车联网OBD零功耗模块EST13模块数据手册

合集下载

EST527 OBD模块数据手册V1.1

EST527 OBD模块数据手册V1.1

EST527 OBD模块数据手册V 1.1目录一、概述 (3)二、产品特性 (3)三、支持协议 (3)四、解决方案 (4)五、参数配置 (4)六、通讯接口 (4)七、模块功能 (5)A.数据流格式 (5)B.EST527 AT指令集 (11)八、联系我们 (12)一、概述EST527 OBD模块是由深圳速锐得科技有限公司结合行业客户需求,自主研发设计,专门为软件服务商和相关硬件厂商量身打造的一款重磅产品。

产品采用高质量芯片,高集成、低功耗电路设计,模块小巧、简单易用,响应速度快,支持多种车辆汽车协议,支持车辆实时数据和统计数据,数据稳定性高,采用自动发送数据流的方式发送至端口,使得开发人员无需了解车辆硬件、汽车协议方面的知识,即可快速实现相关产品的二次开发。

二、产品特性内置双处理器,处理响应速度更快,是ELM327的5倍以上支持数据流模式/自定义PID模式切换上位机无需进行任何计算,所有数据都以数值方式返回支持令牌数据访问,实现数据的安全访问支持多种汽车协议,实现与极大部分汽车的各种控制模块进行诊断通讯支持车辆实时数据流自动发送,上位机无需发送指令,直接接收数据即可支持瞬时油耗、平均油耗及本次耗油量、累计耗油量等车辆统计数据流支持汽车本次行驶里程、总里程支持驾驶习惯数据流,方便分析总结驾驶员的驾驶习惯支持车辆故障码诊断,两条指令即可完成故障码的读取和清除AT指令集简单易用极大的提升相关产品的研发效率,缩短研发周期自动休眠唤醒机制,汽车发动机熄火20秒后自动休眠,着车后自动唤醒超强低功耗设计三、支持协议✓ISO9141-2✓KWP2000_5BPS✓KWP2000_FAST✓CANBUS_11B_500K✓CANBUS_29B_500K✓CANBUS_11B_250K✓CANBUS_29B_250K四、解决方案✓车联网·移动设备集成研发✓车联网·车载设备集成研发✓车联网·政府单位✓车联网·企业车队✓车联网·校车安全✓车联网·汽车租赁✓车联网·4S店✓车联网·保险公司✓车联网·电信运营商✓车联网·科研教育培训五、参数配置表格 1工作电压DC +6V ~ +22V工作电流DC 50 mA工作功率0.6 W待机电流7 mA待机功率0.08 W工作温度-50℃~ +95℃存储温度-50℃~ +95℃六、通讯接口表格 2型号通讯接口说明EST527-B Bluetooth 蓝牙名称:EST527,配对密码:SN号后4位波特率:115200,8位,无校验位,1停止位EST527-R RS232 波特率:115200,8位,无校验位,1停止位EST527-W WIFI 名称:EST527,密码:SN号后6位七、模块功能A.数据流格式1.车辆实时数据流(默认发送,频率1Hz)表格 3数据头$OBD-RT 标识备注1 电瓶电压BAT 单位:v2 发动机转速RPM 单位:rpm3 行驶时速VSS 单位:km/h4 节气门开度TP 单位:0%-100%5 发动机负荷LOD 单位:0%-100%6 冷却液温度ECT 单位:℃7 瞬时油耗MPG 单位(怠速):L/h单位(行驶):L/100km8 平均油耗AVM 单位:L/100km应用举例:怠速模式数据流:>$OBD-RT,BAT=13.5v,RPM=851rpm,VSS=0km/h,TP=0.00%,LOD=42.35%,ECT=60℃,M PG=1.33L/h,AVM=0.00L/100km \r\n行驶模式数据流:>$OBD-RT,BAT=13.5v,RPM=1426rpm,VSS=38km/h,TP=0.00%,LOD=42.35%,ECT=82℃, MPG=5.68L/100km,AVM=8.02L/100km \r\n说明:此车辆实时数据流不可关闭,只要成功打开串口,即可接收到此数据流。

OBD协议详情说明书(个人)

OBD协议详情说明书(个人)

OBD协议数据流说明需要确认的问题:1、支持的车型?2、油耗、里程读取?3、OBD协议中是否支持读取和控制车门窗的状态信息?4、OBD能读取数据5、比较本人整理的ISO15031-5和北京金奔腾科技公司的OBD协议数据流答案:1、我国采用了EOBD相同的要求即ISO15031-5(道路车辆-车辆与排放诊断相关装置通信标准-5排放有关的诊断服务)协议。

所以只要该车支持ISO15031-5的OBD2标准协议中所有项,则可以通过OBD接口读取出ECU中所有信息;若该车支持标准协议中部分项,则读取出支持项信息。

(标准协议附在下面,由北京金奔腾汽车科技公司提供。

)2、在ISO15031-5协议中,油耗不能读取,只能读取燃油液位输入 (读出油箱剩余油量与油箱容量的百分比)。

在车上通过燃油液位传感器实现对剩余油量检测。

OBD输出信息中跟里程相关只有:故障灯点亮后行驶的里程数、消除故障后行驶的里程数。

里程获取办法:1、虽然不能直接获得总里程,但可以总里程=安装前里程数+故障灯点亮后行驶的里程数+消除故障后行驶的里程数。

2、OBD2协议中无法直接读取仪表上数据,只有通过购买汽车厂家的OBD2协议的扩展,可获得汽车仪表系统数据获取,肯定能获取汽车总里程和车门窗信息。

由于成本太高,所以不现实。

3、在车轮处安装及车轮转过圈数的传感器4、还有通过GPS获取总里程。

3、在ISO15031-5的OBD协议中不支持读取和控制车门窗的状态信息。

4、读取信息是从ISO15031-5协议中分析出来:我们关注输出信息有:注:PID:OBD系统输出的每个参数都对应一个使用16进制表示的PID (ParameterIdentification),即参数标识。

PID$01 故障码清除之后的监测状态PID$05 发动机冷却液温度PID$0C 发动机转速可以读取实时转速或者故障时转速。

数据类型:data/4 rpm (0<data<1638375)PID$0D 车速可以读取实时车速或者故障时车速。

移远国网模块_EC20_硬件设计手册_V1.0

移远国网模块_EC20_硬件设计手册_V1.0

移远国网模块EC20硬件设计手册LTE模块版本:移远国网模块_EC20_硬件设计手册_V1.0日期:2015-10-29移远公司始终以为客户提供最及时、最全面的服务为宗旨,如需任何帮助,请随时联系我司上海总部,联系方式如下:上海移远通信技术有限公司上海市徐汇区田州路99号13幢501室 电话: +86 21 51086236邮箱: info@或联系我司当地办事处,详情请登录:/support/salesupport.aspx如需技术支持或反馈我司技术文档中的问题,可随时登陆如下网址:/support/techsupport.aspxOr Email: Support@前言移远公司提供该文档内容用以支持其客户的产品设计。

客户须按照文档中提供的规范,参数来设计其产品。

由于客户操作不当而造成的人身伤害或财产损失,本公司不承担任何责任。

在未声明前,移远公司有权对该文档规范进行更新。

版权申明本文档手册版权属于移远公司,任何人未经我公司允许复制转载该文档将承担法律责任。

版权所有 ©上海移远通信技术有限公司 2015,保留一切权利。

Copyright © Quectel Wireless Solutions Co., Ltd. 2015.Q u e c t e l Co n f i d e n t i a l文档历史修订记录1.0 2015-10-29 刘亮初始版本Q u e c t e lC o n f i de n ti a l目录文档历史 (2)目录 (3)表格索引 (5)图片索引 (6)1 引言 (7)1.1. 安全须知 (7)2综述 (8)2.1. 主要性能 (9)2.2. 功能框图 (11)2.3. 评估板 .................................................................................................................................... 11 3 应用接口 .. (12)3.1. 管脚分配 (13)3.2. 管脚描述 (14)3.3. 工作模式 (18)3.4. 电源设计 (19)3.4.1. 管脚介绍 (19)3.4.2. 减少电压跌落 (19)3.4.3. 供电参考电路 (20)3.4.4. 电源电压检测 (21)3.4.5. 输出电源VDD_EXT (21)3.5. 开关机 (22)3.5.1. PWRKEY 管脚开机 (22)3.5.2. 关机 (23)3.5.2.1. PWRKEY 管脚关机 (24)3.5.2.2. AT 命令关机 (24)3.6. 复位功能 (24)3.7. 串口 (25)3.7.1. 串口连接方式 (26)3.8. USIM 卡接口 (27)3.9. USB 接口 (29)3.10. ADC 模数转换 (30)3.11. 网络状态指示 (31)3.12. 工作状态指示 ......................................................................................................................... 32 4 天线接口 .. (33)4.1. 工作频段 (33)4.2. 射频参考电路 (34)4.3. 天线安装 (34)4.4. 推荐RF 焊接方式 .................................................................................................................. 35 5电气性能和可靠性 ................................................................................................................................ 36 Q u e c t e l Co n f i d e n t i a l5.1.绝对最大值 ............................................................................................................................. 36 5.2.电源额定值 ............................................................................................................................. 36 5.3.工作温度 ................................................................................................................................ 37 5.4.耗流 ........................................................................................................................................ 37 5.5.射频发射功率 ......................................................................................................................... 41 5.6.射频接收灵敏度 ..................................................................................................................... 41 5.7.静电防护 ................................................................................................................................ 42 6 机械尺寸 .. (44)6.1. 模块机械尺寸 (44)6.2. 推荐封装 (46)6.3. 模块俯视图 (48)6.4. 模块底视图 (48)7 存储和生产 (49)7.1. 存储 (49)7.2. 生产焊接 (50)7.3. 包装 (51)8 附录A 参考文档及术语缩写 (52)9 附录B GPRS 编码方案 (55)10 附录C GPRS 多时隙 ........................................................................................................................... 56 11附录D DEGE 调制和编码方式 (57)Qu e c t e l Co n f i d e n t i a l表格索引表1:EC20模块支持频段 (8)表2:模块主要性能 (9)表3:参数定义 (14)表4:管脚描述 (14)表5:工作模式 (18)表6:模块电源管脚和地管脚 (19)表7:VDD_EXT DC 特性 (21)表8:PWRKEY 管脚描述 (22)表9:RESET_N 管脚描述 (24)表10:主串口管脚描述 (26)表11:串口逻辑电平 (26)表12:USIM 卡接口管脚描述 (27)表13:USB 管脚描述 (29)表14:ADC 管脚描述 (30)表15:ADC 电气特性 (30)表16:NET_STATUS 管脚描述 (31)表17:NET_ STATUS 网络状态 (31)表18:STATUS 管脚描述 (32)表19:ANT_MAIN 管脚描述 (33)表20:模块工作频段 (33)表21:天线要求 (34)表22:绝对最大值 (36)表23:模块电源额定值 (36)表24:工作温度 (37)表25:EC20-C 模块耗流 (37)表26:EC20-CE 模块耗流 (39)表27:模块射频发射功率 (41)表28:EC20-C 模块射频接收灵敏度 (41)表29:EC20-CE 模块射频接收灵敏度 (42)表30:ESD 性能参数(温度:25 ºC ,湿度:45 %) (43)表31:参考文档 (52)表32:术语缩写 (52)表33:不同编码方案描述 (55)表34:不同等级的多时隙分配表 (56)表35:EDGE 调制和解码方式 .......................................................................................................................... 57 Q u e c t e l C o n f i d e n t i a l图片索引图1:功能框图 (11)图2:管脚分配图 (13)图3: 突发下的电源要求 (19)图4:模块供电电路 (20)图5:220V 转3.8V 参考框图 (20)图6:供电输入参考设计 (21)图7:开集驱动参考开机电路 (22)图8:低电平开机参考电路 (22)图9:开机时序图 (23)图10:关机时序图 (24)图11:RESET_N 复位参考电路 (25)图12:RESET_N 复位时序图 (25)图13:3.3V 电平匹配参考电路 (27)图14:6-PIN USIM 卡座参考电路图 (28)图15:USB 接口参考设计 (29)图16:ADC 参考电路 (31)图17:指示灯参考电路 (32)图18:指示连接参考电路 (32)图19:射频参考电路 (34)图20:天线连接器焊接形式 (35)图21:俯视及侧视尺寸图(单位:毫米) (44)图22:底视尺寸图(单位:毫米) (45)图23: 底部焊盘尺寸图 (底视) (45)图24:推荐封装(俯视图) (46)图25:推荐钢网图 (47)图26:模块俯视图 (48)图27:模块底视图 (48)图28:回流焊温度曲线 (50)图29:卷盘尺寸(单位:毫米) (51)Q u e c t e l Co n f i d e n t i a l1 引言本文档定义了EC20模块及其硬件接口规范,电气特性和机械规范,通过此文档帮助,结合我们应用手册和用户指导书,客户可以快速应用EC20模块于无线应用领域。

车联网OBD智能硬件双模蓝牙模组技术规格书

车联网OBD智能硬件双模蓝牙模组技术规格书

Bluetooth 4.0YXY-BT4030蓝牙模组技术规格书深圳速锐得科技有限公司©2013修订记录目录1.产品概述 (4)2.应用领域 (4)3.硬件尺寸图 (5)4.Pin脚定义 (6)5.电气特性 (7)6.功耗参数 (7)7.参考设计 (8)8.应用说明 (9)1.产品概述YXY-BT4030蓝牙模组是支持蓝牙4.0标准协议的双模(Dual-Mode)蓝牙模组,同时支持BT3.0 Classic模式以及BT4.0 BLE模式。

该模组基于蓝牙领先芯片供应商Broadcom公司的HCI芯片与MCU芯片架构,遵循BT4.0蓝牙规范,具有工业级设计、传输距离远、数据稳定、操作简单以及技术领先优势,可广泛用于同时支持Android与iOS操作系统的应用。

◆ 支持标准BT3.0 + EDR;◆ 支持标准BT4.0 BLE协议;◆ 支持SPP协议;◆ 支持UART、I2C、SPI接口;◆ 支持低功耗模式;◆ 支持蓝牙Class1与Class2模式;◆ 支持多路GPIO复用;◆ 工业级设计;◆ 数据加密;◆ 内置PCB天线;◆ 输入电压 3.0V;◆ 尺寸27mm x 13mm x 2mm2.应用领域YXY-BT4030蓝牙模组支持蓝牙SPP标准协议,可以同所有具备蓝牙功能的Android手机、笔记本、电脑以及蓝牙主模块配对连接,从而双向收发数据;同时其支持最新蓝牙标准BT4.0 BLE协议,可以同支持BLE的iOS设备配对连接,而不需要MFI认证及加密芯片,不需要额外开发包及授权费用,不需要iOS设备越狱,支持后台程序常驻运行。

◆ 手机、计算机周边设备;◆ 数据采集、传感器设备;◆ 医疗设备无线数据传输;◆ 车载仪器无线数据传输;◆ 便携打印机蓝牙传输;◆ 无线遥控器、玩具遥控;◆ 无线游戏手柄;……3.硬件尺寸图图1. 硬件尺寸图2. PIN脚分布4.Pin脚定义Table1: Pin Function Descriptions5.电气特性Table3: Electrical characteristics6.功耗参数Table4: Power consumptionNote: Module never enters deep sleep, because we need keep it discoverable and connectable.7.参考设计图3. 应用电路参考设计8.应用说明YXY-BT4030蓝牙模组支持软件定制开发,根据客户的要求进行参数设置、更改指示灯位置以及方案开发等。

车云网OBD模块硬件设计手册

车云网OBD模块硬件设计手册

CC310_硬件设计手册_V1.00文档名称: 版本: 日期: 状态: 文档控制号:IVO core unitCC310 硬件设计手册 1.00 2014‐06‐08 发布 CC310_硬件设计手册_V1.00前言感谢使用 OBDIICLOUD 提供的 CC310 MINIOBD 模块。

本产品具有 AT 命 令接口,可以提供 OBD 数据采集、汽车防盗状态获取等业务。

使用前请仔细阅 读用户手册,您将领略其完善的功能和简洁的操作方法。

此模块主要用于汽车 OBD 数据采集以及汽车故障诊断,本公司不承担由于 用户不正常操作造成的财产损失或者人身伤害责任。

请用户按照手册中的技术规 格和参考设计开发相应的产品。

同时注意使用车载电子产品应该关注的一般安全 事项。

在未声明之前,本公司有权根据技术发展的需要对本手册内容进行修改。

版权声明 本手册版权属于 OBDIICLOUD,任何人未经我公司书面同意复制、引用或 者修改本手册都将承担法律责任Copyright © Shenzhen Obdiicloud Ltd. 2013。

CC310_硬件设计手册_V1.001 / 131. 绪论 2. 模块综述 2.1. 模块主要特性 2.2. 工作模式 2.3. 模块功能框图 3. 模块封装 3.1. 引脚分布图 3.2. 模块引脚描述 3.3. 机械尺寸 4. 接口应用 4.1. 供电 4.2 功能模式 4.3 串口 4.4 SPI接口 4.5 CAN线接口 4.6. K线接口 4.7.复位及唤醒 4.8 LED接口 5. PCB布局 5.1 模块PIN分布 5.2 PCB布局原则 5.2.1 电源 5.2.2 OBD总线 5.3 推荐PCB布局 6. 电气,可靠性和汽车电器特性 6.1 绝对最大值 6.2 工作温度 6.3 数字接口特性 6.4 OBD接口特性 6.5 耗流(VBAT=12V) 6.6 静电防护 7. 生产 7.1. 模块的顶视图和底视图 7.2. 推荐焊接炉温曲线图目录IVO core unitCC310_硬件设计手册_V1.002 / 13版本历史日期版本2014-06-081.00IVO core unit变更描述 初版作者 StrongCC310_硬件设计手册_V1.003 / 13IVO core unit1. 绪论本文档描述了模块的硬件应用接口,包括相关应用场合的电路连接以及OBD 接口等。

EST527_miniS车联网OBD模块数据手册V5.1

EST527_miniS车联网OBD模块数据手册V5.1

4
CANL
CAN 低
Input OBD-16 第 14 脚
5
CANH
CAN 高
Input OBD-16 第 6 脚
6
GND

Power OBD-16 第 4、5 脚,与车身共地
7
TxD
串口发
Output 5V CMOS 电平
8
RxD
串口收
Input 5V CMOS 电平
9
RESET
复位
Input 高电平复位,不用请悬空(内部 10k 下拉)
3 of 15
THREAD tech co., ltd. 8. 模块接口说明
EST527-miniS
车联网 OBD 智能信息模块
管脚 1
网络名
描述
VBAT 汽车电瓶正
信号 类型
Input
OBD-16 第 16 脚
ቤተ መጻሕፍቲ ባይዱ说明
2
ISO_L
L线
Input OBD-16 第 15 脚
3
ISO_K
K线
Input OBD-16 第 7 脚
10 RUN_INT 点火唤醒
Output
模块休眠后,可随车辆点火唤醒,唤醒后输 出 200ms 低电平脉冲一次(模块内部开漏)
11 STATUS OBD 状态 Output ECU 连接成功输出低电平(模块内部开漏)
12
5V
电源
Power DC 5V@100mA
Table 3. 模块接口说明列表
9. 模块休眠功耗及自动启停识别
EST527-miniS
车联网 OBD 智能信息模块 Rev.5.1 — 24 March 2015

ORG1 308 GPS模块产品数据手册说明书

ORG1 308 GPS模块产品数据手册说明书

Fully Integrated GPS Module ORG1308 Data SheetORG1308 GPS receiver module of ORG13XX Series has been designed to address applications where placement flexibility is very important along with stand alone operation, high level of integration and low power consumption.The ORG13XX series are OriginGPS smallest, autonomous, fully featured GPS receivers, optimized for stand alone operation.Featuring OriginGPS Noise-Free Zone System TM technology the ORG13XX series offer the ultimate in high sensitivity GPS performance in small size.The ORG13XX series modules incorporate miniature multi-channel receiver that continuously tracks all satellites in view and provides accurate positioning data in industr y’s standard NMEA-0183 format.Internal ARM CPU core and sophisticated firmware keep GPS payload off the host and allow integration in low resources embedded solutions.The ORG13XX series modules are complete SiP (System-in-Package) featuring advanced miniature packaging technology and an ultra small footprint designed to commit unique integration features for high volume, low cost and low power applications.OriginGPS case study of the specifications of key components through involvement in R&D effort of major vendors derived in highest performance in industry’s smallest footprint parts available. These components placement using OriginGPS NFZ TM technology created hard-to-achieve laboratory performance in heavy-duty environment.OriginGPS has revised and enhanced the architecture of classic GPS receivers.Carefully selected key components including TCXO and LNA resulted in faster TTFF and operation stability under rapid environmental changes.2.1. Features▪Fully integrated multi channel GPS receiver▪Stand alone operation▪50Ω passive antenna input through miniature coaxial connector▪Noise Free Zone System TM Technology▪SiRFstarIII GSC3LTf chipset▪L1 frequency, C/A code▪20 channels searching, 12 channels parallel tracking▪Acquisition sensitivity: -157dBm▪Tracking sensitivity: -159dBm▪Fast TTFF: <40s (typical) under Cold Start conditions▪Rapid TTFF by aiding information upload capability▪Multipath mitigation▪Indoor tracking▪SBAS (WAAS, MSAS, EGNOS) support▪Multi-Mode Assisted GPS (A-GPS) support1: Autonomous, MS Based, MS Assisted▪Extended Ephemeris for very fast TTFFs support through SiRF InstantFix2▪Automatic and user programmable power saving scenarios▪Low power consumption: 100mW during acquisition▪ARM7 baseband CPU▪Selectable UART or SPI hardware interface▪Programmable UART protocol and message rate▪Selectable NMEA-0183 or SiRF Binary communication standards▪Single operating voltage: 3.3V to 5.5V▪Small footprint: 17mm x 17mm▪Surface Mount Device (SMD)▪Optimized for automatic pick–n-place and reflow equipment▪Industrial operating temperature range: -400 to 850C▪Pb-Free RoHS compliantNotes:1. SiRFLoc® Client (SLC) LT A-GPS Multimode Location Engine™ for GSM/3GPP or for CDMA IS-801A required2. SiRF InstantFix service required2.2. ArchitectureFigure 2-1: ORG1308 architecture▪Antenna inputSignals at 1575.42 MHz from the GPS satellites are being delivered from receiving antenna.▪LNA (Low Noise Amplifier)The LNA amplifies the GPS signal to meet GSC3LT RF front-end signal chain input threshold.Noise figure optimized design was implemented to provide maximum sensitivity.▪Band-pass SAW FilterBand-pass SAW filter eliminates inter-modulated out-of-band signals that may corrupt receiver performance.▪TCXO (Temperature Compensated Crystal Oscillator)This highly stable 16.369 MHz oscillator controls the down conversion process in RF block.Highest characteristics of this component are key factors in fast TTFF.▪UART BuffersUART interface is 1.8V/2.5V/3.3V compatible. Voltage level is defined externally by host.GSC3LTf ICFigure 2-2: GSC3LT functional block diagram SiRF GSC3LT GPS Navigation Engine includes the following features: ∙RF Receiver∙ARM7TDMI-S core∙SiRFstarIII-LT GPS DSP core∙ARM RAM with cache∙DSP RAM∙Interrupt Controller∙RTC Block∙Watchdog Timer∙Battery Backed RAM∙ 4 Mbit Program ROM∙UART Block∙SPI Block∙ 4 Integrated Voltage Regulators∙POR (Power-On-Reset) Circuitry3. Electrical Specifications3.1. Absolute Maximum RatingsAbsolute Maximum Ratings are stress ratings only.Stresses exceeding Absolute Maximum Ratings may damage the device.Table 3-1: Absolute maximum ratings3.2. Recommended Operating ConditionsFunctional operation above the Recommended Operating Conditions is not implied.Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.Table 3-2: Operating conditionsNote:1. Operation below -200C to -400C and above +700C to +850C is accepted, but TTFF may increase4. Performance4.1. Acquisition timesTTFF (Time To First Fix) – is the period of time from GPS power-up till position estimation. Hot StartA hot start results from software reset after a period of continuous navigation or a return from a short idle period that was preceded by a period of continuous navigation.In this state, all of the critical data (position, velocity, time, and satellite ephemeris) is valid to the specified accuracy and available in SRAM.Warm StartA warm start typically results from user-supplied position and time initialization data or continuous RTC operation with an accurate last known position available in memory. In this state, position and time data are present and valid, but ephemeris data validity has expired. Cold StartA cold start acquisition results when either position or time data is unknown. Almanac information is used to identify previously healthy satellites.Aided StartAiding is a method of effectively reducing the TTFF by making every start Hot or Warm.Table 4-1: Acquisition times4.2. SensitivityTable 4-3: Received signal strengthNote:1. Averaging of 5 SV’s with highest C/N0 @ -130dBm, HDOP <1.52. With 12mm x 12 mm x 2.6mm OriginGPS Antenna assembly4.4. Power ConsumptionTable 4-4: Power consumption 4.5. AccuracyTable 4-5: Accuracy 4.6. Dynamic Constrains11. Standard dynamic constrains according to regulatory limitations5. Power ManagementThe ORG13XX series modules have three main operating modes which are controlled by internal state-machine.These modes provide different levels of power and performance.5.1. Normal ModeIn Normal Mode the ORG13XX series are fully powered and will automatically acquire and trackGPS satellites.5.2. Power Saving ModesAdaptive Trickle Power TMAdaptive Trickle Power (ATP) is best suited for applications that require navigation solutions at afixed rate as well as low power consumption and an ability to track weak signals.In ATP mode the ORG13XX series module is intelligently cycled between three states to optimizelow power operation:Full Power StateThis is the initial state of the ORG13XX series module.The module stays in full power until a position solution is made and estimated to be reliable.During the acquisition mode, processing is more intense, thus consuming more power.CPU Only StateThis is the state when the RF and DSP sections are partially powered off.The state is entered when the satellites measurements have been acquired but thenavigation solution still needs to be computed.Standby StateThis is the state when the RF and DSP sections are completely powered off and baseband clock is stopped.Figure 5-1: ATP timingPush-to-Fix TMPush-to-Fix (PTF) is best suited for applications that require infrequent navigation solutions, optimizing battery life time.In PTF mode the ORG13XX series module is mostly in Hibernate Mode, waked up for Ephemeris and Almanac refresh in fixed periods of time. The PTF period is 30 minutes by default but can be anywhere between 10 seconds and 2 hours. When the PTF mode is enabled the receiver well stay on full power until the good navigation solution is computed.Figure 5-2: PTF timingHibernate StateIn this state the RF, DSP and baseband sections are completely powered off leaving only the RTC and Battery-backed RAM running. When the application needs a position report it can toggle the ON_OFF pin to wake up the module. In this case, a new PTF cycle with default settings begins.6. Interface6.1. Pin AssignmentTable 6-1: ORG13XX series pin-out6.2. ConnectivityPower supplyThe ORG13XX series module requires only one power supply V CC, which can be supplied directly from a battery since the module has internal regulators.It is recommended to keep the power supply on all the time in order to maintain the non-volatile RTC and RAM active for fastest possible TTFF. When the V CC is powered off settings are reset to factory default and the receiver performs Cold Start on next power up.Power supply current varies according to the processor load and satellite acquisition.V CC range is 3.3 to 5.5V DC.Typical I CC current is 30mA during acquisition. Peak I CC current is 50 mA.Typical I CC current in Hibernate state is 30µA.Voltage ripple below 300mV PP allowed for frequency under 10KHz.Voltage ripple below 30mV PP allowed for frequency between 10KHz and 100KHz.Voltage ripple below 10mV PP allowed for frequency between 100KHz and 1MHz.Voltage ripple below 3mV PP allowed for frequency above 1MHz.High voltage ripple may compromise the ORG13XX series module performance.In case of powering the ORG13XX from switching mode (DC-DC) power source carefully follow manufacturer’s application note and apply passive low pass filtering.GroundSingle Ground pin should be connected to main Ground with shortest possible trace or via.ON OFF Control InputThe ON_OFF control input can be used to switch the receiver between Normal or Hibernatemodes and also to generate interrupt in Push-to-Fix operation.The ON_OFF interrupt is generated by a low-high-low toggle, which should be longer than 62µs and less than 1s (100ms pulse length recommended).ON_OFF interrupts with less than 1 sec intervals are not recommended. Multiple switch bounce pulses are recommended to be filtered out.Input level is 3.3V compatible.Figure 6-1: ON_OFF timingnRESET InputThe Power-on-Reset (POR) is generated internally in the ORG13XX series module.Additionally, manual reset option is available through nRESET pin.Resetting the ORG13XX clears the RTC block and configuration settings become default.nRESET pin is active low and has internal pull-up resistor.nRESET signal should be applied for at least 1µs.COMM_SELThe ORG13XX is able to communicate via UART or SPI interface.UART is default communication interface.To select SPI communication 0Ω resistor to system Ground should be applied on this pin.Do not connect if SPI communication is not used.UARTThe device supports full duplex 8-N-1 UART communication without flow control.The default protocol is NMEA.The default configuration for baud rates and respective protocols can be changed by commands via NMEA or SiRF binary protocols.I/O levels in the serial port are CMOS 1.8V/2.5V/3.3V compatible.I/O levels are defined by applying appropriate voltage to V IO-EXT pin.Do not connect if UART communication is not used.SPIThe Host Interface SPI is a slave mode SPI that can be used as an alternative to the UART interface. The four primary pins are SDI, SDO, nSE, SCK.I/O levels are 1.8V compatible.Do not connect if SPI communication is not used.SCK clock frequency must not be higher than 48fo/7 (= 7 MHz approximately).The primary Host Interface SPI features are:∙TX and RX each have independent 1024 byte FIFO buffers.∙RX and TX have independent, software specified two byte idle patterns.∙TX FIFO is disabled when empty and transmits its idle pattern until re-enabled.∙RX FIFO detects a software specified number of idle pattern repeats and then disables FIFO input until the idle pattern is broken.∙FIFO buffers can generate an interrupt at any fill level.∙SPI detects synchronization errors and can be reset by software.The HSPI performs bit-by-bit transmitting and receiving at the same time whenever nSE is asserted and SCK is active.Receive operations do not require an enable.When the system is first turned on, the master in the host system is able to send a message before software has set up the receiver's idle pattern filter. At the system level, protocols are established to specify how the host platform must verify that the GPS system and host SPI are prepared for operation.In general, the GSC3LT loads a ‘power on’ message to the TX_FIFO to inform the host that operations can begin. The protocol specifies the delay and repeats intervals for host query of the slave SPI for this message. This limits the receive byte volume until idle pattern filters are established.On the receive side, the host is expected to transmit idle pattern when it is querying the transmit buffer, unless it has traffic for the GSC3LT. In this way, the volume is discarded, bytes are kept nearly as low as in the UART application because the hardware does not place most idle pattern bytes in the RX FIFO. Most messaging can be serviced with polling.The FIFO threshold can be placed to detect large messages requiring interrupt driven servicing. On the transmit side, the intent is to fill the FIFO only when it is disabled and empty. In this condition, the driver software loads as many queued up messages as can fit in the FIFO. Then the FIFO is enabled. The host is required to poll messages until idle pattern bytes are detected. At this point the FIFO is empty and disabled, allowing the driver to once again respond to an empty FIFO interrupt and load the FIFO with messages, if any are queued up in buffers.Figure 6-2: SPI timingECLK InputThe ECLK is available optionally for external clock input using SiRFLoc client firmware for A-GPS frequency aiding. Input level is CMOS 1.8V compatible. Pull low with 10kΩ when not used.Do not connect when using standard firmware version.TSYNC InputOptional input TSYNC input is intended for external time aiding using SiRFLoc client firmware for A-GPS. Input level is CMOS 1.8V compatible. Pull low with 10kΩ when not used.Do not connect when using standard firmware version.RF InputJ1 miniature coaxial connector is unbalanced RF input matched for 50Ω passive microstrip patch antenna.1PPS OutputThe pulse-per-second (PPS) output provides a pulse signal for timing purposes.Pulse length (high state) is about 1µs synchronized to full UTC second.I/O level is CMOS 1.8V compatible.Figure 6-3: 1PPSGPIO1 OutputGPIO1 is available as a valid fix indicator. Prior navigation the output stays at high state. During valid fix the output sends 100ms high state pulses at 1Hz rate. The I/O level is CMOS 1.8V compatible.GPIO2 OutputGPIO2 is available as a valid fix indicator. Prior navigation the output stays at low state. During valid fix the output sends 100ms high state pulses at 1Hz rate. The I/O level is CMOS 1.8V compatible.Figure 6-4: GPIO2 output period Figure 6-5: GPIO2 output6.3. Typical Application CircuitUART Communication100pFSDO GND110GND211GND312GND413GND51PPS_GPSTX_GPSRX_GPSnRESET ON_OFF GPIO2_GPSFigure 6-6: UART communication circuitSPI CommunicationnRESET ON_OFFGPIO2_GPS1PPS_GPSSPI_DO SPI_DISPI_CLK SPI_CS SDO GND110GND211GND312GND413GND5Figure 6-7: SPI communication circuit6.4. Recommended Land PatternGround pad at the middle should be connected to main Ground plane by multiple vias.Ground pad at the middle should be solder masked.7. Software FunctionsThe ORG13XX series modules support NMEA-0183 and SiRF Binary protocols.7.1. NMEANMEA Output MessagesNMEA Input Messages7.2. SiRF BinarySiRF Binary Output MessagesSiRF Binary Input Messages8. Handling Information8.1. Product Packaging and DeliveryPlastic ReelFigure 8-1: CarrierTable 8-1: Carrier dimensions [mm]Carrier material: Conductive PolystyreneFigure 8-2: Module positionPosition of Pin1Figure 8-3: ReelTable 8-2: Reel dimensions [mm]Reel material: Antistatic PlasticEach reel contains 200 or 500 modules.TubeFigure 8-4: TubeTube length: 515mmTube material: Antistatic PlasticEach tube contains up to 27 modules.18.425.138.2. Moisture SensitivityThe devices are moisture sensitive at MSL 3 according to standard IPC/JEDEC J-STD-033B.The recommended drying process for samples and bulk components is to be done at 125°C for 48 hours.8.3. AssemblyThe ORG13XX series module support automatic assembly and reflow soldering processes on the component side of the motherboard PCB according to standard IPC/JEDEC J-STD-020D for LGA SMD. Suggested solder paste stencil is 5 mil to ensure sufficient solder volume.Figure 8-4: Recommended soldering profileSuggested peak reflow temperature is 250°C for 10 sec. for Pb-Free solder paste.Absolute Maximum reflow temperature is 260°C for 10 sec.8.4. ReworkIf localized heating is required to rework or repair the ORG13XX series module, precautionary methods are required to avoid exposure to solder reflow temperatures that can result inpermanent damage to the device.8.5. ESD SensitivityThe ORG13XX series modules are ESD sensitive devices and should be handled with care.8.6. CompliancesThe ORG13XX series modules comply with the following standards:▪Pb-Free/RoHS (Directive 2002/95/EC on the restriction of the use of certain hazardous substances in electrical and electronic equipment)▪ISO 9001:2000 accredited manufacturing facility8.7. Safety InformationImproper handling and use can cause permanent damage to the device.There is also the possible risk of personal injury from mechanical trauma or shocking hazard. 8.8. Disposal InformationThe product should not be treated as household waste.For more detailed information about recycling electronic components, please contact your local waste management authority.9. Mechanical Specifications▪ The ORG13XX series modules have advanced miniature packaging and a LGA footprint. ▪ The ORG13XX series modules PCB footprint size is 17mm x 17mm▪ The ORG1308 module is surface mount device packaged on a miniature printed circuit board with a metallic RF enclosure featuring miniature RF connector.▪ There are 22 surface mount connection pads with a base metal of copper and an Electroless Nickel / Immersion Gold (ENIG) finish.▪ The ORG13XX series modules have been designed for automated pick and place assembly and reflow soldering processes.9.1. ORG1308TOP VIEWBOTTOM VIEWSIDE VIEW All dimensions are in millimetersFigure 9-1: ORG1308 mechanical drawingTable 9-1: ORG1308 mechanical information9.2. PlugMating plug for J1 connector is Hirose W.FL or Sunridge MCD series.Figure 9-2: J1 mating plug mechanical drawing9.3. Antenna assemblyFigure 9-3: Antenna assembly mechanical drawing10. Ordering InformationORG1308 - R01 – TRXXX XXPackagingTR = Tape & ReelUAR = Demo BoardProgram configuration (table 10-1)Table 10-1: Program configuration。

ET产品手册V

ET产品手册V

文档更新记录大唐移动ECT7310终端协议一致性测试仪---TD-LTE领域终端协议一致性测试全面解决方案1产品简介ECT7310是大唐移动推出的最新一代终端协议一致性测试仪表,全面支持终端TD-LTE 协议一致性测试核心规范。

其射频和基带部分采用大唐移动自主研发的最新一代通用仪表平台,ECT7310继承了大唐移动在TD-SCDMA终端协议一致性测试领域的经验,基于ECT7310,大唐移动可以提供TD-LTE和TD-SCDAM的互操作协议一致性测试平台以及GSM互操作协议一致性解决方案,从而覆盖TDD领域终端协议一致性测试,具备极高的可扩展性ECT7310可应用于认证实验室的认证测试,运营商的移动终端入库和集采测试,移动终端、芯片厂商的产品开发和系统测试中,能有效的帮助用户提高移动终端与无线通信网络之间互联互通的一致性测试能力。

2主要特点●完全自研的通用软/硬件平台,具备良好的前向兼容性和后向扩展性ECT7310由TD-SCDMA终端协议一致性测试仪平滑演进而成,前向可扩展兼容TD-SCDMA 模块,后向可扩展兼容LTE-Advanced测试,在满足终端LTE协议测试需求的基础上充分保护客户的现有投资,提高仪表的使用效率。

●全面支持3GPP R9 2009-12规范中规定的TD-LTE终端协议一致性测试用例测试用例严格按照规范进行设计,并且能够满足运营商、工信部认证标准及终端选型等不同领域的使用需求,是现有TD-LTE终端协议一致性测试领域支持用例数量最多且最全面的仪表,所有用例均提交GCF认证通过。

●采用业界通用的一致性语言TTCN3开发测试例脚本,高效率、低成本作为TD-LTE第一款以TTCN方式开发的协议测试仪表,ECT7310的脚本构架完全采用TTCN3方式进行设计,拥有完整的L1,L2协议栈,用例执行过程严格满足TS36.523的时延要求,具备权威性和灵活性,并可根据3GPP演进及客户的需求快速完成用例扩充,成本更低,效率更好,方式更快捷。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

EST13
Rev.1.0 — 26 May 2014 Product data sheet 1.产品概述
EST13,为一款汽车OBD智能零功耗控制模块。

在车联网OBD应用中,常常为了功耗问题而头疼,EST13完美地解决了这一问题。

2.产品特征
⏹汽车熄火后(延时150秒)自动切断输出
⏹汽车点火后,自动开启输出
⏹第一次上电,若汽车未启动,则延时150秒切断输出,若汽车已启动,
则开启输出
⏹模块功耗uA级别
⏹高稳定性
⏹高可靠性
3.产品应用
⏹车联网OBD终端设备
4.模块参数
1 输入电压
2 36 V
2 输出电流0 4 A
3 模块工作电流240 400 uA
4 工作温度-20 70 ℃
5 存储温度-40 85 ℃
6 ESD耐压-8 +8 KV
7 模块尺寸10 * 10 mm
Table 2. 模块参数列表
5.模块接口定义
Fig 1. 模块接口定义图
6.模块接口说明
1 INPUT 输入直接连接汽车OBD接口16脚
2 GND 地
3 OUTPUT 输出连接后端终端设备电源输入7.加入我们
深圳速锐得科技有限公司
8.内容索引
1.产品概述 (1)
2.产品特征 (1)
3.产品应用 (1)
4.模块参数 (1)
5.模块接口定义 (2)
6.模块接口说明 (3)
7.加入我们.......... 错误!未定义书签。

8.内容索引 (3)。

相关文档
最新文档