇函数也不是偶函数;二次函数y=ax 2+bx+c(a≠0),当b=0时是偶函数,当b≠0时既不是奇函数也不是偶函数. 课堂小结本节主要学习了函数的奇偶性,判断函数的奇偶性通常有两种方法,即定义法和图象法,用定义法判断函数的奇偶性时,必须注意首先判断函数的定义域是否关于原点对称. 作业课本P 39习题1.3A 组6,B 组3.设计感想单调性与奇偶性的综合应用是本节的一个难点,而本节设计的题目不多,因此,在实际教学中,教师可以利用课余时间补充,让学生结合函数的图象充分理解好单调性和奇偶性这两个性质. 在教学设计中,注意培养学生的综合应用能力,以便满足高考要求.习题详解(课本P 32页练习)1.从生产效率与生产线上工人数量的关系看,在生产劳动力较少的情况下,随人数的增加效率随着增大,但是到了一定数量后,人数再增多效率反而降低了.这说明劳动力可能过剩,出现了怠工等现象.2.图象如图1-3-2-2所示,图1-3-2-2函数的单调增区间为[8,12),[13,18); 函数的单调减区间为[12,13),[18,20].3.函数的单调区间是[-1,0),[0,2),[2,4),[4,5].在区间[-1,0),[2,4)上是减函数;在区间[0,2),[4,5]上是增函数. 4.证明:设x 1、x 2∈R ,且x 1<x 2,则f(x 1)-f(x 2)=(-2x 1+1)-(-2x 2+1)=2(x 2-x 1). ∵x 1<x 2,∴x 2-x 1>0.∴f(x 1)>f(x 2). ∴函数f(x)=-2x+1在R 上是减函数. 5.如图1-3-2-3所示,图1-3-2-3从图象上可以发现f (-2)是函数的一个最小值. (课本P 36练习)1.(1)对于函数f (x )=2x 4+3x 2,其定义域为(-∞,+∞).因为对定义域内的每一个x ,都有f (-x )=2(-x )4+3(-x )2=2x 4+3x 2=f (x ),所以函数f (x )=2x 4+3x 2为偶函数.(2)对于函数f (x )=x 3-2x ,其定义域为(-∞,+∞). 因为对定义域内的每一个x ,都有f (-x )=(-x )3-2(-x )=-x 3+2x=-(x 3-2x )=-f (x ),所以函数f (x )=x 3-2x 为奇函数.(3)对于函数f(x)=xx 12+,其定义域为(-∞,0)∪(0,+∞).因为对定义域内的每一个x ,都有f (-x )=x x -+-1)(2=xx 12+-=-f (x ),所以函数f(x)=xx 12+-为奇函数.(4)对于函数f(x)=x 2+1,其定义域为(-∞,+∞). 因为对定义域内的每一个x ,都有f (-x )=(-x)2+1=x 2+1=f (x ),所以函数f(x)=x 2+1为偶函数.2.f(x)的图象如图1-3-2-4所示,g(x)的图象如图1-3-2-5所示.图1-3-2-4 图1-3-2-5(课本P 39习题1.3)A 组1.(1)函数的单调区间是(-∞,25],(25,+∞).函数y=f(x)在区间(-∞,25]上是减函数,在区间(25,+∞)上是增函数. (2)函数的单调区间是(-∞,0],(0,+∞).函数y=f(x)在区间(0,+∞)上是减函数,在区间(-∞,0]上是增函数. 图略.2.(1)设0<x 1<x 2,则有f(x 1)-f(x 2)=(x 12+1)-(x 22+1)=x 12-x 22=(x 1-x 2)(x 1+x 2). ∵0<x 1<x 2,∴x 1-x 2<0,x 1+x 2<0. ∴f(x 1)>f(x 2).∴函数f(x)在(-∞,0)上是减函数. (2)设0<x 1<x 2,则有 f(x 1)-f(x 2)=(111x -)-(121x -)=21x 11x -=2121x x x x -.∵0<x 1<x 2,∴x 1-x 2<0,x 1x 2>0.∴f(x 1)<f(x 2).∴函数f(x)在(-∞,0)上是增函数.3.设x 1、x 2是(-∞,+∞)上任意两个实数,且x 1<x 2. 则y 1-y 2=(mx 1+b )-(mx 2+b ) =m (x 1-x 2).∵x 1<x 2,∴x 1-x 2<0.当m <0时,∴y 1-y 2>0,即y 1>y 2.∴此时一次函数y=mx+b (m <0)在(-∞,+∞)上是减函数. 同理可证一次函数y=mx+b (m >0)在(-∞,+∞)上是增函数. 综上所得,当m <0时,一次函数y=mx+b 是减函数; 当m >0时,一次函数y=mx+b 是增函数.4.心率关于时间的一个可能的图象,如图1-3-2-6所示,图1-3-2-65.y=502x -+162x-2100=501-(x 2-8100x)-2100=501-(x-4050)2+307 050.由二次函数的知识,可得当月租金为4 050元时,租赁公司的月收入最大,最大收益为307 050元. 6.图略,函数f(x)的解析式为⎩⎨⎧<-≥+.0),1(,0),1(x x x x x xB 组1.(1)函数f(x)在(-∞,1)上为减函数,在[1,+∞)上为增函数;函数g(x)在[2,4]上为增函数. (2)函数f(x)的最小值为-1,函数g(x)的最小值为0.2.设矩形熊猫居室的宽为x m ,面积为y m 2,则长为2330x -m ,那么y=x 2330x-=21(30x-3x 2)=23-(x-5)2+275. 所以当x=5时,y 有最大值275,即宽x 为5 m 时才能使所建造的每间熊猫居室面积最大,最大面积是275m 2. 3.函数f(x)在(-∞,0)上是增函数. 证明:设x 1<x 2<0,则-x 1>-x 2>0.∵函数f(x)在(0,+∞)上是减函数,∴f(-x 1)<f(-x 2). ∵函数f(x)是偶函数,∴f(-x)=f(x).∴f(x 1)<f(x 2). ∴函数f(x)在(-∞,0)上是增函数. (课本P 44复习参考题) A 组1.(1)A={-3,3};(2)B={1,2};(3)C={1,2}.2.(1)线段AB 的垂直平分线;(2)以定点O 为原心,以3 cm 为半径的圆. 3.属于集合的点是△ABC 的外接圆圆心. 4.A={-1,1},(1)若a=0,则B=∅,满足B ⊆A ;(2)若a=-1,则B={-1},满足B ⊆A ; (3)若a=1,则B={1},满足B ⊆A. 综上所述,实数a 的值为0,-1,1.5.A∩B={(x,y )|⎩⎨⎧=+=0y 3x 0y -2x }={(x,y )|⎩⎨⎧==0y 0x }={(0,0)};A∩C={(x,y )|⎩⎨⎧==3y -2x 0y -2x }=∅;B∩C={(x,y )|⎩⎨⎧==+3y -2x 0y 3x }={(x,y )|⎪⎪⎩⎪⎪⎨⎧-==5953y x }={(53,59-)};(A∩B)∪(B∩C)={(0,0),(53,59-)}.6.(1)要使函数有意义,必须|x|-2≥0,即x≤-2或x≥2,所以函数的定义域为{x|x≤-2或x≥2}; (2)要使函数有意义,必须⎩⎨⎧≥+≥-,05,02x x 即⎩⎨⎧-≥≥,5,2x x 得x≥2.所以函数的定义域为{x |x≥2}; (3)要使函数有意义,必须⎩⎨⎧≠-≥-,05||,04x x 即x≥4,且x≠5.所以函数的定义域为{x |x≥4,且x≠5}. 7.(1)f (a )+1=111++-a a =12+a ;(2)f (a+1)=)1(1)1(1+++-a a =a a +-2. 8.(1)∵f(-x )=22)(1)(1x x ---+=2211x x -+,∴f(-x )=f (x ). (2)∵f(x 1)=22)1(1)1(1x x -+=221111x x -+=222211x x x x -+=1122-+x x =2211x x -+-,∴f(x 1)=-f (x ). 9.二次函数f(x)的对称轴是直线x=8k ,则有8k ≤5或8k ≥20.解得k≤40或k≥160,即实数k 的取值范围是(-∞,40]∪[160,+∞).10.(1)函数y=x -2是偶函数;(2)它的图象关于y 轴对称;(3)函数在(0,+∞)上是减函数;(4)函数在(-∞,0)上是增函数.B 组1.同时参加田径和球类比赛的有3人,只参加游泳一项比赛的有9人.提示:由题意知有15人参加游泳比赛,有8人参加田径比赛,有14人参加球类比赛,所以15+8+14=37,知共有37人次参加比赛.由已知共有28名同学参赛,且没有人同时参加三项,而37-28=9,知共有9名同学参加两项比赛.已知同时参加游泳和田径的有3人,同时参加游泳和球类的有3人,因此同时参加田径和球类的有3人;又已知有15人参加游泳比赛,因此只参加游泳一项的有9人.2.实数a 的取值范围为{a |a≥0}.3.∵(A∪B)=(A)∩(B )={1,3},A∩(B )={2,4}, ∴B={1,2,3,4}.∴B={5,6,7,8,9}.4.f (1)=1×(1+4)=5;f (-3)=-3×(-3-4)=21;f (a+1)=⎩⎨⎧-<++-≥++.1),3)(1(,1),5)(1(a a a a a a 5.证明:(1)f )2(21x x +=a·221x x ++b =22221b ab b ax x +++=21(ax 1+b )+21(ax 2+b )=21[f (x 1)+f (x 2)], ∴f(221x x +)=21[f (x 1)+f (x 2)]. (2)g (221x x +)=(221x x +)2+a·221x x ++b =21(21x +ax 1+b )+21(22x +ax 2+b )-41(x 1-x 2)2 =21[g (x 1)+g (x 2)]-41(x 1-x 2)2,∵-41(x 1-x 2)2≤0, ∴g(221x x +)≤21[g (x 1)+g (x 2)]. 6.(1)奇函数f (x )在[-b,-a ]上是减函数;(2)偶函数g (x )在[-b,-a ]上是减函数.7.若全月纳税所得额为500元,则应交纳税款为500×5%=25(元).此时月工资为800+500=1 300(元);若全月纳税所得额为2000元,则应交纳税款为500×5%+1500×10%=175(元).此时月工资为800+500+1500=2800(元).由于此人交纳税款为26.78元,则此人的工资在区间(1300,2800)内,所以他当月的工资、薪金所得是800+500+1.02578.26-≈1317.8(元).。

高一年级数学人教版必修一3.2.2函数的奇偶性教案

高一年级数学人教版必修一3.2.2函数的奇偶性教案

高一年级人教版必修一3.2.2函数的奇偶性教案年级:高一年级版本:人教版模块:必修一【教材分析】在“函数的奇偶性”这一节中,“数”与“形”有着密切的联系。

它既是函数概念的拓展和深化,是继函数单调性后的又一个重要性质,又是后续研究指数函数、对数函数、幂函数、三角函数等函数的必备知识。

因此本节课起着承上启下的重要作用。

奇偶性的教学无论在知识上还是在能力上对学生的教育起着非常重要的作用。

【核心素质培养目标】1.结合具体函数的图像和解析式,深刻理解奇函数、偶函数的定义。

2.通过画图,分析图像了解奇函数、偶函数图象的特征,培养直观想象核心素养。

3.通过例题学习,归纳并掌握判断(证明)函数奇偶性的方法,培养逻辑推理核心素养。

【教学重难点】教学重点:函数奇偶性的概念及函数奇偶性的判定教学难点:判断函数奇偶性的方法与格式【教学方法】师生共同探究,从代数的角度来严格推证。

【教学过程】一、情景引入,提出问题对称美是大自然的一种美,对称美在数学中随处可见,今天我们学习数学中的对称美。

师:复习函数的三要素和三种表示法。

生:三要素是:定义域、值域、对应关系;三种表示方法是:解析法、图象法、列表法。

师:结合的三要素和三种表示方法想一想(1)这个函数图象有什么特征?生:答定义域关于原点对称且图像关于y轴对称。

(2)当自变量x取一对相反数时,相应的两个函数值什么关系?生:从函数值对应表可以看到,当自变量x取一对相反数时,相应的两个函数值相等。

(3)你能尝试用函数解析式描述图象的对称特征吗?生:对于定义域内任意一个x,都有f(-x)=f(x)。

师:这时我们称f(x)=x2为偶函数,设计意图:启发学生由图象获取函数性质的直观认识,从而引入新课。

二、获取新知,生成概念(板书)偶函数:一般地,如果对于函数f(x)的定义域内的任意一个x都有f(-x)=f(x),那么函数f(x)就叫做偶函数。

师:研究函数优先考虑定义域,把f(x)=x2定义域改成(0,+∞),仍然是偶函数吗?生:不是师:判断函数是偶函数的前提什么?生:函数的定义域关于原点对称。

人教A版高中数学必修1教案完整版

人教A版高中数学必修1教案完整版

第一章集合与函数概念一. 课标要求:本章将集合作为一种语言来学习,使学生感受用集合表示数学内容时的简洁性、准确性,帮助学生学会用集合语言描述数学对象,发展学生运用数学语言进行交流的能力.函数是高中数学的核心概念,本章把函数作为描述客观世界变化规律的重要数学模型来学习,强调结合实际问题,使学生感受运用函数概念建立模型的过程与方法,从而发展学生对变量数学的认识.1. 了解集合的含义,体会元素与集合的“属于”关系,掌握某些数集的专用符号.2. 理解集合的表示法,能选择自然语言、图形语言、集合语言(列举法或描述法)描述不同的具体问题,感受集合语言的意义和作用.3、理解集合之间包含与相等的含义,能识别给定集合的子集,培养学生分析、比较、归纳的逻辑思维能力.4、能在具体情境中,了解全集与空集的含义.5、理解两个集合的并集与交集的含义,会求两个简单集合的交集与并集, 培养学生从具体到抽象的思维能力.6. 理解在给定集合中,一个子集的补集的含义,会求给定子集的补集.7. 能使用Venn图表达集合的关系及运算,体会直观图示对理解抽象概念的作用.8. 学会用集合与对应的语言来刻画函数,理解函数符号y=f(x)的含义;了解函数构成的三要素,了解映射的概念;体会函数是一种刻画变量之间关系的重要数学模型,体会对应关系在刻画函数概念中的作用;会求一些简单函数的定义域和值域,并熟练使用区间表示法.9. 了解函数的一些基本表示法(列表法、图象法、分析法),并能在实际情境中,恰当地进行选择;会用描点法画一些简单函数的图象.10. 通过具体实例,了解简单的分段函数,并能简单应用.11. 结合熟悉的具体函数,理解函数的单调性、最大(小)值及其几何意义,了解奇偶性和周期性的含义,通过具体函数的图象,初步了解中心对称图形和轴对称图形.12. 学会运用函数的图象理解和研究函数的性质,体会数形结合的数学方法.13. 通过实习作业,使学生初步了解对数学发展有过重大影响的重大历史事件和重要人物,了解生活中的函数实例.二. 编写意图与教学建议1. 教材不涉及集合论理论,只将集合作为一种语言来学习,要求学生能够使用最基本的集合语言表示有关的数学对象,从而体会集合语言的简洁性和准确性,发展运用数学语言进行交流的能力. 教材力求紧密结合学生的生活经验和已有数学知识,通过列举丰富的实例,使学生了解集合的含义,理解并掌握集合间的基本关系及集合的基本运算.教材突出了函数概念的背景教学,强调从实例出发,让学生对函数概念有充分的感性基础,再用集合与对应语言抽象出函数概念,这样比较符合学生的认识规律,同时有利于培养学生的抽象概括的能力,增强学生应用数学的意识,教学中要高度重视数学概念的背景教学.2. 教材尽量创设使学生运用集合语言进行表达和交流的情境和机会,并注意运用Venn图表达集合的关系及运算,帮助学生借助直观图示认识抽象概念. 教学中,要充分体现这种直观的数学思想,发挥图形在子集以及集合运算教学中的直观作用。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

河北省青龙满族自治县逸夫中学高中数学必修1第1章集合与函数
概念-7.示范教案(3.2 奇偶性)
教学分析
本节讨论函数的奇偶性是描述函数整体性质的.教材沿用了处理函数单调性的方法,即先给出几个特殊函数的图象,让学生通过图象直观获得函数奇偶性的认识,然后利用表格探究数量变化特征,通过代数运算,验证发现的数量特征对定义域中的“任意”值都成立,最后在这个基础上建立了奇(偶)函数的概念.因此教学时,充分利用信息技术创设教学情景,会使数与形的结合更加自然.
值得注意的问题:对于奇函数,教材在给出的表格中留出大部分空格,旨在让学生自己动手计算填写数据,仿照偶函数概念建立的过程,独立地去经历发现、猜想与证明的全过程,从而建立奇函数的概念.教学时,可以通过具体例子引导学生认识,并不是所有的函数都具有奇偶性,如函数y=x与y=2x-1既不是奇函数也不是偶函数,可以通过图象看出也可以用定义去说明.
三维目标
1.理解函数的奇偶性及其几何意义,培养学生观察、抽象的能力,以及从特殊到一般的概括、归纳问题的能力.
2.学会运用函数图象理解和研究函数的性质,掌握判断函数的奇偶性的方法,渗透数形结合的数学思想.
重点难点
教学重点:函数的奇偶性及其几何意义.
教学难点:判断函数的奇偶性的方法与格式.
课时安排
1课时
教学过程
导入新课
思路1.同学们,我们生活在美的世界中,有过许多对美的感受,请大家想一下有哪些美呢?(学生回答可能有和谐美、自然美、对称美……)今天,我们就来讨论对称美,请大家想一下哪些事物给过你对称美的感觉呢?(学生举例,再在屏幕上给出一组图片:喜字、蝴蝶、建筑物、麦当劳的标志)生活中的美引入我们的数学领域中,它又是怎样的情况呢?下面,我们以麦当劳的标志为例,给它适当地建立直角坐标系,那么大家发现了什么特点呢?(学生发现:图象关于y轴对称.)数学中对称的形式也很多,这节课我们就同学们谈到的与y 轴对称的函数展开研究.
思路2.结合轴对称与中心对称图形的定义,请同学们观察图形,说出函数y=x2和y=x3的图象各有怎样的对称性?引出课题:函数的奇偶性.
推进新课
新知探究
提出问题
①如图1-3-2-1所示,观察下列函数的图象,总结各函数之间的共性.
图1-3-2-1
②那么如何利用函数的解析式描述函数的图象关于y 轴对称呢?填写表1和表2,你发现这两个函数的解析式具有什么共同特征?
表2
③请给出偶函数的定义? ④偶函数的图象有什么特征?
⑤函数f(x)=x 2
,x∈[-1,2]是偶函数吗? ⑥偶函数的定义域有什么特征? ⑦观察函数f(x)=x 和f(x)=
x
1
的图象,类比偶函数的推导过程,给出奇函数的定义和性质? 活动:教师从以下几点引导学生: ①观察图象的对称性.
②学生给出这两个函数的解析式具有什么共同特征后,教师指出:这样的函数称为偶函数. ③利用函数的解析式来描述.
④偶函数的性质:图象关于y 轴对称.
⑤函数f(x)=x 2
,x∈[-1,2]的图象关于y 轴不对称;对定义域[-1,2]内x=2,f(-2)不存在,
即其函数的定义域中任意一个x 的相反数-x 不一定也在定义域内,即f(-x)=f(x)不恒成立. ⑥偶函数的定义域中任意一个x 的相反数-x 一定也在定义域内,此时称函数的定义域关于原点对称.
⑦先判断它们的图象的共同特征是关于原点对称,再列表格观察自变量互为相反数时,函数值的变化情况,进而抽象出奇函数的概念,再讨论奇函数的性质. 给出偶函数和奇函数的定义后,要指明:(1)函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质;(2)由函数的奇偶性定义,可知函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称);(3)具有奇偶性的函数的图象的特征:偶函数的图象关于y 轴对称,奇函数的图象关于原点对称;(4)可以利用图象判断函数的奇偶性,这种方法称为图象法,也可以利用奇偶函数的定义判断函数的奇偶性,这种方法称为定义法;(5)函数的奇偶性是函数在定义域上的性质是“整体”性质,而函数的单调性是函数在定义域的子集上的性质是“局部”性质. 讨论结果:
①这两个函数之间的图象都关于y 轴对称. ②
表1
表2
这两个函数的解析式都满足: f(-3)=f(3); f(-2)=f(2); f(-1)=f(1).
可以发现对于函数定义域内任意的两个相反数,它们对应的函数值相等,也就是说对于函数定义域内一个x ,都有f(-x)=f(x).
③一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=f(x),那么f(x)就叫做偶函数.
④偶函数的图象关于y 轴对称. ⑤不是偶函数.
⑥偶函数的定义域关于原点轴对称.
⑦一般地,对于函数f(x)的定义域内的任意一个x ,都有f(-x)=-f(x),那么f(x)就叫做奇函数.奇函数的图象关于原点中心对称,其定义域关于原点轴对称. 应用示例
思路1
例1判断下列函数的奇偶性:
(1)f(x)=x 4

(2)f(x)=x 5
; (3)f(x)=x+x
1; (4)f(x)=
2
1x . 活动:学生思考奇偶函数的定义,利用定义来判断其奇偶性.先求函数的定义域,并判断定义域是否关于原点对称,如果定义域关于原点对称,那么再判断f(-x)=f(x)或f(-x)=-f(x).
解:(1)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)4=x 4
=f(x),
所以函数f(x)=x 4
是偶函数.
(2)函数的定义域是R ,对定义域内任意一个x ,都有f(-x)=(-x)5=-x 5
=-f(x),
所以函数f(x)=x 4
是奇函数.
(3)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有
f(-x)=-x+
x
-1
=-(x+x 1)=-f(x),
所以函数f(x)=x+x
1
是奇函数.
(4)函数的定义域是(-∞,0)∪(0,+∞),对定义域内任意一个x ,都有f(-x)=
)(12
x -=21x
=f(x),。

相关文档
最新文档