九年级数学切线长定理

合集下载

九年级数学切线长定理

九年级数学切线长定理

A
1
O
M
2
B
证明:
∵PA、PB是⊙o的两条切线,
关键是作辅助 ∴OA⊥AP,OB⊥BP 线~ 根据你的直观判断,猜想图中 PA是否等于PB?∠1与∠2又 又OA=OB,OP=OP, 有什么关系?
∴Rt△AOP≌Rt△BOP(HL) ∴PA=PB,∠1=∠2

P
A
O
P
B
• 切线长定理:

从圆外一点引圆的两条切线,它们的切线 长相等,这一点和圆心的连线平分两条切 线的夹角。
; https:///1/ ; https:///2/ ; https:///3/ ; https:///4/
; https:///5/;
道:"屠将你呀の人撤回去吧,等白重炙出关了,俺让他交出神剑与你呀,如何?" "桀桀!你呀の承诺没有任何效用,那个不咋大的畜生不出来,俺就让整个炽火大陆替他殉葬!"屠继续笑一声,而后冷冷传音过来,言语中の寒意将下方数百条大船数万人同时感觉如坠冰窟. "你呀…"九大 人气の浑身一阵颤抖,怒道:"你呀这样做炽火大陆迟早会被你呀毁灭,到时候炽火大陆都没人了,你呀这个领主还有用吗?" "桀桀,俺花费数百万神石购买了炽火位面,俺想怎么玩就怎么玩,想让它毁灭就毁灭.再说了全部灭绝又如何,不出数万年,这个位面又会繁衍出数亿人,所以这多 俺来说,没有什么损失!" 神主屠轻飘飘の一句传音,将九大人和在场の无数人以及时刻关注着这里の大陆神级强者,全部一震. 所以人第一时候感觉到只有两种心情,悲哀,愤怒! 做为位面の领主,可以随意掌控位面の所有人生死.就算毁灭了一些文明,他也可以等待数万年,等待下 一些文明の诞生.他才是炽火位面の神,而炽火位面の所有人包括神级强者都

人教版九年级数学上册24.2.2切线长定理教案

人教版九年级数学上册24.2.2切线长定理教案
此外,小组讨论的环节中,我发现学生们在讨论切线长定理的实际应用时,思路不够开阔。这可能是因为他们在日常生活中对几何图形的观察不够细致,或者是缺乏将理论知识应用到实际中的经验。我打算在之后的课程中,增加一些观察和分析实际几何图形的练习,帮助学生培养从生活中发现数学的能力。
在难点解析部分,我发现通证明过程有了更清晰的认识。但仍有学生反映在理解证明思路时感到困难。我考虑在下一节课中,引入更多的辅助手段,如动画演示或实物模型,来帮助学生们更好地理解几何证明的思路。
-证明思路:证明过程中涉及到的几何变换和逻辑推理对学生来说是难点。
-举例:在证明过程中,如何通过构造全等三角形和使用圆的性质来推导切线长定理。
-问题解决:学生在应用切线长定理解决具体问题时,往往难以找到合适的解题切入点。
-举例:在求解切线长或证明线段相等的问题时,学生可能不知道如何利用切线长定理来简化问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了切线长定理的基本概念、重要性和应用。通过实践活动和小组讨论,我们加深了对切线长定理的理解。我希望大家能够掌握这些知识点,并在解决几何问题时灵活运用。如果有任何疑问或不明白的地方,请随时向我提问。
二、核心素养目标
1.培养学生的几何直观与空间观念:通过切线长定理的学习,使学生能够观察和理解几何图形,发展空间想象力,提高解决几何问题的能力。
2.提升学生的逻辑推理与证明能力:引导学生探索切线长定理的证明过程,训练学生运用逻辑推理、几何论证的方法,培养严谨的数学思维。
3.增强学生的解决问题能力:通过切线长定理在具体题目中的应用,让学生掌握解决问题的方法和策略,提高解题效率,形成良好的数学解题习惯。

九年级上册数学精品课件: 切线长定理

九年级上册数学精品课件: 切线长定理

课堂小结
切线长 切线长 定理
三角形 内切圆
原理 作用
辅助线
有关概念 应用
图形的轴对称性
提供了证线段和 角相等的新方法
① 分别连接圆心和切点; ② 连接两切点; ③ 连接圆心和圆外一点.
内心概念及性质
运用切线长定理,将相等线段 转化集中到某条边上,从而建 立方程.
谢谢观看
证明:∵PA切☉O于点A,
O.
P
∴ OA⊥PA.
B
同理可得OB⊥PB.
∵OA=OB,OP=OP, ∴Rt△OAP≌Rt△OBP, ∴PA=PB,∠APO=∠BPO.
想一想:若连结两切点A、B,AB交
A
OP于点M.你又能得出什么新的结论? O. M
并给出证明.
P
OP垂直平分AB.
B
证明:∵PA,PB是⊙O的切线,点A,B是切点 ∴PA = PB ,∠OPA=∠OPB ∴△PAB是等腰三角形,PM为顶角的平分线 ∴OP垂直平分AB.
在Rt△OPA中,PA=5,∠POA=30°,
OP=5 3cm.
即铁环的半径为 5 3cm.
练一练
PA、PB是☉O的两条切线,A,B是切点,OA=3. (1)若AP=4,则OP=5 ; (2)若∠BPA=60 °,则OP= 6 .
A
O
P
B
二 三角形的内切圆及作法
互动探究
小明在一家木料厂上班,工作之余想对厂里的三 角形废料进行加工:裁下一块圆形用料,怎样才能 使裁下的圆的面积尽可能大呢?
BF=BD=AB-AF=13x(由cmB).D+CD=BC,可得
F E
O
(13-x)+(9-x)=14, C
D

初中数学 什么是切线长定理

初中数学  什么是切线长定理

初中数学什么是切线长定理
初中数学中,切线长定理是与圆相关的一个重要概念。

下面我将详细介绍切线长定理的定义、性质和相关概念。

1. 切线长定理的定义:
-切线长定理:在一个圆上,一个角的顶点在切点上,另外两个顶点在圆上,这个角的两条边分别与切线相交,那么这两条切线的长度相等。

2. 切线长定理的性质:
-定理性质1:切线长度相等。

如果一个圆上的两条切线与同一个角相交,且角的顶点在切点上,那么这两条切线的长度相等。

3. 切线长定理的相关概念:
-切点:切线与圆相交的点称为切点。

-切线长度:切线的长度即为从切点到圆心的距离。

切线长定理是初中数学中的一个重要概念,它可以帮助我们理解和应用几何知识,解决与切线和圆相关的问题。

在应用切线长定理时,需要注意定理的定义和性质,并运用几何知识进行推理和分析。

例如,如果我们需要判断两条切线的长度是否相等,我们可以先找到这两条切线与同一个角相交,并且角的顶点在切点上。

然后根据切线长定理的性质,我们可以得出这两条切线的长度相等。

希望以上内容能够满足你对切线长定理的了解。

九年级数学切线长定理

九年级数学切线长定理
切线长定理
切线长定理 从圆外一点引圆的两条切线,它
们的切线长相等,圆心和这一点的连线平分两
条切线的夹角。
B

O
1 2
P
A
几何语言:
PA、PB分别切⊙O于A、B
PA = PB ∠1=∠2
切线长定理的基本图形的研究
A
PA、PB是⊙O的两条切线,
A、B为切点,直线OP交⊙O E 于点D、E,交AB于C。
N
∴AL=AP, LB=MB, D
NC=MC, DN=DP O
P ∴AL+LB+NC+DN=AP+MB+MC+DP
即 AB+CD=AD+BC
AL
C M B
例2、如图,AB是⊙O的直径,AD、DC、 BC是切线,点A、E、B为切点, (1)求证:OD ⊥ OC (2)若BC=9,AD=4, 求OB的长.
O CD
P
B (1)写出图中所有的垂直关系
(2)写出图中与∠OAC相等的角
(3)写出图中所有的全等三角形
(4)写出图中所有的相似三角形 (5)写出图中所有的等腰三角形
例1 、如图,四边形ABCD的边AB、BC、CD、DA和圆⊙O
分别相切于点L、M、N、P,求证: AD+BC=AB+CD
由切线长定理得:
(3)连结圆心和圆外一点(角平分线)
小 结:
1.切线长定理: 从圆外一点引圆的两条切线,它们的
切线长相等,圆心和这一点的连线平分两条切线的夹
角。 B
∵PA、PB分别切⊙O于A、B
E

OC
D
∴PA = PB ,∠OPA=∠OPB

九年级切线长定理知识点

九年级切线长定理知识点

九年级切线长定理知识点九年级切线长定理是数学中的一个重要定理,它在解决几何问题中起到了至关重要的作用。

切线长定理的应用范围非常广泛,涉及到各种与圆相关的数学问题。

本文将从几何概念、切线的定义、切线长定理的推导和应用等方面进行讲解。

首先,我们来回顾一下一些基本的几何概念。

在平面几何中,圆是指平面上与一个确定点的距离相等的所有点的集合。

圆由圆心和半径决定,其中圆心是指到圆上任意一点的线段的中点,半径是指圆心到圆上任意一点的线段。

而切线是指与圆只有一个公共点的直线。

那么,如何准确地描述切线的定义呢?我们可以从圆的性质出发来定义切线。

对于任意一点P在圆上,过P点与圆心O的直线,称为弦。

如果弦只有一个公共点与圆相交,那么这条弦就是切线。

换言之,切线是与圆只有一个交点的直线。

接下来,我们来探索一下切线长定理的推导过程。

假设已知圆的半径为r,切线与半径的交点为A,切线与圆的切点为B,那么我们要证明切线长与半径和半径所对的圆心角存在相等关系。

首先,我们可以得到△OBA为直角三角形。

通过勾股定理,我们可以得到OB的平方等于OA的平方加上AB的平方,即OB²=OA²+AB²。

运用一些几何性质,我们得到△OBA与△OAB相似。

由于两个三角形的对应边的比例相等,于是可以得到OA的比例等于AB的比例,即OA/AB=AB/OB。

同时,AB/OB等于弦两端的线段的比例,即AB/2r,因为弦被半径平分。

将这个比例代入前面的等式中,我们可以得到OA²=2r×AB。

这就是切线长定理的推导过程。

经过推导,我们可以得出切线长与半径之间的关系。

具体来说,切线长等于半径的平方乘以2,即l=2r。

这意味着在圆上,如果我们知道了圆的半径,就可以直接计算出切线的长度,而不需要知道切线与半径的具体交点位置。

切线长定理在解决几何问题中发挥了重要的作用。

它在很多应用中都展现出了其独特的价值。

例如,当我们需要计算切线的长度时,只需要知道圆的半径即可,无需知道切线与圆的具体交点位置。

初中数学人教九年级上册第二十四章圆-切线长定理

初中数学人教九年级上册第二十四章圆-切线长定理

(1)写出图中所有的垂直关系;
B
OA⊥PA,OB ⊥PB,AB ⊥OP.
(2)写出图中与∠OAC相等的角;
∠OAC=∠OBC=∠APC=∠BPC. (3)写出图中所有的全等三角形;
△AOP≌ △BOP, △AOC≌ △BOC, △ACP≌ △BCP.
(4)写出图中所有的等腰三角形.△ABP △AOB
条切线,它们的切线长相
O
P
等,圆心和这一点的连线
平分两条切线的夹角. 几何语言:
PA、PB分别切⊙O于A、B
B PA = PB ∠OPA=∠OPB
注意 切线长定理为证明线段相等、角相等提供了新的方法.
拓展结论 A
PA、PB是⊙O的两条切线,A、
B为切点,直线OP交⊙O于点D
E OCD
P
、E,交AB于C.
A
P O
B
课堂小结
切线长
切线长 定理
原理 作用
辅助线
图形的轴对称性
提供了证线段和 角相等的新方法
① 分别连接圆心和切点; ② 连接两切点; ③ 连接圆心和圆外一点.
课后作业
1、《课后作业》 2、练习册
思考:PA为⊙O的一条切线,沿着直线PO对折,设圆上与点
A重合的点为B.
➢ OB是⊙O的一条半径吗?
A
➢ PB是⊙O的切线吗?
O.
P
➢ PA、PB有何关系? B
➢ ∠APO和∠BPO有何关系?
(利用图形轴对称性解释)
二 切线长定理
你能写出上述结论的证
明过程吗?
A
O.
P
B
切线长定理:
A
从圆外一点引圆的两
学习目标
1.掌握切线长定理,初步学会运用切线长定理进行计算 与证明.(重点)

3.4(4)切线长定理

3.4(4)切线长定理
A P
C

O
B
例题解析
例4、如图,已知:P为⊙O外一点,PA,PB是 ⊙O的两条切线,A,B是切点,点C是 AB 上任意 一点,过点C的切线分别交PA,PB与点D,E. (1)若PA=4,求:△PDE的周长; (2)若∠P=40°,求∠DOE的度数。
DA P C

O
E B
做一做
4
切线的画法
• 1.已知⊙O上有一点A,你能过点A点作出⊙O的切线吗?


A

2.已知⊙O外有一点P,你还能过点P点作出⊙O的切线吗?
结论: 1、经过圆上一点能确定圆的一条切线; 2、经过圆外一点能画圆的两条切线。
挑战自我10 已知:AB是⊙O的直径,AC、BC是⊙O的两条弦, EF是过点B的⊙O的切线。 试说明:∠CBE和∠A的关系,并说明理由。
九年级数学(上)第3章: 对圆的进一步认识
3.4直线和圆的位置关系(3) ——切线长定理
1、什么叫直线与圆相切? 2、圆的切线的判定方法是什么?
3、圆的切线的性质是什么? 问题:经过圆外一点P能画圆的几条切线?
A P B

O
PA=PB吗?
新知探索
1.已知:如图,P是⊙O外一点,PA,PB都是⊙O的切 线,A,B是切点. 求证:PA=PB
F O ●
A
B
四、弦切角定理:
C
E
1、弦切角:圆的切线与过切点的弦所夹的角叫弦切角。
2、弦切角定理:圆的弦切角等于它所夹弧所对的 圆周角。
A E

D
O C
B
例题解析
例2、如图,已知:P为⊙O外一点,PA,PB是 ⊙O的两条切线,A,B是切点,BC是⊙O的直径。 (1)求证:AC∥OP; (2)如果∠APB=70°,求 AC 的度数。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

例2 已知:如图, △ABC的内切圆⊙O与 BC 、CA、 AB 分别相交于点D 、 E 、 F ,且AB=9厘米,BC =14厘米,CA = 13厘米,求AF、BD、CE的长。
A E F B D O C
小结:
(1)切线长定理。 (2)连接圆心和切点是我 们解决切线长定理相关问题 时常用的辅助线。
切线长定理的拓展
A
D
O
H
C
P
B
(1)写出图中所有的垂直关系 (2)图中有哪些线段相等(除半径 外)、弧相等?
o.

o.
三角形外接圆
C
三角形内切圆
C
. o
A B B
. o
A
外切圆圆心:三角形三边 垂直平分线的交点。
外切圆的半径:交点到三 角形任意一个定点的距离。
内切圆圆心:三角形三个 内角平分线的交点。 内切圆的半径:交点到三 角形任意一边的垂直距离。
白荌苒居然急了起来“好思思,你快帮帮我吧,我可不想在大学的时候让他被别人抢了先去! ”
钟思敛起了佯装的正经冲她笑了笑“知道了、知道了,我能拿你这小女子有什么办法呢! ”
再回头想想,上学的时候也不是没有人跟她示好过,但都是被她一本正经的以学业为重的理由给婉拒了。
她难免会跟白荌苒诉苦“你说说、我老爹跟老娘都是怎么想的,真是想一出来一出,上学的时候总是期盼着我年年拿第一,要考一流的大学、 要做上乘的工作,这些我都做到了以后又开始给我出新的难题,简直都不让人消停了。”
; / 聚星娱乐
bgk162utb
钟思当时不免笑着揶揄她“小白白,没想到你居然也会有发奋图强的这一天啊,居然还是为了一个男生! ”
白荌苒赶紧捂紧她的嘴急的直瞪她“你小点声,被你爸妈听到我就完了! ”
钟思只得不住的点头表示自己的忠心才得已脱离她的魔爪,她深吸一口气“你这也忒重色轻友了吧,你居然为了一个男生想要灭我的口! ”又 悠悠然的调侃地叹一句“子非良友,不可深交也! ”
白荌苒安慰她“别这样,我集美貌与智慧于一体的思思,就算是去相亲也会是花见花开、人见人爱那一挂的! ”
钟思被她逗笑“你也不带这样酸我的牙”未了又做哀叹“还是你好,高中的时候就知道给自己留一条后路,也不至于如我这般晚景凄凉! ”她 说的甚是哀怨,以至于白荌苒听到这话不禁笑到涕泪横流。
白荌苒抹了一把泪笑的不亦乐乎“我说大才女,你至于这样说自己么? ”
A
1
O
M
2
B
证明:
∵PA、PB是⊙o的两条切线,
关键是作辅助 ∴OA⊥AP,OB⊥BP 线~ 根据你的直观判断,猜想图中 PA是否等于PB?∠1与∠2又 又OA=OB,OP=OP, 有什么关系?
∴Rt△AOP≌Rt△BOP(HL) ∴PA=PB,∠1=∠2

P
A
O
P
B
• 切线长定理:

从圆外一点引圆的两条切线,它们的切线 长相等,这一点和圆心的连线平分两条切 线的夹角。
钟思幽幽叹道“我向来甚是有自知自明!”
乐都水磨营中心学校 杨元斌
复习:
切线的判定:
切线的性质:
问题:
过平面内的一点作圆的切 线,可以作出几条圆外一点作圆的切线,这点 和切点之间的线段的长,叫做这点 到圆的切线长。
A
O
P
B • 切线是直线,不能度量; • 切线长是线段的长,这条线段的两个端 点分别是圆外一点和切点,可以度量。
相关文档
最新文档