2019高考数学二轮复习 压轴提升练(一)文

合集下载

2019年全国卷Ⅱ高考压轴卷数学文科(含解析)

2019年全国卷Ⅱ高考压轴卷数学文科(含解析)

2019全国卷Ⅱ高考压轴卷数学文科一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知复数z 满足11i 12z z -=+,则复数z 在复平面内对应点在( ) A .第一象限B .第二象限C .第三象限D .第四象限2.已知集合{}06M x x =≤≤, {}232x N x =≤,则M N ⋃=( ) A. (],6-∞ B. (],5-∞ C. []0,6 D. []0,53.已知向量2=a ,1=b ,()22⋅-=a a b ,则a 与b 的夹角为( )A .30︒B .60︒C .90︒D .150︒4.《莱因德纸草书》是世界上最古老的数学著作之一,书中有这样一道题目:把100个面包分给5个人,使每个人所得面包成等差数列,且较大的三份之和的等于较小的两份之和,问最小的一份为( )A.65 B.611 C. 35 D. 310 5.若n 是2和8的等比中项,则圆锥曲线221y x n+=的离心率是( )A B C D 【答案】D6. 《九章算术》中,将底面是直角三角形的直三棱柱称之为“堑堵”,已知某“堑堵”的三视图如图所示,则该“堑堵”的表面积为( )A .4B .6+C .4+D .27.在ABC ∆中,内角,,A B C 所对的边分别为,,a b c ,若sin 1sin 2B C =, ()2213cos 2a b B BA BC -=⋅,则角C =( )A.6π B. 3π C. 2π D. 3π或2π8. 如图为函数()y f x =的图象,则该函数可能为( )A .sin xy x=B .cos xy x=C .sin ||xy x =D .|sin |x y x=9.执行如图所示程序框图,若输出的S 值为20-,在条件框内应填写( )A .3?i >B .4?i <C .4?i >D .5?i <10.已知抛物线()220y px p =>的焦点为F ,准线l 与x 轴交于点A ,点P 在抛物线上,点P 到准线l 的距离为d ,点O 关于准线l 的对称点为点B , BP 交y 轴于点M ,若BP a BM =, 23OM d =,则实数a 的值是( )A.34 B. 12 C. 23 D. 3211.已知不等式组20240x y x y y x y m-≥+≤≥⎧⎪+⎨≤⎪⎪⎪⎩表示的平面区域为M ,若m 是整数,且平面区域M 内的整点(),x y 恰有3个(其中整点是指横、纵坐标都是整数的点),则m 的值是( )A. 1B. 2C. 3D. 4 12.已知函数()f x 的导函数为()f x ',且满足()32123f x x ax bx =+++, ()()24f x f x +='-',若函数()6ln 2f x x x ≥+恒成立,则实数b 的取值范围为( )A. [)64ln3,++∞B. [)5ln5,++∞C. [)66ln6,++∞D. [)4ln2,++∞ 二、填空题:本大题共4小题,每小题5分.13.某学校选修网球课程的学生中,高一、高二、高三年级分别有50名、40名、40名.现用分层抽样的方法在这130名学生中抽取一个样本,已知在高二年级学生中抽取了8名,则在高一年级学生中应抽取的人数为_______.14.设P 为曲线2:23C y x x =++上的点,且曲线C 在点P 处切线倾斜角的取值范围为0,4⎡⎤⎢⎥⎣⎦π,则点P 横坐标的取值范围为 .15.已知正四棱锥P ABCD -内接于半径为94的球O 中(且球心O 在该棱锥内部),底面ABCD 的边长为2,则点A 到平面PBC 的距离是__________.16.若双曲线()222210,0x y a b a b-=>>上存在一点P 满足以OP 为边长的正三角形的内切圆的面积等于236c π(其中O 为坐标原点, c 为双曲线的半焦距),则双曲线的离心率的取值范围是 .三、解答题:解答应写出文字说明、证明过程或演算步骤.17.(本小满分题12分)设数列{}n a 的前n 项和为n S ,1110,910n n a a S +==+. (1)求证:{lg }n a 是等差数列; (2)设n T 是数列13{}(lg )(lg )n n a a +的前n 项和,求使21(5)4n T m m >-对所有的*n N ∈都成立的最大正整数m 的值.18.(本小题满分12分)进入11月份,香港大学自主招生开始报名,“五校联盟”统一对五校高三学生进行综合素质测试,在所有参加测试的学生中随机抽取了部分学生的成绩,得到如图所示的成绩频率分布直方图:(1)估计五校学生综合素质成绩的平均值;(2)某校决定从本校综合素质成绩排名前6名同学中,推荐3人参加自主招生考试,若已知6名同学中有4名理科生,2名文科生,试求这2人中含文科生的概率.19.(本题满分12分)如图,在三棱锥P ADE -中, 4AD =, AP = AP ⊥底面ADE ,以AD 为直径的圆经过点E .(1)求证: DE ⊥平面PAE ;(2)若60DAE ∠=︒,过直线AD 作三棱锥P ADE -的截面ADF 交PE 于点F ,且45FAE ∠=︒,求截面ADF 分三棱锥P ADE -所成的两部分的体积之比.20. (本小题满分12分)已知椭圆C 的两个焦点分别为F 1(-10,0),F 2(10,0),且椭圆C 过点P (3,2). (1)求椭圆C 的标准方程;(2)与直线OP 平行的直线交椭圆C 于A ,B 两点,求△P AB 面积的最大值.21. (本小题满分12分)已知函数()e x f x ax =-(a 为常数)的图象与y 轴交于点A ,曲线()y f x =在点A 处的切线斜率为2-. (1)求a 的值及函数()f x 的单调区间;(2)设()231g x x x =-+,证明:当0x >时,()()f x g x >恒成立. 22.(本小题满分10分)【选修4-4:坐标系与参数方程】在平面直角坐标系xOy 中,以O 为极点,x 轴的非负半轴为极轴建立极坐标系.已知曲线M 的参数方程为1cos 1sin x y ϕϕ=+=+⎧⎨⎩(ϕ为参数),过原点O 且倾斜角为α的直线l 交M 于A 、B 两点.(1)求l 和M 的极坐标方程;(2)当4π0,α⎛⎤∈ ⎥⎝⎦时,求OA OB +的取值范围.23.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()121f x x x =++-. (1)解不等式()2f x x ≤+;(2)若()3231g x x m x =-+-,对1x ∀∈R ,2x ∃∈R ,使()()12f x g x =成立,求实数m 的取值范围.2019全国卷Ⅱ高考压轴卷数学文科答案一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.【答案】D【解析】设复数i z a b =+,(),a b ∈R ,则i z a b =-,因为11i 12z z -=+,所以()()211i z z -=-,所以2(1)2i a b --()1i a b =+-,所以可得2221a b b a -=-⎧⎨-=+⎩,解得5343a b ⎧=⎪⎪⎨⎪=-⎪⎩,所以54i 33z =-,所以复数z 在复平面内对应点54,33⎛⎫-⎪⎝⎭在第四象限上.故选D . 2【答案】A【解析】 因为{}06M x x =≤≤, {}232{|5}x N x x x =≤=≤, 所以{|6}M N x x ⋃=≤,故选A. 3.【答案】B【解析】∵()222422⋅-=-⋅=-⋅=a a b a a b a b ,∴1⋅=a b .设a 与b 的夹角为θ,则1cos 2θ⋅==a b a b ,又0180θ︒≤≤︒,∴60θ=︒,即a 与b 的夹角为60︒.4.【答案】C【解析】分析:根据已知条件,设等差数列的公差为,将已知条件转化为等式,求出等差数列的首项和公差,再得出答案。

2019高考数学二轮复习第一篇微型专题微专题07等差数列与等比数列练习理2

2019高考数学二轮复习第一篇微型专题微专题07等差数列与等比数列练习理2

所以 4S2=3S1+S3,
4a1(1 - q2)
a1(1 - q3)
即 1 - q =3a1+ 1 - q ,
解得 q=3,故 an=3n-1.
答案▶ 3n-1
在等差(比)数列问题中,最基本的量是首项 a1 和公差 d(公比 q),在解题时往往根据已知 条件建立关于这两个量的方程组,从而求出这两个量,那么其他问题也就会迎刃而解,这就是 解决等差(比)数列问题的基本量的方法,其中蕴含着方程思想的运用.在应用等比数列前 n 项 和公式时,务必注意公比 q 的取值范围.
记 Sn 为等比数列{an}的前 n 项和,已知 a3=-8,S3=-6.
(1)求数列{an}的通项公式; (2)求 Sn,并证明对任意的 n∈N*,Sn+2,Sn,Sn+1 成等差数列.
解析▶ (1)设数列{an}的公比为 q,
{ { 由题设可得
a1(1
a1q2 = + q + q2)
8, =
-
1 1 第 1 行
1 2 1 第 2 行
1 3 3 1 第 3 行
1 4 6 4 1 第 4 行

解析▶ 1+1=2,1+2+1=4,1+3+3+1=8,1+4+6+4+1=16,则第 n 行的 n+1 个数的和为 2n.
答案▶ 2n
答案▶ B
111
2.在等比数列{an}中,an>0,a1,a2,a2+1 成等差数列,且 a1+2a2=2,则数列{an}的通项公式 为 .
( ) 1 1
2
解析▶ 设等比数列{an}的公比为 q,由 an>0 知 q>0,由题意得a1+ a2 + 1 =a2,即 a1-a2=a1a2,

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习 专题1 高考客观题常考知识 第3讲 不等式与线性规划 理

2019-2020年高考数学二轮复习专题1 高考客观题常考知识第3讲不等式与线性规划理不等式的解法1.设f(x)=则不等式f(x)<2的解集为( B )(A)(,+∞) (B)(-∞,1)∪[2,)(C)(1,2]∪(,+∞) (D)(1,)解析:原不等式等价于或即或解得2≤x<或x<1.故选B.2.(xx山东卷)若函数f(x)=是奇函数,则使f(x)>3成立的x的取值范围为( C )(A)(-∞,-1) (B)(-1,0)(C)(0,1) (D)(1,+∞)解析:f(-x)==,由f(-x)=-f(x)得=-,即1-a·2x=-2x+a,化简得a·(1+2x)=1+2x,所以a=1.f(x)=.由f(x)>3,得0<x<1,故选C.3.(xx陕西西安市模拟)关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),且x2-x1=12,则实数a的值等于.解析:因为关于x的不等式x2-2ax-3a2<0(a<0)的解集为(x1,x2),所以x1+x2=2a,x1·x2=-3a2,又x2-x1=12,(x2-x1)2=(x2+x1)2-4x1·x2,所以144=4a2+12a2=16a2,解得a=±3,因为a<0,所以a=-3.答案:-3简单的线性规划问题4.(xx北京卷)若x,y满足,则z=x+2y的最大值为( D )(A)0 (B)1 (C) (D)2解析:由x,y的约束条件可画出可行域(如图所示),其中A(,),B(0,1),易知直线x+2y-z=0经过点B(0,1)时,z取最大值2,故选D.5.(xx浙江温州市第二次适应测试)若实数x,y满足不等式组且z=y-2x的最小值等于-2,则实数m的值等于( A )(A)-1 (B)1 (C)-2 (D)2解析:由z=y-2x,得y=2x+z,作出不等式对应的可行域,平移直线y=2x+z,由平移可知当直线y=2x+z经过点A时,直线y=2x+z的截距最小,此时z取得最小值为-2, 即y-2x=-2,由解得即A(1,0),点A也在直线x+y+m=0上,则m=-1.故选A.6.(xx贵州遵义市第二次联考)若则目标函数z=的取值范围是( A )(A)[2,5] (B)[1,5] (C)[,2] (D)[2,6]解析:z==1+2,可理解为求斜率的最值问题,画出可行域如图阴影部分,可知k=在(1,2)点处最大,最大为2;在(2,1)点处最小,最小为,所以z的取值范围为[2,5].故选A.7.(xx河南开封市模拟)设不等式组表示的平面区域为D,若指数函数y=a x的图象上存在区域D上的点,则a的取值范围是.解析:作出区域D的图象,联系指数函数y=a x的图象,能够看出,当图象经过区域的边界点C(2,9)时,a可以取到最大值3,而显然只要a大于1,图象必然经过区域内的点.则a的取值范围是1<a≤3.答案:(1,3]基本不等式的应用8.(xx甘肃省河西五地市高三第一次联考)函数y=a1-x(a>0,a≠1)的图象恒过定点A,若点A 在直线mx+ny-1=0(mn>0)上,则+的最小值为( B )(A)3 (B)4 (C)5 (D)6解析:函数y=a1-x(a>0,a≠1)的图象恒过定点A(1,1),又点A在直线mx+ny-1=0(mn>0)上,所以m+n=1,所以+=(m+n)(+)=2++≥2+2=4,当且仅当m=n=时取等号.故选B.9.(xx河南郑州市第一次质量预测)某三棱锥的三视图如图所示,且三个三角形均为直角三角形,则xy的最大值为( C )(A)32 (B)32 (C)64 (D)64解析:设该三棱锥的高为h,由三视图知,两式相减并整理得x2+y2=128.又因为xy≤==64(仅当x=y时取等号).10.(xx广东深圳市第一次调研考试)已知向量a=(-1,1),b=(1,)(x>0,y>0),若a⊥b,则x+4y的最小值为.解析:由a⊥b得-1+=0,+=1,(x+4y)·(+)=5++≥2+5=9.(当且仅当=时取等号)答案:9一、选择题1.(xx四川资阳市三模)已知loa<lob,则下列不等式一定成立的是( A )(A)()a<()b (B)>(C)ln(a-b)>0 (D)3a-b<1解析:因为y=lox是定义域上的减函数,且loa<lob,所以a>b>0.又因为y=()x是定义域R上的减函数,所以()a<()b;又因为y=x b在(0,+∞)上是增函数,所以()b<()b;所以()a<()b,选项A正确.2.(xx湖南卷)若变量x,y满足约束条件则z=3x-y的最小值为( A )(A)-7 (B)-1 (C)1 (D)2解析:画出可行域如图所示.当直线y=3x-z过点C(-2,1)时,z取最小值,故z min=3×(-2)-1=-7.故选A.3.(xx广西柳州市、北海市、钦州市1月份模拟)设变量x,y满足约束条件则z=2x×的最小值为( B )(A) (B) (C) (D)解析:可得z=2x-2y,设m=x-2y,不等式组表示的平面区域如图阴影部分,平移直线l:y=x,由图象可知直线l经过点A时,其截距最大,m最小,z最小,解方程组得A(2,2),则z最小=.4.(xx江西南昌市第一次模拟)已知实数x,y满足若目标函数z=2x+y的最大值与最小值的差为2,则实数m的值为( C )(A)4 (B)3 (C)2 (D)-解析:作出可行域如图,根据目标函数的几何意义可转化为直线y=-2x+z的截距,可知在N点z取最小值,在M点z取最大值.因为N(m-1,m),M(4-m,m),所以z M-z N=2(4-m)+m-2(m-1)-m=10-4m=2,所以m=2.5.(xx甘肃省河西五地市高三第一次联考)已知集合{(x,y)|}表示的平面区域为Ω,若在区域Ω内任取一点P(x,y),则点P的坐标满足不等式x2+y2≤2的概率为( D )(A) (B) (C) (D)解析:作出不等式组对应的平面区域如图,则对应的区域为△AOB.由解得即B(4,-4).由解得即A(,).直线2x+y-4=0与x轴的交点坐标为(2,0),则△OAB的面积S=×2×+×2×4=.点P的坐标满足不等式x2+y2≤2区域面积S=×π×()2=,由几何概型的概率公式得点P的坐标满足不等式x2+y2≤2的概率为=.故选D.6.(xx陕西卷)某企业生产甲、乙两种产品均需用A,B两种原料,已知生产1吨每种产品所需原料及每天原料的可用限额如表所示,如果生产1吨甲、乙产品可获利润分别为3万元、4万元,则该企业每天可获得最大利润为( D )甲乙原料限额A(吨) 3 2 12B(吨) 1 2 8解析:设该企业每天生产甲产品x吨,乙产品y吨,每天获得的利润为z万元,则有z=3x+4y,由题意得x,y满足不等式组表示的可行域是以O(0,0),A(4,0),B(2,3),C(0,4)为顶点的四边形及其内部.根据线性规划的有关知识,知当直线3x+4y-z=0过点B(2,3)时,z取最大值18,故该企业每天可获得最大利润为18万元.故选D.7.设f(x)=ln x,0<a<b,若p=f(),q=f(),r=[f(a)+f(b)],则下列关系式中正确的是( C )(A)q=r<p (B)q=r>p(C)p=r<q (D)p=r>q解析:由题意得p=ln ,q=ln ,r=(ln a+ln b)=ln =p,因为0<a<b,所以>,所以ln >ln ,所以p=r<q.故选C.8.(xx四川南充市第一次高考适应性考试)若目标函数z=ax+by(a>0,b>0)满足约束条件且最大值为40,则+的最小值为( B )(A) (B) (C)1 (D)4解析:不等式表示的平面区域为如图阴影部分,当直线z=ax+by(a>0,b>0)过直线x-y+2=0与直线2x-y-6=0的交点(8,10)时,目标函数z=ax+by(a>0,b>0)取得最大值40,即8a+10b=40,即4a+5b=20,而+=(+)=+(+)≥+1=.故选B.9.(xx山东卷)已知x,y满足约束条件当目标函数z=ax+by(a>0,b>0)在该约束条件下取到最小值2时, a2+b2的最小值为( B )(A)5 (B)4 (C) (D)2解析:不等式组表示的平面区域如图中阴影部分所示,根据目标函数的几何意义可知,目标函数在点A(2,1)处取得最小值,故2a+b=2.法一将2a+b=2两边分别平方得4a2+b2+4ab=20,而4ab=2×a×2b≤a2+4b2,当且仅当a=2b, 即a=,b=时取等号.所以20≤4a2+b2+a2+4b2=5(a2+b2),所以a2+b2≥4,即a2+b2的最小值为4.故选B.法二将2a+b=2看作平面直角坐标系aOb中的直线,则a2+b2的几何意义是直线上的点与坐标原点距离的平方,故其最小值为坐标原点到直线2a+b=2距离的平方,即()2=4.故选B.10.(xx重庆卷)若不等式组表示的平面区域为三角形,且其面积等于,则m的值为( B )(A)-3 (B)1 (C) (D)3解析:作出不等式组表示的平面区域如图中阴影部分所示,由图可知,要使不等式组表示的平面区域为三角形,则m>-1.由解得即A(1-m,1+m).由解得即B(-m,+m).因为S△ABC=S△ADC-S△BDC=(2+2m)[(1+m)-(+m)]=(m+1)2=,所以m=1或m=-3(舍去),故选B.11.(xx四川宜宾市二诊)已知集合A={x∈R|x4+mx-2=0},满足a∈A的所有点M(a,)均在直线y=x的同侧,则实数m的取值范围是( A )(A)(-∞,-)∪(,+∞)(B)(-,-1)∪(1,)(C)(-5,-)∪(,6)(D)(-∞,-6)∪(6,+∞)解析:因为集合A={x∈R|x4+mx-2=0},所以方程的根显然x≠0,原方程等价于x3+m=,原方程的实根是曲线y=x3+m与曲线y=的交点的横坐标,而曲线y=x3+m是由曲线y=x3向上或向下平移|m|个单位而得到的,若交点(x i,)(i=1,2)均在直线y=x的同侧,因直线y=x与y=交点为(-,-),(,);所以结合图象可得或解得m>或m<-.故选A.12.已知函数f(x)=x+sin x(x∈R),且f(y2-2y+3)+f(x2-4x+1)≤0,则当y≥1时,的取值范围是( A )(A)[,] (B)[0,] (C)[,] (D)[0,]解析:因为f(-x)=-x+sin(-x)=-f(x),且f′(x)=1+cos x≥0,所以函数f(x)为奇函数,且在R上是增函数.所以由f(y2-2y+3)+f(x2-4x+1)≤0,得f(y2-2y+3)≤f(-x2+4x-1),所以y2-2y+3≤-x2+4x-1,即(x-2)2+(y-1)2≤1,其表示圆(x-2)2+(y-1)2=1及其内部.表示满足的点P与定点A(-1,0)连线的斜率.结合图形分析可知,直线AC的斜率=最小,切线AB的斜率tan∠BAX=tan 2∠PAX===最大.故选A.二、填空题13.(xx江苏卷)不等式<4的解集为.解析:不等式<4可转化为<22,由指数函数y=2x为增函数知x2-x<2,解得-1<x<2,故所求解集为(-1,2).答案:(-1,2)14.(xx新课标全国卷Ⅱ)已知偶函数f(x)在[0,+∞)单调递减,f(2)=0.若f(x-1)>0,则x的取值范围是.解析:由题意,得函数f(x)的草图如图所示.因为f(x-1)>0,所以|x-1|<2,所以-2<x-1<2,所以-1<x<3.答案:(-1,3)15.(xx合肥八中段考)若正数a,b满足a+2b=3,且使不等式+-m>0恒成立,则实数m的取值范围是.解析:不等式+-m>0恒成立,即3(+)>3m恒成立.又正数a,b满足a+2b=3,(a+2b)(+)=+++2≥,当且仅当a=b=1时取“=”,所以实数m的取值范围是(-∞,).答案:(-∞,)16.(xx浙江卷)已知函数f(x)=则f(f(-3))= ,f(x)的最小值是.解析:因为-3<1,所以f(-3)=lg[(-3)2+1]=lg 10=1,所以f(f(-3))=f(1)=1+-3=0.当x≥1时,f(x)=x+-3≥2-3(当且仅当x=时,取“=”),当x<1时,x2+1≥1,所以f(x)=lg(x2+1)≥0,又因为2-3<0,所以f(x)min=2-3.答案:0 2-3。

【精选高考】2019-2020高考数学二轮复习小题专项练习(一)集合与常用逻辑用语文

【精选高考】2019-2020高考数学二轮复习小题专项练习(一)集合与常用逻辑用语文
故y=f(x)在(-∞,a)和(b,+∞)上分别单调递增,是y=f(x)在(-∞,a)∪(b,+∞)上为增函数的必要不充分条件.
14.②④
解析:“若xy=0,则x=0”的否命题为“xy≠0,则x≠0”,则①不正确;若A∩B=A,则A⊆B,是真命题,则逆否命题是真命题,②正确;“全等三角形的面积相等”的否命题为假命题,③不正确;“若x2+y2=0,则x,y均为0”的逆命题为“若x,y均为0,则x2+y2=0”,④正确.
A.∃x0≥0,2x0<x B.∀x≥0,2x<x2
C.∃x0≥0,2x0≤x D.∀x≥0,2x≤x2
4.[2018·天津南开中学第五次月考]“lgx,lgy,lgz成等差数列”是“y2=xz”成立的()
A.充分非必要条件
B.必要非充分条件
C.充要条件
D.既不充分也不必要条件
5.[2018·河北景县中学月考]设命题p:“∀x∈R,x2+1≥1”的否定是“∃x0∈R,x +1<1”;命题q:函数y=cosx的图象关于直线x= 对称.则下列判断正确的是()
6.D当α=45°,β=405°,α<β,
但tanα=tanβ,D错,故选D.
7.CA={y|y=-ex+4}={y|y<4},
B={x|y=lg[(x+2)(3-x)]}={x|-2<x<3},
∴B⊆A,
∴∁RA⊆∁RB,故选C.
8.C命题“∀x∈R,sinx≥1”的否定是“∃x0∈R,sinx0<1”,A错;若a∥b,当b≠0时,存在唯一的实数λ,使得a=λb,B错;若“p∨q”为真命题,则p与q至少有一个为真,当p假,q真时,p∨q为真命题,但p∧(綈q)为假,D错,C正确,故选C.
C.{-3,-2,-1,0,1,2} D.[0,2]

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

2019届高考数学(理)二轮复习提优导学案(江苏专用):第1部分 二轮课时专题5 解析几何 2 圆锥曲线

第2讲圆锥曲线【课前热身】第2讲圆锥曲线(本讲对应学生用书第45~47页)1.(选修2-1 P32练习3改编)已知椭圆的焦点分别为F1(-2,0),F2(2,0),且经过点P53-22⎛⎫⎪⎝⎭,,则椭圆的标准方程为.【答案】210x+26y=1【解析】设椭圆方程为22xa+22yb=1,由题意得2222259144-4a ba b⎧+=⎪⎨⎪=⎩,,解得a2=10,b2=6,所以所求方程为210x+26y=1.2.(选修2-1 P47练习2改编)若双曲线的虚轴长为12,离心率为54,则双曲线的标准方程为.【答案】264x-236y=1或264y-236x=1【解析】由b=6,ca=54,结合a2+b2=c2,解得a=8,c=10,由于对称轴不确定,所以双曲线标准方程为264x-236y=1或264y-236x=1.3.(选修2-1 P47练习3改编)已知双曲线x 2-22y m=1(m>0)的一条渐近线方程为x+0,则实数m= .【答案】3【解析】双曲线x 2-22y m=1(m>0)的渐近线方程为y=±mx ,又因为该双曲线的一条渐近线方程为x+0,所以m=3.4.(选修2-1 P53练习2改编)设抛物线y 2=mx 的准线与直线x=1的距离为3,则抛物线的标准方程为 .【答案】y 2=8x 或y 2=-16x【解析】当m>0时,准线方程为x=-4m=-2,所以m=8,此时抛物线方程为y 2=8x ;当m<0时,准线方程为x=-4m=4,所以m=-16,此时抛物线方程为y 2=-16x. 所以所求抛物线方程为y 2=8x 或y 2=-16x.5.(选修2-1 P37练习6改编)若一个椭圆长轴的长、短轴的长和焦距成等差数列,则该椭圆的离心率是 .【答案】35【解析】由题意知2b=a+c ,又b 2=a 2-c 2, 所以4(a 2-c 2)=a 2+c 2+2ac.所以3a 2-2ac-5c 2=0,所以5c 2+2ac-3a 2=0.所以5e 2+2e-3=0,解得e=35或e=-1(舍去).【课堂导学】求圆锥曲线的标准方程例1(2019·扬州中学)在平面直角坐标系xOy中,已知椭圆C:22xa+22yb=1(a>b>0)的离心率为32,以原点为圆心、椭圆C的短半轴长为半径的圆与直线x-y+2=0相切.(1)求椭圆C的标准方程;(2)已知点P(0,1),Q(0,2),设M,N是椭圆C上关于y轴对称的不同两点,直线PM与QN相交于点T,求证:点T在椭圆C上.【分析】(1)利用直线与圆相切求出b的值,然后利用离心率可求出a的值,从而求出椭圆方程.(2)解出两直线的交点,验证满足椭圆方程即可.【解答】(1)由题意知椭圆C的短半轴长为圆心到切线的距离,即22因为离心率e=ca=32,所以ba21-ca⎛⎫⎪⎝⎭12,所以a=2所以椭圆C的标准方程为28x+22y=1.(2)由题意可设M,N两点的坐标分别为(x0,y0),(-x0,y0),则直线PM的方程为y=-1yxx+1,①直线QN的方程为y=-2-yxx+2. ②设点T的坐标为(x,y).联立①②解得x0=2-3xy,y=3-42-3yy.因为28x+22y=1,所以2182-3xy⎛⎫⎪⎝⎭+213-422-3yy⎛⎫⎪⎝⎭=1,整理得28x+2(3-4)2y=(2y-3)2,所以28x+292y-12y+8=4y2-12y+9,即28x+22y=1,所以点T的坐标满足椭圆C的方程,即点T在椭圆C上.【点评】求椭圆标准方程的基本方法是待定系数法,具体过程是先定形,再定量,即首先确定焦点所在位置,然后再根据条件建立关于a,b的方程组.如果焦点位置不确定,要考虑是否有两解,有时为了解题方便,也可把椭圆方程设为mx2+ny2=1(m>0,n>0,m≠n)的形式.变式已知中心在坐标原点O的椭圆C经过点A(2,3),且点F(2,0)为其右焦点.(1)求椭圆C的方程;(2)已知动点P到定点Q(20)的距离与点P到定直线l:x=2222,求动点P的轨迹C'的方程.【分析】本题主要考查椭圆的定义和椭圆的标准方程等基础知识,以及利用直接法和待定系数法求椭圆方程的基本方法.【解答】(1)依题意,可设椭圆C的方程为22xa+22yb=1(a>b>0),且可知左焦点为F'(-2,0),从而有22'358ca AF AF=⎧⎨=+=+=⎩,,解得24.ca=⎧⎨=⎩,又a2=b2+c2,所以b2=12,故椭圆C的方程为216x+212y=1.(2)设点P(x,y),依题意,得22(-2)|-22|x yx+=22,整理,得24x+22y=1,所以动点P的轨迹C'的方程为24x+22y=1.【点评】本题第一问已知焦点即知道了c,再利用椭圆定义先求得2a的值,再利用椭圆中a,b,c的关系,求得b的值,从而得椭圆方程.本题还可以利用待定系数法设椭圆方程为22xa+22-4ya=1,代入已知点求解,显然没有利用定义来得简单.求离心率的值或范围例2(1)(2019·徐州三校调研)如图(1),在平面直角坐标系xOy中,A1,A2,B1,B2分别为椭圆22xa+22yb=1(a>b>0)的四个顶点,F为其右焦点,直线A1B2与直线B1F相交于点T,线段OT与椭圆的交点M恰为线段OT的中点,则该椭圆的离心率为.(例2(1))(2)(2019·临川一中质检)如图(2),已知点A,F分别是2 2 xa-22yb=1(a>0,b>0)的左顶点与右焦点,过A,F作与x轴垂直的直线分别与两条渐近线交于P,Q,R,S,若S△ROS=2S△POQ,则双曲线的离心率为.(例2(2))(3)(2019·金陵中学)已知中心在坐标原点的椭圆与双曲线有公共焦点,且左、右焦点分别为F1,F2,这两条曲线在第一象限的交点为P,△PF1F2是以PF1为底边的等腰三角形.若PF1=10,椭圆与双曲线的离心率分别为e1,e2,则e1·e2的取值范围是.【点拨】依题设得出关于a,b,c的等式或不等式,再消去b.【答案】75(2)2(3)13∞⎛⎫+⎪⎝⎭,【解析】(1)由题意知直线A1B2的方程为-xa+yb=1,直线B1F的方程为xc+-yb=1.联立方程组解得T2()--ac b a ca c a c+⎛⎫⎪⎝⎭,.又M()-2(-)ac b a ca c a c⎛⎫+⎪⎝⎭,在椭圆22xa+22yb=1(a>b>0)上,故22(-)ca c+22()4(-)a ca c+=1,即e2+10e-3=0,解得e=275.(2)由题意,得A(-a,0),F(c,0),直线PQ,RS的方程分别为x=-a,x=c,与渐近线y=±ba x 联立,可求得P(-a,b),Q(-a,-b),R-bcca⎛⎫⎪⎝⎭,,Sbcca⎛⎫⎪⎝⎭,,则S△ROS=12·2bca·c=2bca,S△POQ =12a·2b=ab,于是由S△ROS=2S△POQ,得2bca=2ab,即22ca=2,所以e=2.(3)设椭圆的长轴长为2a,双曲线的实轴长为2m,则2c=PF2=2a-10,2m=10-2c,a=c+5,m=5-c,所以e1e2=5cc+·5-cc=2225-cc=2125-1c.又由三角形性质知2c+2c>10,又由已知得2c<10,c<5,所以52<c<5,1<225c<4,0<225c-1<3,所以e1e2=2125-1c>13.变式1(2019·苏北四市期末)已知椭圆22xa+22yb=1(a>b>0),点A,B1,B2,F依次为其左顶点、下顶点、上顶点和右焦点,若直线AB2与直线B1F的交点恰好在椭圆的右准线上,则该椭圆的离心率为.(变式1)【答案】12【解析】如图,A(-a,0),B1(0,-b),B2(0,b),F(c,0),设点M2Mayc⎛⎫⎪⎝⎭,.由2ABk=k AM,得ba=2Myaac+,所以y M=b1ac⎛⎫+⎪⎝⎭.由1FBk=k FM,得bc=2-Myacc,所以y M =2-b a c c c ⎛⎫⎪⎝⎭. 从而b 1a c⎛⎫+ ⎪⎝⎭=2-b a c c c ⎛⎫ ⎪⎝⎭, 整理得2e 2+e-1=0,解得e=12.变式2 (2019·泰州期末)若双曲线22x a -22y b=1的右焦点到渐近线的距离是其到左顶点距离的一半,则双曲线的离心率e= .【答案】53【解析】由双曲线的性质“焦点到渐近线的距离等于b ”,得b=2a c+,所以a 2+22a c +⎛⎫ ⎪⎝⎭=c 2,整理得3c 2-2ac-5a 2=0,所以3e 2-2e-5=0,解得e=53.变式3 (2019·泰州中学)如图,椭圆22x a +22y b=1(a>b>0)的右焦点为F ,其右准线l 与x 轴的交点为A ,在椭圆上存在点P 满足线段AP 的垂直平分线过点F ,则椭圆离心率的取值范围是 .(变式3)【答案】112⎡⎫⎪⎢⎣⎭, 【解析】方法一:由题意知椭圆上存在点P ,使得线段AP 的垂直平分线过点F ,所以PF=FA ,而FA=2a c -c ,PF ≤a+c ,所以2a c -c ≤a+c ,即a 2≤ac+2c 2.又e=ca,所以2e 2+e ≥1,所以2e 2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.方法二:设点P(x,y).由题意,椭圆上存在点P,使得线段AP的垂直平分线过点F,所以PF=FA.由椭圆第二定义,2-PFaxc=e,所以PF=2ac e-ex=a-ex,而FA=2ac-c,所以a-ex=2ac-c,解得x=21-aa ce c⎛⎫+⎪⎝⎭.由于-a≤x≤a,所以-a≤21-aa ce c⎛⎫+⎪⎝⎭≤a.又e=ca,所以2e2+e-1≥0,即(2e-1)(e+1)≥0.又0<e<1,所以12≤e<1.直线与圆锥曲线问题例3(2019·南通一调)如图,在平面直角坐标系xOy中,已知椭圆22xa+22yb=1(a>b>0)过点A(2,1),离心率为3 2.(1)求椭圆的方程;(2)若直线l:y=kx+m(k≠0)与椭圆相交于B,C两点(异于点A),线段BC被y轴平分,且AB⊥AC,求直线l的方程.(例3)【点拨】联立方程化归为一元二次方程的根与系数问题.【解答】(1)由条件知椭圆22x a +22y b=1(a>b>0)的离心率为e=c a =32,所以b 2=a 2-c 2=14a 2.又点A (2,1)在椭圆上,所以24a +21b =1,解得2282.a b ⎧=⎨=⎩,所以所求椭圆的方程为28x +22y =1.(2)将y=kx+m (k ≠0)代入椭圆方程,得(1+4k 2)x 2+8mkx+4m 2-8=0, ①由线段BC 被y 轴平分,得x B +x C =-2814mkk +=0,因为k ≠0,所以m=0.因为当m=0时,B ,C 关于原点对称,设B (x ,kx ),C (-x ,-kx ),由方程①,得x 2=2814k +,又因为AB ⊥AC ,A (2,1),所以AB uuu r ·A C uuu r =(x-2)(-x-2)+(kx-1)(-kx-1)=5-(1+k 2)x 2=5-228(1)14k k ++=0,所以k=±12,由于k=12时,直线y=12x 过点A (2,1),故k=12不符合题设. 所以直线l 的方程为y=-12x.【点评】解析几何包含两个主要问题,即已知曲线求方程和已知方程研究曲线的性质.对解析几何的复习,要在牢固掌握与解析几何有关的基本概念基础上,把上述两个问题作为复习和研究的重点,把握坐标法思想的精髓.变式 (2019·南通、扬州、泰州、淮安三模)如图,在平面直角坐标系xOy 中,已知椭圆22x a +22y b =1(a>b>0)的离心率为22,长轴长为4,过椭圆的左顶点A 作直线l ,分别交椭圆和圆x 2+y 2=a 2于相异两点P ,Q.(1)若直线l的斜率为12,求APAQ的值;(2)若PQu u u r=λAPuuu r,求实数λ的取值范围.(变式)【解答】(1)由条件知2222422acaa b c=⎧⎪⎪=⎨⎪=+⎪⎩,,解得22.ab=⎧⎪⎨⎪⎩,所以椭圆的方程为24x+22y=1,圆的方程为x2+y2=4.由题知直线l的方程为y=12(x+2),即x=2y-2,联立方程组222-224x yx y=⎧⎨+=⎩,,消去x,得3y2-4y=0,所以y P=4 3.由222-24x yx y=⎧⎨+=⎩,,消去x,得5y2-8y=0,所以y Q=85.所以APAQ=PQyy=43×58=56.(2)因为PQu u u r=λAPuuu r,且APuuu r,PQu u u r同向,则λ=PQAP=-AQ APAP=AQAP-1,设直线l:y=k(x+2),联立方程组224(2)x yy k x⎧+=⎨=+⎩,,消去x,得(k2+1)y2-4ky=0,所以y Q =241k k +,同理y P =2421k k +,λ=AQ AP -1=QP y y -1=2241421k k k k ++-1=1-211k +.因为k 2>0,所以0<λ<1.即实数λ的取值范围是(0,1).【课堂评价】1.(2019·泰州期末)在平面直角坐标系xOy 中,双曲线22x -y 2=1的实轴长为 .【答案】22【解析】根据双曲线的方程知a=22a=22.(2019·镇江期末)以抛物线y 2=4x 的焦点为焦点,以直线y=±x 为渐近线的双曲线的标准方程为 .【答案】212x -212y =1【解析】由题意设双曲线的标准方程为22x a -22y b=1,y 2=4x 的焦点为(1,0),即c=1,则双曲线的焦点为(1,0).因为y=±x 为双曲线的渐近线,则b a =1,又a 2+b 2=c 2,所以a 2=12,b 2=12,故双曲线的标准方程为212x-212y=1.3.(2019·南京、盐城一模)在平面直角坐标系xOy中,已知抛物线C的顶点在坐标原点,焦点在x 轴上,若曲线C经过点P(1,3),则其焦点到准线的距离为.【答案】92【解析】由题意可设抛物线C的方程为y2=2px(p>0),因为曲线C过点P(1,3),所以9=2p,解得p=92,从而其焦点到准线的距离为p=92.4.(2019·苏中三校联考)设椭圆C:22xa+22yb=1(a>b>0)的左、右焦点分别为F1,F2,过F2作x轴的垂线与椭圆C相交于A,B两点,F1B与y轴相交于点D,若AD⊥F1B,则椭圆C的离心率为.(第4题)【答案】33【解析】如图,连接AF1,因为OD∥AB,O为F1F2的中点,所以D为BF1的中点.又AD⊥BF1,所以AF1=AB.所以AF1=2AF2.设AF2=n,则AF1=2n,F1F2=3所以e=ca=1212F FAF AF=33nn=33.温馨提示:趁热打铁,事半功倍.请老师布置同学们完成《配套检测与评估》第23~24页.【检测与评估】第2讲圆锥曲线一、填空题1.(2019·苏锡常镇调研)若双曲线x2+my2=1过点(2),则该双曲线的虚轴长为.2.(2019·苏州调查)已知双曲线2xm-25y=1的右焦点与抛物线y2=12x的焦点相同,则此双曲线的渐近线方程为.3.(2019·徐州、连云港、宿迁三检)已知点F是抛物线y2=4x的焦点,该抛物线上位于第一象限的点A到其准线的距离为5,则直线AF的斜率为.4.(2019·普陀区调研)离为1,则该椭圆的离心率为.5.(2019·西安模拟)已知椭圆24x+22yb=1(0<b<2)的左、右焦点分别为F1,F2,过F1的直线l交椭圆于A,B两点,若BF2+AF2的最大值为5,则b的值是.6.(2019·盐城中学)设椭圆22xm+..=1(m>0,n>0)的右焦点与抛物线y2=8x的焦点相同,离心率为12,则此椭圆的短轴长为 .7.(2019·丹阳中学)设A ,B 分别是椭圆22x a +22y b =1(a>b>0)的左、右顶点,点P 是椭圆C 上异于A ,B 的一点,若直线AP 与BP 的斜率之积为-13,则椭圆C 的离心率为 .8.(2019·淮阴四校调研)已知椭圆C :22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,若椭圆C 上恰好有6个不同的点P ,使得△F 1F 2P 为等腰三角形,则椭圆C 的离心率的取值范围是 .二、 解答题9.(2019·扬州期末)如图,已知椭圆22x a +22y b =1(a>b>0)的左、右焦点分别为F 1,F 2,P 是椭圆上一点,M 在PF 1上,且满足1F M u u u u r =λMP u u u r(λ∈R ),PO ⊥F 2M ,O 为坐标原点.(1)若椭圆方程为28x +24y =1,且P (2,2),求点M 的横坐标;(2)若λ=2,求椭圆离心率e 的取值范围.(第9题)10.(2019·赣榆中学)如图,椭圆长轴端点为A ,B ,O 为椭圆中心,F 为椭圆的右焦点,且AF u u u r ·FB u u u r=1,|OF u u u r |=1.(1)求椭圆的标准方程.(2)记椭圆的上顶点为M ,直线l 交椭圆于P ,Q 两点,问:是否存在直线l ,使得点F 恰为△PQM的垂心?若存在,求出直线l的方程;若不存在,请说明理由.(第10题)11.如图,椭圆C:2 2 xa+22yb=1(a>b>0)的一个焦点为F(1,0),且过点622⎛⎫⎪⎪⎭,.(1)求椭圆C的方程;(2)已知A,B为椭圆上的点,且直线AB垂直于x轴,直线l:x=4与x轴交于点N,直线AF与BN交于点M,求证:点M恒在椭圆C上.(第11题)【检测与评估答案】第2讲圆锥曲线一、填空题1. 4【解析】将点(22)代入可得2+4m=1,即m=-14,故双曲线的标准方程为21x-24y=1,即虚轴长为4.2.y=±2x3,所以m=4.而双曲线的渐近线方程为x ,即y=±2x.3. 43 【解析】抛物线y 2=4x 的准线方程为x=-1,焦点F (1,0),设点A (x 0,y 0)(x 0>0,y 0>0),由题意得x 0+1=5,所以x 0=4,所以20y=4x 0=16,y 0=4,从而点A (4,4),直线AF 的斜率k=4-04-1=43.4.2 【解析】不妨设椭圆方程为22x a +22y b =1(a>b>0),则有222-1b a a c c ⎧=⎪⎪⎨⎪=⎪⎩,即2221b a b c ⎧=⎪⎪⎨⎪=⎪⎩, ②则①÷②得e=2.5.【解析】由题意知a=2,所以BF 2+AF 2+AB=4a=8,因为BF 2+AF 2的最大值为5,所以AB 的最小值为3,当且仅当AB ⊥x 轴时,取得最小值,此时A 3-2c ⎛⎫ ⎪⎝⎭,,B3--2c ⎛⎫ ⎪⎝⎭,,代入椭圆方程得24c +294b =1.又c 2=a 2-b 2=4-b 2,所以24-4b +294b =1,即1-24b +294b =1,所以24b =294b ,解得b 2=3,所以6.4【解析】由题意可知抛物线y 2=8x 的焦点为(2,0),所以c=2.因为离心率为12,所以a=4,所以47.【解析】由题意知A (-a ,0),B (a ,0),取P (0,b ),则k AP ·k BP =b a×-b a ⎛⎫ ⎪⎝⎭=-13,故a 2=3b 2,所以e 2=222-a b a =23,即e=3.8. 1132⎛⎫ ⎪⎝⎭,∪112⎛⎫⎪⎝⎭,【解析】6个不同的点有两个为短轴的两个端点,另外4个分别在第一、二、三、四象限,且上下对称、左右对称.不妨设P 在第一象限,PF 1>PF 2,当PF 1=F 1F 2=2c 时,PF 2=2a-PF 1=2a-2c ,即2c>2a-2c ,解得e=c a >12.又因为e<1,所以12<e<1.当PF 2=F 1F 2=2c 时,PF 1=2a-PF 2=2a-2c ,即2a-2c>2c ,且2c>a-c ,解得13<e<12.综上可得13<e<12或12<e<1.二、 解答题9. (1) 因为28x +24y =1,所以F 1(-2,0),F 2(2,0),所以k OP=22F Mk1F M k=4,所以直线F 2M 的方程为x-2),直线F 1M 的方程为y=4(x+2).联立-2)(2)4y x y x ⎧=⎪⎨=+⎪⎩,,解得x=65,所以点M 的横坐标为65.(2) 设P (x 0,y 0),M (x M ,y M ).因为1FM u u u u r=2MPuuu r ,所以1FM u u u u r =23(x 0+c ,y 0)=(x M +c ,y M ),所以M 00212-333x c y ⎛⎫⎪⎝⎭,,2F M u u u u r =00242-333x c y ⎛⎫ ⎪⎝⎭,因为PO ⊥F 2M ,O P uuu r=(x 0,y 0),所以2023x -43cx 0+223y =0,即20x +20y =2cx 0.联立方程2200022002221x y cx x y a b ⎧+=⎪⎨+=⎪⎩,,消去y 0,得c 220x -2a 2cx 0+a 2(a 2-c 2)=0,解得x 0=()a a c c +或x 0=(-)a a c c .因为-a<x 0<a ,所以x 0=(-)a a c c ∈(0,a ), 所以0<a 2-ac<ac ,解得e>12.综上,椭圆离心率e 的取值范围为112⎛⎫ ⎪⎝⎭,.10. (1) 设椭圆方程为22x a +22y b=1(a>b>0),则c=1.因为AF uuu r ·F B uuu r=1,即(a+c )(a-c )=1=a 2-c 2,所以a 2=2,故椭圆方程为22x +y 2=1.(2) 假设存在直线l 交椭圆于P ,Q 两点,且F 恰为△PQM 的垂心,则设P (x 1,y 1),Q (x 2,y 2),因为M (0,1),F (1,0),故k PQ =1,于是可设直线l 的方程为y=x+m.联立2222y x m x y =+⎧⎨+=⎩,,得3x 2+4mx+2m 2-2=0,则x 1+x 2=-43m ,x 1x 2=22-23m .因为MP uuu r·FQ u u u r=0=x 1(x 2-1)+y 2(y 1-1),又y i =x i +m (i=1,2),得x 1(x 2-1)+(x 2+m )(x 1+m-1)=0,即2x 1x 2+(x 1+x 2)(m-1)+m 2-m=0,所以2·22-23m -43m(m-1)+m 2-m=0,解得m=-43或m=1(舍去). 经检验m=-43符合条件, 所以直线l 的方程为y=x-43.11. (1) 由题意得2222212312-c a b a b c =⎧⎪⎪+=⎨⎪=⎪⎩,,,解得a 2=4,b 2=3,故椭圆C 的方程为24x +23y =1.(2) 因为F (1,0),N (4,0).设A (m ,n ),M (x 0,y 0),则B (m ,-n ),n ≠0,则直线AF 的方程为y=-1nm (x-1), 直线BN 的方程为y=4-nm (x-4), 解得点M 的坐标为5-832-52-5m n m m ⎛⎫⎪⎝⎭,. 代入椭圆方程中,得204x +203y =25-82-54m m ⎛⎫ ⎪⎝⎭+232-53n m ⎛⎫⎪⎝⎭=222(5-8)124(2-5)m n m +.由24m+23n=1,得n2=321-4m⎛⎫⎪⎝⎭,代入上式得24x+23y=1.所以点M恒在椭圆C上.。

2019高考数学二轮复习压轴提升练一文含答案】

2019高考数学二轮复习压轴提升练一文含答案】

压轴提升卷(一)解答题:解答应写出文字说明、证明过程或演算步骤.1.(本题满分12分)在平面直角坐标系xOy 中,已知△ABC 的两个顶点A ,B 的坐标分别为(-1,0),(1,0),且AC ,BC 所在直线的斜率之积等于-2,记顶点C 的轨迹为曲线E .(1)求曲线E 的方程;(2)设直线y =2x +m (m ∈R 且m ≠0)与曲线E 相交于P ,Q 两点,点M ⎝ ⎛⎭⎪⎫12,1,求△MPQ 面积的取值范围. 解:(1)设C (x ,y ).由题意,可得y x -1·y x +1=-2(x ≠±1), ∴曲线E 的方程为x 2+y 22=1(x ≠±1). (2)设P (x 1,y 1),Q (x 2,y 2). 联立,得⎩⎪⎨⎪⎧y =2x +m ,x 2+y 22=1,消去y , 可得6x 2+4mx +m 2-2=0,∴Δ=48-8m 2>0,∴m 2<6.∵x ≠±1,∴m ≠±2.又m ≠0,∴0<m 2<6且m 2≠4.∵x 1+x 2=-2m 3,x 1x 2=m 2-26, ∴|PQ |=5|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2 =5·⎝ ⎛⎭⎪⎫-2m 32-4×m 2-26=103·6-m 2. 又点M ⎝ ⎛⎭⎪⎫12,1到直线y =2x +m 的距离d =|m |5, ∴△MPQ 的面积S △MPQ =12·103·6-m 2·|m |5=26·|m |·6-m 2=26 m 2(6-m 2), ∴S 2△MPQ =118m 2(6-m 2)≤118⎝ ⎛⎭⎪⎫m 2+6-m 222=12. ∵0<m 2<6且m 2≠4,∴S 2△MPQ ∈⎝ ⎛⎦⎥⎤0,12, ∴△MPQ 面积的取值范围为⎝ ⎛⎦⎥⎤0,22.2.(本题满分12分)已知函数f (x )=x e x +x 2-x (其中e =2.718 28…). (1)求f (x )的图象在点(1,f (1))处的切线方程;(2)已知函数g (x )=-a ln[f (x )-x 2+x ]-1x-ln x -a +1,若对任意x ≥1,g (x )≥0恒成立,求实数a 的取值范围.解:(1)由题意得f ′(x )=1-x e x +2x -1,f (1)=1e, 所以f (x )的图象在点(1,f (1))处的切线斜率为f ′(1)=1,所以f (x )的图象在点(1,f (1))处的切线方程为y -1e=x -1,即e x -e y -e +1=0. (2)由题意知函数g (x )=-(a +1)ln x +ax -1x-a +1, 所以g ′(x )=-a +1x +a +1x 2=ax 2-(a +1)x +1x 2=(ax -1)(x -1)x 2, ①若a ≤0,当x ≥1时,g ′(x )≤0,所以g (x )在[1,+∞)上是减函数,故g (x )≤g (1)=0;②若0<a <1,则1a >1,当1<x <1a 时,g ′(x )<0,当x >1a 时,g ′(x )>0,所以g (x )在⎝ ⎛⎭⎪⎫1,1a 上是减函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是增函数,故当1<x <1a时,g (x )<g (1)=0; ③若a ≥1,则0<1a≤1,当x ≥1时,g ′(x )≥0,所以g (x )在[1,+∞)上是增函数,所以g (x )≥g (1)=0.综上,实数a 的取值范围为[1,+∞).。

(全国通用版)2019版数学大二轮复习-第二部分 高考22题各个击破 专题一 常考小题点 2.1.4 平面向量题专项

(全国通用版)2019版数学大二轮复习-第二部分 高考22题各个击破 专题一 常考小题点 2.1.4 平面向量题专项

A.1
B.2
C.3
D.5
∵|a+b|= 10, ∴(a+b)2=10. ∴|a|2+|b|2+2a·b=10.
∵|a-b|= 6, ∴(a-b)2=6. ∴|a|2+|b|2-2a·b=6. 由A ①-②得 a·b=1,故选 A.
关闭
① ②关闭
解析 答案
一、选择题 二、填空题
3.(2018 全国卷 1,理 6)在△ABC 中,AD 为 BC 边上的中线,E 为 AD 的
������������=(-x, 3-y),������������=(-1-x,-y),������������=(1-x,-y).
所以������������ + ������������=(-2x,-2y).
所以������������ ·(������������ +
������������ )=2x2-2y(
c∥(2a+b),则λ=
.
关闭
2a+b=2(1,2)+(2,-2)=(4,2),c=(1,λ),由 c∥(2a+b),得 4λ-2=0,得 λ=12.
1
关闭
2
解析 答案
一、选择题 二、填空题
14.已知向量a,b的夹角为60°,|a|=2,|b|=1,则|a+2b|=
.
关闭
因为|a+2b|2=(a+2b)2=|a|2+4·|a|·|b|·cos 60°+4|b|2=22+4×2×1× 12+4×1=12, 所以|a+2b|= 12=2 3.
又直线 OA 为 y= 3x,点 E 为(2,0),

(通用版)2019版高考数学二轮复习 第一部分 第三层级 难点自选 专题三“圆锥曲线”压轴大题的抢分

(通用版)2019版高考数学二轮复习 第一部分 第三层级 难点自选 专题三“圆锥曲线”压轴大题的抢分

由(1)可知a2=5b2,所以―A→B ·―NM→=0,故MN⊥AB.
考法•策略(二) 巧妙消元证定值
[典例]
已知椭圆C:
x2 a2

y2 b2
=1(a>b>0),过A(2,0),
B(0,1)两点.
(1)求椭圆C的方程及离心率;
(2)设P为第三象限内一点且在椭圆C上,直线PA与y轴交
于点M,直线PB与x轴交于点N,求证:四边形ABNM的面积
[应用体验]
1.设椭圆E的方程为
x2 a2
Hale Waihona Puke +y2 b2=1(a>b>0),点O为坐标原点,点
A的坐标为(a,0),点B的坐标为(0,b),点M在线段AB上,
满足|BM|=2|MA|,直线OM的斜率为
5 10 .
(1)求E的离心率e;
(2)设点C的坐标为(0,-b),N为线段AC的中点,证明:
MN⊥AB.
将y=k(x-1)代入x22+y2=1, 得(2k2+1)x2-4k2x+2k2-2=0, 所以x1+x2=2k42k+2 1,x1x2=22kk22-+21. 则2kx1x2-3k(x1+x2)+4k =4k3-4k-2k122+k3+1 8k3+4k=0. 从而kMA+kMB=0, 故MA,MB的倾斜角互补. 所以∠OMA=∠OMB. 综上,∠OMA=∠OMB成立.
解答题的热点题型有: (1)直线与圆锥曲线位置关系;(2)圆锥曲线中定点、定 值、最值及范围的求解;(3)圆锥曲线中的判断与证明.
考法•策略(一) 依据关系来证明
[典例]
(2018·全国卷Ⅰ)设椭圆C:
x2 2
+y2=1的右焦点为
F,过F的直线l与C交于A,B两点,点M的坐标为(2,0).
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

压轴提升卷(一)
解答题:解答应写出文字说明、证明过程或演算步骤.
1.(本题满分12分)在平面直角坐标系xOy 中,已知△ABC 的两个顶点A ,B 的坐标分别为(-1,0),(1,0),且AC ,BC 所在直线的斜率之积等于-2,记顶点C 的轨迹为曲线E .
(1)求曲线E 的方程;
(2)设直线y =2x +m (m ∈R 且m ≠0)与曲线E 相交于P ,Q 两点,点M ⎝ ⎛⎭
⎪⎫12,1,求△MPQ 面积的取值范围.
解:(1)设C (x ,y ).
由题意,可得y x -1·y x +1
=-2(x ≠±1), ∴曲线E 的方程为x 2+y 22
=1(x ≠±1). (2)设P (x 1,y 1),Q (x 2,y 2). 联立,得⎩
⎪⎨⎪⎧y =2x +m ,x 2+y 22=1,消去y , 可得6x 2+4mx +m 2
-2=0,
∴Δ=48-8m 2>0,∴m 2<6.
∵x ≠±1,∴m ≠±2.
又m ≠0,
∴0<m 2<6且m 2≠4.
∵x 1+x 2=-2m 3,x 1x 2=m 2-26
, ∴|PQ |=5|x 1-x 2|=5·(x 1+x 2)2-4x 1x 2 =5·⎝ ⎛⎭⎪⎫-2m 32-4×m 2-26=103·6-m 2. 又点M ⎝ ⎛⎭⎪⎫12,1到直线y =2x +m 的距离d =|m |5
, ∴△MPQ 的面积S △MPQ =12·103·6-m 2·|m |5=26
·|m |·6-m 2=26 m 2(6-m 2), ∴S 2△MPQ =118m 2(6-m 2)≤118⎝ ⎛⎭⎪⎫m 2+6-m 2
22=12. ∵0<m 2<6且m 2≠4,∴S 2△MPQ ∈⎝ ⎛⎦
⎥⎤0,12,
∴△MPQ 面积的取值范围为⎝ ⎛⎦
⎥⎤0,22. 2.(本题满分12分)已知函数f (x )=x e
x +x 2-x (其中e =2.718 28…). (1)求f (x )的图象在点(1,f (1))处的切线方程;
(2)已知函数g (x )=-a ln[f (x )-x 2+x ]-1x
-ln x -a +1,若对任意x ≥1,g (x )≥0恒成立,求实数a 的取值范围.
解:(1)由题意得f ′(x )=1-x e x +2x -1,f (1)=1
e
, 所以f (x )的图象在点(1,f (1))处的切线斜率为f ′(1)=1,
所以f (x )的图象在点(1,f (1))处的切线方程为y -1e
=x -1,即e x -e y -e +1=0. (2)由题意知函数g (x )=-(a +1)ln x +ax -1x
-a +1, 所以g ′(x )=-a +1x +a +1x 2=ax 2-(a +1)x +1x 2=(ax -1)(x -1)x 2
, ①若a ≤0,当x ≥1时,g ′(x )≤0,所以g (x )在[1,+∞)上是减函数,故g (x )≤g (1)=0; ②若0<a <1,则1a >1,当1<x <1a 时,g ′(x )<0,当x >1a
时,g ′(x )>0,所以g (x )在⎝ ⎛⎭⎪⎫1,1a 上是减函数,在⎝ ⎛⎭⎪⎫1a ,+∞上是增函数,故当1<x <1a
时,g (x )<g (1)=0; ③若a ≥1,则0<1a
≤1,当x ≥1时,g ′(x )≥0,所以g (x )在[1,+∞)上是增函数,所以g (x )≥g (1)=0.
综上,实数a 的取值范围为[1,+∞).。

相关文档
最新文档