2018.11北京市海淀区高三数学理科试题

合集下载

2018高考北京卷理科数学(含答案)

2018高考北京卷理科数学(含答案)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)(B)(C)(D)(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为(A)(B)(C)(D)(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A)1 (B)2(C)3 (D)4(6)设a,b均为单位向量,则“”是“a⊥b”的(A)充分而不必要条件(B)必要而不充分条件(C)充分必要条件(D)既不充分也不必要条件(7)在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为(A)1 (B)2(C)3 (D)4(8)设集合则(A)对任意实数a,(B)对任意实数a,(2,1)(C)当且仅当a<0时,(2,1)(D)当且仅当时,(2,1)第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

(9)设是等差数列,且a1=3,a2+a5=36,则的通项公式为__________.(10)在极坐标系中,直线与圆相切,则a=__________.(11)设函数f(x)=,若对任意的实数x都成立,则ω的最小值为__________.(12)若x,y满足x+1≤y≤2x,则2y–x的最小值是__________.(13)能说明“若f(x)>f(0)对任意的x∈(0,2]都成立,则f(x)在[0,2]上是增函数”为假命题的一个函数是__________.(14)已知椭圆,双曲线.若双曲线N的两条渐近线与椭圆M的四个交点及椭圆M的两个焦点恰为一个正六边形的顶点,则椭圆M的离心率为__________;双曲线N的离心率为__________.三、解答题共6小题,共80分。

北京市海淀区2018届高三第一学期期末理科数学试题(Word版含答案)

北京市海淀区2018届高三第一学期期末理科数学试题(Word版含答案)

海淀区高三年级第一学期期末练习数学(理科) 2018.1第一部分(选择题 共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)复数 A. B. C. D.(2)在极坐标系中,方程表示的圆为(3)执行如图所示的程序框图,输出的值为 A.4 B.5 C.6 D.7(4)设是不为零的实数,则“”是“方程表示 的曲线为双曲线”的A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件(5)已知直线与圆相交于两点,且为正三角形,则实数的值为(6)从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为 A. B. C. D.12ii+=2i -2i +2i --2i -+Ox 2sin ρθ=k m 0m >221x y m m-=0x y m -+=22:1O x y +=,A B AOB ∆m -15253545(7)某三棱锥的三视图如图所示,则下列说法中:①三棱锥的体积为②三棱锥的四个面全是直角三角形所有正确的说法是A. ①B. ①②C. ②③D. ①③(8)已知点为抛物线的焦点,点为点关于原点的对称点,点在抛物线上,则下列说法错误..的是 A.使得为等腰三角形的点有且仅有4个 B.使得为直角三角形的点有且仅有4个C. 使得的点有且仅有4个D. 使得的点有且仅有4个第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

(9)点到双曲线的渐近线的距离是.(10)已知公差为1的等差数列中,,,成等比数列,则的前100项和为.16F 2:2(0)C y px p =>K F M C MFK ∆M MFK ∆M 4MKF π∠=M 6MKF π∠=M (2,0)2214x y -={}n a 1a 2a 4a {}n a(11)设抛物线的顶点为,经过抛物线的焦点且垂直于轴的直线和抛物线交于两点,则.(12)已知的展开式中,各项系数的和与各项二项式系数的和之比为64:1,则.(13)已知正方体的棱长为点是棱的中点,点在底面内,点在线段上,若,则长度的最小值为. (14)对任意实数,定义集合.①若集合表示的平面区域是一个三角形,则实数的取值范围是;②当时,若对任意的,有恒成立,且存在,使得成立,则实数的取值范围为.三、解答题共6小题,共80分。

2018年高考北京卷理科数学(含问题详解)

2018年高考北京卷理科数学(含问题详解)

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

学科:网第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

(1)已知集合A={x||x|<2},B={–2,0,1,2},则A B=(A){0,1} (B){–1,0,1}(C){–2,0,1,2} (D){–1,0,1,2}(2)在复平面内,复数11i的共轭复数对应的点位于(A)第一象限(B)第二象限(C)第三象限(D)第四象限(3)执行如图所示的程序框图,输出的s值为(A)12(B)56(C)76(D)712(4)“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于122.若第一个单音的频率为f ,则第八个单音的频率为(A )32f (B )322f (C )1252f(D )1272f(5)某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为(A )1 (B )2 (C )3(D )4(6)设a ,b 均为单位向量,则“33-=+a b a b ”是“a ⊥b ”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件(7)在平面直角坐标系中,记d 为点P (cos θ,sin θ)到直线20x my --=的距离,当θ,m 变化时,d 的最大值为 (A )1 (B )2 (C )3(D )4(8)设集合{(,)|1,4,2},A x y x y ax y x ay =-≥+>-≤则 (A )对任意实数a ,(2,1)A ∈(B )对任意实数a ,(2,1)A ∉(C )当且仅当a <0时,(2,1)A ∉ (D )当且仅当32a ≤时,(2,1)A ∉ 第二部分(非选择题 共110分)二、填空题共6小题,每小题5分,共30分。

2018年高考真题理科数学(北京卷) Word版含解析

2018年高考真题理科数学(北京卷) Word版含解析

绝密★启用前2018年普通高等学校招生全国统一考试数学(理)(北京卷)本试卷共5页,150分。

考试时长120分钟。

考生务必将答案答在答题卡上,在试卷上作答无效。

考试结束后,将本试卷和答题卡一并交回。

第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项。

1. 已知集合A={x||x|<2},B={–2,0,1,2},则A B=A. {0,1}B. {–1,0,1}C. {–2,0,1,2}D. {–1,0,1,2}【答案】A【解析】分析:先解含绝对值不等式得集合A,再根据数轴求集合交集.详解:因此A B=,选A.点睛:认清元素的属性,解决集合问题时,认清集合中元素的属性(是点集、数集或其他情形)和化简集合是正确求解的两个先决条件.2. 在复平面内,复数的共轭复数对应的点位于A. 第一象限B. 第二象限C. 第三象限D. 第四象限【答案】D【解析】分析:将复数化为最简形式,求其共轭复数,找到共轭复数在复平面的对应点,判断其所在象限.详解:的共轭复数为对应点为,在第四象限,故选D.点睛:此题考查复数的四则运算,属于送分题,解题时注意审清题意,切勿不可因简单导致马虎丢分.3. 执行如图所示的程序框图,输出的s值为A. B.C. D.【答案】B【解析】分析:初始化数值,执行循环结构,判断条件是否成立,详解:初始化数值循环结果执行如下:第一次:不成立;第二次:成立,循环结束,输出,故选B.点睛:此题考查循环结构型程序框图,解决此类问题的关键在于:第一,要确定是利用当型还是直到型循环结构;第二,要准确表示累计变量;第三,要注意从哪一步开始循环,弄清进入或终止的循环条件、循环次数.4. “十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于.若第一个单音的频率为f,则第八个单音的频率为A. B.C. D.【答案】D【解析】分析:根据等比数列的定义可知每一个单音的频率成等比数列,利用等比数列的相关性质可解. 详解:因为每一个单音与前一个单音频率比为,所以,又,则故选D.点睛:此题考查等比数列的实际应用,解决本题的关键是能够判断单音成等比数列. 等比数列的判断方法主要有如下两种:(1)定义法,若()或(),数列是等比数列;(2)等比中项公式法,若数列中,且(),则数列是等比数列.5. 某四棱锥的三视图如图所示,在此四棱锥的侧面中,直角三角形的个数为A. 1B. 2C. 3D. 4【答案】C【解析】分析:根据三视图还原几何体,利用勾股定理求出棱长,再利用勾股定理逆定理判断直角三角形的个数.详解:由三视图可得四棱锥,在四棱锥中,,由勾股定理可知:,则在四棱锥中,直角三角形有:共三个,故选C.点睛:此题考查三视图相关知识,解题时可将简单几何体放在正方体或长方体中进行还原,分析线面、线线垂直关系,利用勾股定理求出每条棱长,进而可进行棱长、表面积、体积等相关问题的求解.6. 设a,b均为单位向量,则“”是“a⊥b”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】C【解析】分析:先对模平方,将等价转化为0,再根据向量垂直时数量积为零得充要关系.详解:,因为a,b均为单位向量,所以a⊥b,即“”是“a⊥b”的充分必要条件.选C.点睛:充分、必要条件的三种判断方法.1.定义法:直接判断“若则”、“若则”的真假.并注意和图示相结合,例如“⇒”为真,则是的充分条件.2.等价法:利用⇒与非⇒非,⇒与非⇒非,⇔与非⇔非的等价关系,对于条件或结论是否定式的命题,一般运用等价法.3.集合法:若⊆,则是的充分条件或是的必要条件;若=,则是的充要条件.7. 在平面直角坐标系中,记d为点P(cosθ,sinθ)到直线的距离,当θ,m变化时,d的最大值为A. 1B. 2C. 3D. 4【答案】C【解析】分析:P为单位圆上一点,而直线过点A(2,0),则根据几何意义得d的最大值为OA+1.详解:P为单位圆上一点,而直线过点A(2,0),所以d的最大值为OA+1=2+1=3,选C.点睛:与圆有关的最值问题主要表现在求几何图形的长度、面积的最值,求点到直线的距离的最值,求相关参数的最值等方面.解决此类问题的主要思路是利用圆的几何性质将问题转化.8. 设集合则A. 对任意实数a,B. 对任意实数a,(2,1)C. 当且仅当a<0时,(2,1)D. 当且仅当时,(2,1)【答案】D【解析】分析:求出及所对应的集合,利用集合之间的包含关系进行求解.详解:若,则且,即若,则,此命题的逆否命题为:若,则有,故选D.点睛:此题主要结合充分与必要条件考查线性规划的应用,集合法是判断充分条件与必要条件的一种非常有效的方法,根据成立时对应的集合之间的包含关系进行判断. 设,若,则;若,则,当一个问题从正面思考很难入手时,可以考虑其逆否命题形式.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分。

2018年北京市海淀区高三第一学期期末数学(理)试题及答案

2018年北京市海淀区高三第一学期期末数学(理)试题及答案

海淀区高三年级第一学期期末练习数学〔理科〕 2018. 1本试卷共4页,150分。

考试时长120分钟。

考生务必将答案答在答题纸上,在试卷上作答无效。

考试结束后,将答题纸交回。

第一部分〔选择题,共40分〕一、选择题共8小题,每题5分,共40分。

在每题列出的四个选项中,选出符合题目要求的一项。

〔1〕复数12+=ii〔A 〕2-i〔B 〕2+i〔C 〕2--i〔D 〕2-+i 〔2〕在极坐标系Ox 中,方程2sin ρθ=表示的圆为〔A 〕〔B 〕〔C 〕〔D 〕〔3〕执行如下图的程序框图,输出的k 值为〔A 〕 4 〔B 〕 5 〔C 〕 6 〔D 〕 7〔4〕设m 是不为零的实数,则“0m >”是“方程221x y m m-=表示双曲线”的〔A 〕充分而不必要条件 〔B 〕必要而不充分条件 〔C 〕充分必要条件〔D 〕既不充分也不必要条件〔5〕已知直线0x y m -+=与圆O :221x y +=相交于A ,B 两点,且OAB ∆为正三角形,则实数m 的值为〔A〔B〔C或 〔D或 〔6〕从编号分别为1,2,3,4,5,6的六个大小完全相同的小球中,随机取出三个小球,则恰有两个小球编号相邻的概率为〔A 〕15〔B 〕25〔C 〕35〔D 〕45〔7〕某三棱锥的三视图如下图,则以下说法中:① 三棱锥的体积为16② 三棱锥的四个面全是直角三角形③所有正确的说法是〔A 〕① 〔B 〕①② 〔C 〕②③ 〔D 〕①③〔8〕已知点F 为抛物线C :()220ypx p =>的焦点,点K 为点F 关于原点的对称点,点M 在抛物线C 上,则以下说法错误的选项是...... 〔A 〕使得MFK ∆为等腰三角形的点M 有且仅有4个〔B 〕使得MFK ∆为直角三角形的点M 有且仅有4个〔C 〕使得4MKF π∠=的点M 有且仅有4个 〔D 〕使得6MKF π∠=的点M 有且仅有4个第二部分〔非选择题,共110分〕二、填空题共6小题,每题5分,共30分。

【全国区级联考】北京市海淀区2018届高三第二学期期末第二次模拟考试数学(理)试题(解析版)

【全国区级联考】北京市海淀区2018届高三第二学期期末第二次模拟考试数学(理)试题(解析版)

海淀区高三年级第二学期期末练习数学(理科)第一部分(选择题共40分)一、选择题共8小题,每小题5分,共40分。

在每小题列出的四个选项中,选出符合题目要求的一项1. 已知全集,集合,,则()A. B. C. D.【答案】B【解析】分析:由全集及,求出补集,找出集合的补集与集合的交集即可.详解:,集合,,又,故选B.点睛:研究集合问题,一定要抓住元素,看元素应满足的属性. 研究两集合的关系时,关键是将两集合的关系转化为元素间的关系,本题实质是求满足属于集合或不属于集合的元素的集合.2. 已知复数在复平面上对应的点为,则()A. 是实数B. 是纯虚数C. 是实数D. 是纯虚数【答案】C【解析】分析:先求出复数z,再代入选项进行判断,即得正确答案。

详解:由题得复数z=1-i ,所以z+1=2-i ,不是实数,所以选项A错误,也不是纯虚数,所以选项B错误.所以z+i=1,是实数,所以选项C正确,z+i是纯虚数错误,所以选项D错误.故选C.点睛:本题主要考查复数的几何意义和复数的分类等基础知识,属于基础题.3. 已知,则()A. B. C. D.【答案】D【解析】分析:取,利用排除法,逐一排除即可的结果.详解:因为时,, , ,所以可排除选项,故选D.点睛:特殊法是“小题小做”的重要策略,排除法解答选择题是高中数学一种常见的解题思路和方法,这种方法即可以提高做题速度和效率,又能提高准确性,这种方法主要适合下列题型:(1)求值问题(可将选项逐个验证);(2)求范围问题(可在选项中取特殊值,逐一排除);(3)图象问题(可以用函数性质及特殊点排除);(4)解方程、求解析式、求通项、求前项和公式问题等等.4. 若直线是圆的一条对称轴,则的值为()A. B. C. D.【答案】B【解析】分析:由题意可知直线通过圆的圆心,求出圆心坐标代入直线方程,即可得到的值.详解:圆的方程可化为,可得圆的圆心坐标为,半径为,因为直线是圆的一条对称轴,所以,圆心在直线上,可得,即的值为,故选B.点睛:本题主要考查圆的一般方程化为标准方程,以及由标准方程求圆心坐标,意在考查学生对圆的基本性质的掌握情况,属于简单题.5. 设曲线是双曲线,则“的方程为”是“的渐近线方程为”的()A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件【答案】A【解析】分析:由方程为的渐近线为,且渐近线方程为的双曲线方程为,即可得结果.详解:若的方程为,则,渐近线方程为,即为,充分性成立,若渐近线方程为,则双曲线方程为,“的方程为”是“的渐近线方程为”的充分而不必要条件,故选A.点睛:本题通过圆锥曲线的方程主要考查充分条件与必要条件,属于中档题.判断充要条件应注意:首先弄清条件和结论分别是什么,然后直接依据定义、定理、性质尝试.对于带有否定性的命题或比较难判断的命题,除借助集合思想化抽象为直观外,还可利用原命题和逆否命题、逆命题和否命题的等价性,转化为判断它的等价命题;对于范围问题也可以转化为包含关系来处理.6. 关于函数,下列说法错误的是()A. 是奇函数B. 0不是的极值点C. 在上有且仅有3个零点D. 的值域是【答案】C【解析】分析:利用函数的奇偶性、极值、零点、值域分析每一个选项得解.详解:对于选项A,f(-x)=sin(-x)+xcos(-x)=-sinx+xcosx=-(sinx-xcosx)=-f(x),所以函数f(x)是奇函数,所以选项A 是正确的.对于选项B,,可以得到函数f(x)在是增函数,在也是增函数,所以0不是函数的极值点,所以选项B正确.对于选项C,由于函数在是增函数,在是增函数,且f(0)=0,所以函数在上有且仅有1个零点,所以选项C错误.对于选项D,当x时,当x时,所以函数的值域为R,所以选项D正确.故选C.点睛:本题主要考查函数的奇偶性、极值、单调性和值域,意在考查函数的基础知识,属于基础题.7. 已知某算法的程序框图如图所示,则该算法的功能是()A. 求首项为1,公比为2的等比数列的前2017项的和B. 求首项为1,公比为2的等比数列的前2018项的和C. 求首项为1,公比为4的等比数列的前1009项的和D. 求首项为1,公比为4的等比数列的前1010项的和【答案】C【解析】分析:详解:运行程序如下:s=0,n=1,s=,n=3,3<2018;s=,n=3,s=,n=5,5<2018;;s=,n=1007,s=,n=1009,2019<2018;,故该算法的功能是求首项为1,公比为4的等比数列的前1009项的和,故选C.点睛:本题主要考查程序框图的功能,意在考查学生对程序框图的理解能力,属于基础题.8. 已知集合,集合,,满足.①每个集合都恰有5个元素②集合中元素的最大值与最小值之和称为集合的特征数,记为,则的值不可能为()A. B. C. D.【答案】A【解析】分析:求出集合M={x∈N*|1≤x≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},由题意列举出集合A1,A2,A3,排除选项B、C、D,由此能求出结果.详解:由题意集合M={x∈N*|1≤x≤15}={1,2,3,4,5,6,7,8,9,10,11,12,13,14,15},当A1={1,4,5,6,7},A2={3,12,13,14,15},A3={2,8,9,10,11}时,X1+X2+X3=8+18+13=39,故排除B选项;当A1={1,4,5,6,15},A2={2,7,8,9,14},A3={3,10,11,12,13}时,X1+X2+X3=16+16+16=48,故排除C选项;当A1={1,2,3,4,15},A2={5,6,7,8,14},A3={9,10,11,12,13}时,X1+X2+X3=16+19+22=57,故排除D选项.∴X1+X2+X3的值不可能为37.故选A.点睛:本题考查满足条件的集合的判断,考查子集,并集、排除法等基础知识,考查学生的知识迁移能力和运算求解能力,属于基础题.第二部分(非选择题共110分)二、填空题共6小题,每小题5分,共30分9. 极坐标系中,点到直线的距离为___________.【答案】【解析】分析:先把点的坐标化成直角坐标,把直线的方程化为直角坐标,再求点到直线的距离得解.详解:由题得点化成直角坐标为(0,2),直线的直角坐标方程为x=1,所以点到直线的距离为2-1=1,故填1.点睛:本题主要考查极坐标和直角坐标的互化,考查极坐标的基础知识和基本的运算,属于基础题.10. 在的二项展开式中,的系数为__________.【答案】【解析】分析:利用二项展开式的通项公式求出展开式中第r+1项,令x的指数为3得解.详解:因为其通项为:T r+1=x5﹣r=2r••x5﹣2r.令5﹣2r=3得r=1,所以x3的系数为21×=10.故答案为10.点睛:本题考查二项展开式的通项公式,二项展开式的通项公式是解决二项展开式的特定项问题的工具.11. 已知平面向量,的夹角为,且满足,,则__________,__________.【答案】(1). (2).【解析】分析:先根据平面向量的数量积公式求出的值,然后将平方,结合所求数量积以及,,可得结果.详解:,向量与的夹角为,,由此可得,,故答案为(1) (2).点睛:本题主要考查向量的模及平面向量数量积公式,属于中档题.平面向量数量积公式有两种形式,一是,二是,主要应用以下几个方面:(1)求向量的夹角,(此时往往用坐标形式求解);(2)求投影,在上的投影是;(3)向量垂直则;(4)求向量的模(平方后需求)..................................12. 在中,,则__________.【答案】【解析】分析:因为,可设,利用余弦定理求得的值,根据平方关系求得,再利用商的关系可得结果.详解:,可设,由余弦定理可得,,,,故答案为.点睛:本题主要考查余弦定理及特同角三角函数之间的关系,属于中档题.对余弦定理一定要熟记两种形式:(1);(2),同时还要熟练掌握运用两种形式的条件.另外,在解与三角形、三角函数有关的问题时,还需要记住等特殊角的三角函数值,以便在解题中直接应用. 13. 能够使得命题“曲线上存在四个点满足四边形是正方形”为真命题的一个实数的值为__________.【答案】答案不唯一,a>2或a<﹣2的任意实数【解析】分析:由题意可设P(m,n),(m>0,n>0),由对称性可得Q(﹣m,n),R(﹣m,﹣n),S(m,﹣n),可得m=n,代入曲线方程,由双曲线的范围,解不等式即可得到所求值.详解:曲线上存在四个点P,Q,R,S满足四边形PQRS是正方形,可设P(m,n),(m>0,n>0),由对称性可得Q(﹣m,n),R(﹣m,﹣n),S(m,﹣n),则|PQ|=|QR|,即2m=2n,即m=n,由曲线的方程可得,即有解,即有m2=>4,可得>0,解得a>2或a<﹣2,故答案为:a>2或a<﹣2的任意实数.点睛:本题考查双曲线方程和性质,主要是范围的运用,考查对称性和不等式的解法,属于中档题.14. 如图,棱长为2的正方体中,是棱的中点,点在侧面内,若垂直于,则的面积的最小值为__________.【答案】【解析】分析:先建立空间直角坐标系,再求|BP|的最小值,最后求的面积的最小值.详解:以D点为空间直角坐标系的原点,以DC所在直线为y轴,以DA所在直线为x轴,以D为z轴,建立空间直角坐标系.则点P(2,y,z),,所以.因为C(0,2,0),M(2,0,1),所以,因为.因为B(2,2,0),所以,所以因为0≤y≤2,所以当y=时,.因为BC⊥BP,所以.故填.点睛:本题的关键是解题思路的确定.本题数形结合不是很方便,由于函数的方法是处理最值问题的常用方法,所以要建立空间直角坐标系,先求出函数的解析式,再求函数的定义域{y|0≤y≤2},再利用二次函数研究函数的最小值.三、解答题共6小题,共80分。

2018北京高考卷数学[理科]试题和答案解析

2018北京高考卷数学[理科]试题和答案解析

2018年普通高等学校招生全国统一考试(北京卷)数学(理工类)第一部分(选择题 共40分)一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,选出符合题目要求的一项.1.若集合{}2A x x =<,{}2,0,1,2B x =-,则A B =I (A ){}01, (B ){}-101,,(C ){}-201,,(D ){}-1012,,, 2.在复平面内,复数i1i-的共轭复数对应的点位于 (A )第一象限 (B )第二象限 (C )第三象限 (D )第四象限3.执行如图所示的程序框图,输出的s 值为( ).A .12 B .56C .76D .7124.“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出半音比例,为这个理论的发展做出了重要的贡献.十二平均律将一个纯八度音程分成十二份,依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都等于第一个单音的频率为f ,则第八个单音的频率为( ).ABC .D .5.某四棱锥的三视图如图所示,在此三棱锥的侧面中,直角三角形的个数为( ). A .1 B .2 C .3 D .46.设a b ,均为单位向量,则“33a b a b -=+”是“a b ⊥”的 (A )充分而不必要条件 (B )必要而不充分条件 (C )充分必要条件(D )既不充分也不必要条件7. 在平面直角坐标系中,记d 为点()P cos ,sin θθ到直线20x my --=的距离.当,m θ变化时,d 的最大值为 (A )1 (B )2 (C )3(D )48. 设集合(){},|1,4,2A x y x y ax y x ay =-≥+>-≤,则()A 对任意实数a ,()2,1A ∈ ()B 对任意实数a ,()2,1A ∉()C 当且仅当0a <时,()2,1A ∉ ()D 当且仅当32a ≤时,()2,1A ∉二.填空(9)设{}n a 是等差数列,且13a =,2536a a +=,则{}n a 的通项公式为 。

【高三数学试题精选】2018海淀区高三数学理下学期期中试卷(有答案)

【高三数学试题精选】2018海淀区高三数学理下学期期中试卷(有答案)

2018海淀区高三数学理下学期期中试卷(有答案)
5 海淀区高三年级2018-2018 学年度第二学期期中练习
数学试卷(理科) 20184
本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上
作答无效.考试结束后,将本试卷和答题卡一并交回.
一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目
要求的一项.
1.函数的定义域为
A.[0,+) B.[1,+) c.(-,0] D.(-,1]
2.某程序的框图如图所示,若输入的z=i(其中i为虚数单位),则输出的S 值为
A.-1
B.1
c.-i
D.i
3.若x,满足,则的最大值为
A. B.3
c. D.4
4.某三棱锥的三视图如图所示,则其体积为
A. B.
c. D.
5.已知数列的前n 项和为Sn,则“ 为常数列”是“ ”的
A.充分不必要条 B.必要不充分条
c.充分必要条 D.既不充分也不必要条
6.在极坐标系中,圆c1 与圆c2 相交于 A,B两点,则|AB|。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档