控工实验指导书
第ⅰ部分实验指导书数控机床安全操作规程

第Ⅰ部分实验指导书数控机床安全操作规程:在使用过程中要严格遵守操作规程,机床的操作规程一般如下:ﻫ1.操作者必须熟悉机床的性能、结构、传动原理以及控制,严禁超性能使用。
ﻫ2.进入实验室前,所有人员不准拖鞋(最好是穿带绝缘介质的工装鞋),是长头发的同学要戴上防护帽。
3.工作前,应按规定对机床进行检查,查明电气控制是否正常,各开关、手柄位置是否在规定位置上,润滑油路是否畅通,油质是否良好,并按规定加润滑剂。
4.开机时应先注意液压和气压系统的调整,检查总系统的工作压力必须在额定范围,溢流阀、顺序阀、减压阀等调整压力正确。
5.开机时应低速运行3—5min,查看各部分运转是否正常。
6.加工工件前,必须进行加工模拟或试运行,严格检查调整加工原点、刀具参数、加工参数、运动轨迹。
并且要将工件清理干净,特别注意工件是否固定牢,调节工具是否已经移开。
7.工作中发生不正常现象或故障时,应立即停机,及时报告指导老师进行检修。
ﻫ8.工作完毕后,应及时清扫机床,并将机床恢复到原始状态,各开关、手柄放于非工作位置上,切断电源,认真执行好交接制度。
ﻫ9.必须严格按照操作步骤操作机床,未经操作者同意,决不允许其他人员私自开动机床。
10.按动按键时用力适度,不得用力拍打键盘、按键和显示屏。
11.禁止敲打中心架、顶尖、刀架、导轨、主轴等部件。
一、加工中心操作实验指导书加工中心是集机、电、液一体化的高科技设备;是一种自动化程度高、结构复杂、功能全面的先进加工设备。
加工中心的综合加工能力较强,具有加工精度高、加工灵活、通用性强、生产率高、质量稳定等优点。
在生产中有着至关重要的地位。
加工中心的操作者要做到文明生产,严格遵守如下加工中心的安全操作规程:1.未经培训者严禁开机;开机前认真检查电网电压、气源气压、润滑油和冷却油的油位是否正常,不正常时严禁开机。
2.机床启动后,先检查电气柜冷却风扇和主轴系统是否正常工作,不正常时应立即关机,及时报告老师进行检修。
机械控制工程基础实验指导书(07年)

中北大学机械工程与自动化学院实验指导书课程名称:《机械工程控制基础》课程代号:02020102适用专业:机械设计制造及其自动化实验时数:4学时实验室:数字化实验室实验内容:1.系统时间响应分析2.系统频率特性分析机械工程系2010.12实验一 系统时间响应分析实验课时数:2学时 实验性质:设计性实验 实验室名称:数字化实验室一、实验项目设计内容及要求1.试验目的本实验的内容牵涉到教材的第3、4、5章的内容。
本实验的主要目的是通过试验,能够使学生进一步理解和掌握系统时间响应分析的相关知识,同时也了解频率响应的特点及系统稳定性的充要条件。
2.试验内容完成一阶、二阶和三阶系统在单位脉冲和单位阶跃输入信号以及正弦信号作用下的响应,求取二阶系统的性能指标,记录试验结果并对此进行分析。
3.试验要求学习教材《机械工程控制基础(第5版)》第2、3章有关MA TLAB 的相关内容,要求学生用MA TLAB 软件的相应功能,编程实现一阶、二阶和三阶系统在几种典型输入信号(包括单位脉冲信号、单位阶跃信号、单位斜坡信号和正弦信号)作用下的响应,记录结果并进行分析处理:对一阶和二阶系统,要求用试验结果来分析系统特征参数对系统时间响应的影响;对二阶系统和三阶系统的相同输入信号对应的响应进行比较,得出结论。
4.试验条件利用机械工程与自动化学院数字化试验室的计算机,根据MA TLAB 软件的功能进行简单的编程来进行试验。
二、具体要求及实验过程1.系统的传递函数及其MA TLAB 表达 (1)一阶系统 传递函数为:1)(+=Ts Ks G 传递函数的MA TLAB 表达: num=[k];den=[T,1];G(s)=tf(num,den) (2)二阶系统 传递函数为:2222)(nn n w s w s w s G ++=ξ传递函数的MA TLAB 表达: num=[2n w ];den=[1,ξ2wn ,wn^2];G(s)=tf(num,den) (3)任意的高阶系统 传递函数为:nn n nm m m m a s a sa s ab s b s b s b s G ++++++++=----11101110)(传递函数的MA TLAB 表达:num=[m m b b b b ,,,110- ];den=[n n a a a a ,,,110- ];G(s)=tf(num,den)若传递函数表示为:)())(()())(()(1010n m p s p s p s z s z s z s Ks G ------=则传递函数的MATLAB 表达:z=[m z z z ,,,10 ];p=[n p p p ,,,10 ];K=[K];G(s)=zpk(z,p,k) 2.各种时间输入信号响应的表达(1)单位脉冲信号响应:[y,x]=impulse[sys,t] (2)单位阶跃信号响应:[y,x]=step[sys,t] (3)任意输入信号响应:[y,x]=lsim[sys,u,t]其中,y 为输出响应,x 为状态响应(可选);sys 为建立的模型;t 为仿真时间区段(可选) 试验方案设计可参考教材相关内容,相应的M 程序可参考(杨叔子主编的《机械工程控制基础》第五版)提供的程序,在试验指导教师的辅导下掌握M 程序的内容和格式要求,并了解M 程序在MATLAB 软件中的加载和执行过程。
自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。
2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。
二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。
1.比例(P)环节的模拟电路及其传递函数示于图1-1。
2.惯性(T)环节的模拟电路及其传递函数示于图1-2。
3.积分(I)环节的模拟电路及其传递函数示于图1-3。
4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。
5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。
6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。
三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。
2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。
附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。
材料成型及控制工程实验指导书

四、实验原理
1. 金相显微镜的使用
金相分析是研究材料内部组织和缺陷的主要方法之一,它在材料研究中占有重要的地位。利用金相显微镜将试样放大100~1500倍来研究材料内部组织的方法称为金相显微分析法,是研究金属材料微观结构最基本的一种实验技术。原材料的检验、铸造、压力加工、热处理等一系列生产过程的质量检测与控制需要使用金相显微镜,新材料、新技术的开发以及跟踪世界高科技前沿的研究工作也需要使用金相显微镜。因此,金相显微镜是材料领域生产与研究中研究金相组织的重要工具。下面就金相显微镜的原理、构造及使用作一般介绍。
实验十二 非稳态传热试验 58
实验十三 凝固过程及变质处理对合金组织的影响 62
实验十四 细丝CO2气体保护焊熔滴过渡工艺 66
实验十五 脉冲氩弧焊 72
实验十六 杯冲实验 78
4.选修课实验
实验十七 测试系统的调整与等强度梁标定 82
实验十八 组桥、轧制力传感器的压力标定 86
实验十九 动态特性实验 91
F1—物镜焦距。
而A′B′再经目镜放大后的放大倍数则可由以下公式计算:
M目=D/F2
式中:D—人眼明视距离(250 mm);
F2—目镜焦距。
显微镜的总放大倍数应为物镜与目镜放大倍数的乘积,即:
M总=M物×M目=250L/F1*F2
在使用中如选用另一台显微镜的物镜时,其机械镜筒长度必须相同,这时倍数才有效。否则,显微镜的放大倍数应予以修正,应为:
实验轧机操作安全守则
1. 开始实验前须检查轧机
(1)辊颈及各轴承处是否润滑;
(2)压下机构动作是否正常;
控制工程基础实验指导书(答案) 2讲解

实验二二阶系统的瞬态响应分析一、实验目的1、熟悉二阶模拟系统的组成。
2、研究二阶系统分别工作在ξ=1,0<ξ<1,和ξ> 1三种状态下的单位阶跃响应。
3、分析增益K对二阶系统单位阶跃响应的超调量σP、峰值时间tp和调整时间ts。
4、研究系统在不同K值时对斜坡输入的稳态跟踪误差。
5、学会使用Matlab软件来仿真二阶系统,并观察结果。
二、实验仪器1、控制理论电子模拟实验箱一台;2、超低频慢扫描数字存储示波器一台;3、数字万用表一只;4、各种长度联接导线。
三、实验原理图2-1为二阶系统的原理方框图,图2-2为其模拟电路图,它是由惯性环节、积分环节和反号器组成,图中K=R2/R1,T1=R2C1,T2=R3C2。
图2-1 二阶系统原理框图图2-1 二阶系统的模拟电路由图2-2求得二阶系统的闭环传递函1222122112/() (1)()/O i K TT U S K U S TT S T S K S T S K TT ==++++ :而二阶系统标准传递函数为(1)(2), 对比式和式得n ωξ==12 T 0.2 , T 0.5 , n S S ωξ====若令则。
调节开环增益K 值,不仅能改变系统无阻尼自然振荡频率ωn 和ξ的值,可以得到过阻尼(ξ>1)、临界阻尼(ξ=1)和欠阻尼(ξ<1)三种情况下的阶跃响应曲线。
(1)当K >0.625, 0 < ξ < 1,系统处在欠阻尼状态,它的单位阶跃响应表达式为:图2-3 0 < ξ < 1时的阶跃响应曲线(2)当K =0.625时,ξ=1,系统处在临界阻尼状态,它的单位阶跃响应表达式为:如图2-4为二阶系统工作临界阻尼时的单位响应曲线。
(2) +2+=222nn nS S )S (G ωξωω1()1sin( 2-3n to d d u t t tgξωωωω--=+=式中图为二阶系统在欠阻尼状态下的单位阶跃响应曲线etn o n t t u ωω-+-=)1(1)(图2-4 ξ=1时的阶跃响应曲线(3)当K < 0.625时,ξ> 1,系统工作在过阻尼状态,它的单位阶跃响应曲线和临界阻尼时的单位阶跃响应一样为单调的指数上升曲线,但后者的上升速度比前者缓慢。
PLC实验指导书

PLC实验指导书1. 简介PLC(Programmable Logic Controller,可编程逻辑控制器)是一种专门用于工业自动化控制的设备。
本实验指导书旨在帮助学生了解PLC的基本原理和实际应用,提供一系列实验指导,帮助学生掌握PLC的使用方法。
2. 实验设备2.1 PLC主机:本实验使用模拟PLC主机。
具体型号为XXX。
2.2 输入模块:用于接收外部传感器的信号并输入给PLC主机。
具体型号为XXX。
2.3 输出模块:用于控制外部执行机构,如电动阀门、电机等。
具体型号为XXX。
3. 实验一:PLC基本控制原理3.1 实验目的:通过本实验,学生将了解PLC的基本控制原理,理解PLC工作的流程和信号的输入与输出。
3.2 实验内容:3.2.1 搭建实验电路:将PLC主机、输入模块和输出模块按照指导书上的电路图连接起来。
3.2.2 编写控制程序:使用PLC编程软件,编写一个简单的控制程序,使得当一个开关被按下时,某个输出模块输出高电平。
3.2.3 上载程序到PLC主机:将编写好的控制程序上载到PLC主机中,使其开始运行。
3.2.4 运行实验:按下开关,观察输出模块是否正常工作。
4. 实验二:PLC在自动化流水线中的应用4.1 实验目的:通过本实验,学生将了解PLC在自动化流水线中的应用,学会使用PLC进行自动化生产控制。
4.2 实验内容:4.2.1 搭建实验电路:按照指导书上的电路图,搭建一个模拟的自动化流水线系统,包括传送带、气缸等。
4.2.2 编写控制程序:使用PLC编程软件,编写一个控制程序,使得流水线能够按照一定的节奏,自动将产品输送到下一个工位。
4.2.3 上载程序到PLC主机:将编写好的控制程序上载到PLC主机中,使其开始运行。
4.2.4 运行实验:观察流水线系统是否按照预期工作,产品是否能够顺利地传送到下一个工位。
5. 实验三:PLC在温度控制系统中的应用5.1 实验目的:通过本实验,学生将了解PLC在温度控制系统中的应用,学会使用PLC进行温度的测量和控制。
工业自动化控制作业指导书

工业自动化控制作业指导书一、引言工业自动化控制是现代工业生产中重要的一部分,它通过运用各种自动化设备和控制系统,对工业生产过程进行监测、调节和控制,实现生产过程的自动化和智能化。
本作业指导书旨在向学生介绍工业自动化控制的基本概念、原理和应用,帮助学生掌握相关技能,为将来从事工业自动化控制相关的工作做好准备。
二、基本概念1. 自动化概念工业自动化是指利用电子技术、计算机技术和控制技术等手段,对工业生产过程中的数据进行采集、处理和传输,并通过控制系统实现生产过程的自动化运行。
2. 控制系统概念控制系统是工业自动化控制的核心部分,它由传感器、执行器、控制器和通信网络组成,用于实时监测生产过程中的各种参数,根据预设的控制策略对参数进行调节,以实现生产过程的稳定运行。
3. 传感器与执行器传感器用于感知生产过程中的各种物理量,如温度、压力、湿度等,将其转化为电信号进行传输;执行器根据控制系统的指令,控制生产过程中的各种执行机构,如电机、开关阀等。
4. 控制器控制器是控制系统的核心部分,它接收传感器传输的信号,进行信号处理和数据分析,并根据控制算法生成相应的控制指令,通过执行器对生产过程进行调节。
三、自动控制的基本原理1. 反馈控制原理工业自动化控制系统通过采集过程参数的反馈信号,与预设的控制目标进行比较,并根据比较结果进行控制操作,以维持生产过程的稳定运行。
2. 开环控制和闭环控制开环控制是指控制系统在不考虑反馈信号的情况下单向控制生产过程;闭环控制是指控制系统通过采集反馈信号并与控制目标进行比较,实现对生产过程的动态调节。
3. 控制策略控制策略是指根据不同的控制要求和生产过程特点,选择适当的控制方法和算法进行控制操作。
常见的控制策略包括比例控制、积分控制、微分控制和模糊控制等。
四、工业自动化控制的应用1. 生产线自动化工业自动化控制在生产线上的应用可以实现生产过程的高效、精确和快速运行,提高生产效率和质量。
自动控制原理实验指导书(学生版)

编著 李蔓华 陈昌虎 李晓高自动控制理论实验指导书目录实验装置简介·························································(3-4·)实验一控制系统典型环节的模拟·················(5-6)实验二一阶系统的时域响应及参数测定·····(6-7)实验三二阶系统的瞬态响应分析·················(8-9)实验四频率特性的测试·······························(9-13)实验五PID控制器的动态特性······················(13-15)实验六典型非线性环节·································(15-18)实验七控制系统的动态校正(设计性实验)··(19)备注:本实验指导书适用于自动化、电子、机设专业,各专业可以根据实验大纲选做实验。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
控制工程基础实验指导书(机电工程专用书)北方工业大学机械系2008年12月目录实验一低阶系统的阶跃响应测试--------------------------------2 实验二低阶系统的频率特性测试--------------------------------7 附录1 ELVIS 简介------------------------------------------------14 附录2 放大器使用说明-------------------------------------------23实验一 低阶系统的阶跃响应测试一、实验目的1.学习利用运算放大器上建立动态模型的方法。
2.学习采用NI EL VIS 进行阶跃响应测试的方法。
3.了解一、二阶系统阶跃响应的测试方法。
二、实验设备 NI EL VIS 套件、计算机。
三、实验运算电路1、比例环节传递函数:K R Rs U s U s G i -=-==120)()()(图1-1 比例环节 2、一阶惯性环节传递函数:1)()()(0+-==Ts Ks U s U s G i 其中C R T R R K 212==图1-2 一阶惯性环节3、二阶振荡环节传递函数:22202)(nn ni s s U U s G ωζωω++-== 式中:214221C C R R n =ω若取001.0001.02413==C R C R ,则:232001.01000C R n ==ζω图1-3 二阶振荡环节四、实验步骤 1.比例环节响应测试1)断电,按图1-1所示比例环节的运算电路接线,取Ω=K R 101,选取Ω=K R 102使K 为1; 2)放大器输入端接EL VIS 信号发生器输出端,输出端接EL VIS 数字示波器输入端; 3)接线准确无误后,接通面包板电源;4)运行EL VIS ,单击示波器并打开双通道,同时观测输入输出信号;单击信号发生器,选择方波,然后单击运行即可在示波器上观察到输入信号(蓝色)和输出信号(绿色)。
波形正确后,单击single 键将波形锁定,单击保存图标保存波形数据,读取所需的参数;5)改变R 2,使K 分别为2,5,重复步骤1)、2)、3)、4)。
2.一阶惯性环节响应测试建立一阶惯性环节模型,观测不同时间常数T 下的阶跃响应曲线,并检验性能指标t s 。
1)断电,按图1-2所示一阶惯性环节的运算电路接线,在实验板R 1C 1插口上连接电阻R 1=10K 和C=0.1uF 的电容,选配R 2,使得T=0.001s 。
2)放大器输入端接EL VIS 信号发生器输出端,输出端接EL VIS 数字示波器输入端; 3)接线准确无误后,接通面包板电源;4)运行EL VIS ,单击示波器并打开双通道,同时观测输入输出信号;单击信号发生器选择方波,并将信号频率设置在10赫兹。
单击运行,观察输入输出波形,波形正确后,在示波器面板上单击single 键锁定波形,单击保存图标保存波形数据。
打开CURSORS 可直接读出性能指标(5%误差带),并将其填入表1-1中,并与理论值进行比较;5)改变R 2值,使T 为0.0033s ,重复步骤1)、2)3)、4)。
表1-1 一阶系统数据表格3.二阶振荡环节响应测试建立二阶振荡环节模型,观察不同阻尼比ζ时的阶跃响应,分析二阶系统在单位阶跃信号作用下的动特性及系统结构参数变化对阶跃响应的影响,并检验性能指标 t s ,%σ。
1)断电,按图1-3所示二阶振荡环节的运算电路接线。
其中R 2=R 4=10K Ω,C 1=C 2=0.1μF,,选配R 3值,使ζ=0.15;2)放大器输入端接EL VIS 信号发生器输出端,输出端接EL VIS 数字示波器输入端; 3)接线准确无误后,接通面包板电源;4)运行EL VIS,单击示波器并打开双通道,同时观测输入输出信号;单击信号发生器选择方波,并将信号频率设置在10赫兹。
单击运行,观察输入输出波形,波形正确后,在示波器面板上单击single键锁定波形,单击保存图标保存波形数据。
打开CURSORS可直接读出性能指标(5%误差带)ts 、%σ,并将其填入表1-2中,并与理论值进行比较;5)改变R3值,使ζ分别为0.7及2,重复以上操作。
表1-2二阶系统数据表格五、预习要求1.熟悉各类环节运算电路,并推导传递函数。
2.明确各类环节的性能指标,并选取试验所需参数。
六、实验报告要求1.写明班级、姓名、学号、实验名称、实验目的。
2.画出各类环节的模拟运算电路。
3.实验步骤。
4.计算各类环节性能指标及选配的参数值,请列出计算过程。
5.以表格形式列出实验结果及相应理论值,并作比较。
6.思考题的解答。
7.体会。
七、思考题1.一、二阶系统改变增益是否会出现不稳定现象?2.二阶系统试验线路中如何确保实现负反馈?实验二 低阶系统的频率特性测试一、实验目的学习使用采集和分析软件及计算机测量系统或环节的频率特性的方法。
二、实验设备NI EL VIS ,计算机。
三、实验运算电路1.一阶系统图2-1 一阶系统传递函数)()()(0s U s U s G i =1+=TS K12R R K = C R T 2=2.二阶系统图2-2 二阶系统传递函数 22202)(nn ni s s U U s G ωζωω++-== 式中13214222001.01C R C C R R n ==ζω。
取001.0001.02413==C R C R ,则:1000=n ω,5.0=ζ四、实验原理1.系统的幅频特性系统的幅频特性是指输出信号与输入信号的幅值之比随频率变化的情况。
因此可根据频率变化时,幅值比的变化绘制出系统的幅频特性图。
实验过程中改变信号频率,使用EL VIS 采集输入和输出的波形,从分析软件中读取信号的幅值大小,求出幅值比,绘制对数幅频特性图。
2.系统的相频特性系统的相频特性图表示出输出信号和输入信号的相位差随频率变化的情况。
由于系统输入输出信号相位差无法直接从示波器中读出,可利用周期与角度的关系换算出相位差。
图2-3为输入输出信号波形图,信号周期T (信号周期T 换算成相位角为360º)和两个信号的时间差ΔT 均可从图中读出。
式2-1为相位角和周期的关系式,其中只有ϕ是未知数,因此通过式2-2计算出ϕ值,就得到所需的相位差。
图2-3360)(T ΔT f ϕ= (2-1) TΔT603)( =f ϕ (2-2) 五、实验步骤1. 一阶系统1)断电,按图2-1所示一阶系统的运算电路接线。
其中R 1= 10K Ω,C 1=0.1μF ,,选配R 2值,使T=0.001s ;2)放大器输入端接EL VIS 信号发生器输出端,输出端接EL VIS 数字示波器输入端; 3)接线准确无误后,接通面包板电源;4)运行EL VIS ,单击示波器并打开双通道,同时观测输入输出信号;单击信号发生器选择正弦波,将输入波形幅值设为1V (有效幅值为0.707V )。
单击运行,观察输入输出波形,寻找输出波形幅值最大点(该点频率即为转折频率)。
波形正确后,在示波器面板上单击single 键锁定波形,单击保存图标保存波形数据。
打开CURSORS 可直接读出信号的幅值和时间差,记入表2-1中;5)改变信号频率(要求在转折频率附近选择10个不同的信号频率),观察图形变化情况,记录不同频率下的相角滞后时间ΔT 和输入和输出的幅值比(CH B 的RMS/CH A 的RMS )。
计算出幅频比和相位差,并手绘频谱图;表2-1一阶系统2.二阶系统1)断电,按图2-2所示二阶振荡环节的运算电路接线。
其中R2=R4=10K,C1=C2=0.1μF,,选配R3值,使ζ=0.5。
2)放大器输入端接EL VIS信号发生器输出端,输出端接EL VIS数字示波器输入端。
3)接线准确无误后,接通面包板电源。
4)运行EL VIS,单击示波器并打开双通道,同时观测输入输出信号;单击信号发生器选择正弦波,将输入波形幅值设为1V。
单击运行,观察输入输出波形,寻找输出波形幅值最大点(该点频率即为转折频率)。
波形正确后,在示波器面板上单击single键锁定波形,单击保存图标保存波形数据。
打开CURSORS可直接读出信号的幅值和时间差,记如表2-2。
改变信号频率,记录下一组数据。
六、预习要求1.熟悉模型线路及典型环节的频率特性。
2.弄清信号频率与系统转折频率的关系。
七、实验报告要求1.写明班级、姓名、学号、实验名称、实验目的2.测试方法原理。
3.实验步骤。
4.计算各关键频率点(列出计算过程),实验数据的记录与整理。
5.根据实验数据和理论计算数据整理列表,在单位数坐标纸上绘制频谱图并与理论图形比较,分析产生误差的原因。
6.回答思考题。
7.体会表2-2二阶系统数据八、思考题1.一、二阶系统中最后一个运放的作用。
2.什么样的系统可以由幅频特性确定其传递函数?为什么?幅频特性相频特性是否总是唯一对应?附录1 ELVIS简介一虚拟仪器概述虚拟仪器(virtual instrument)是基于计算机的仪器。
计算机和仪器的密切结合是目前仪器发展的一个重要方向。
粗略地说这种结合有两种方式,一种是将计算机装入仪器,其典型的例子就是所谓智能化的仪器。
随着计算机功能的日益强大以及其体积的日趋缩小,这类仪器功能也越来越强大,目前已经出现含嵌入式系统的仪器。
另一种方式是将仪器装入计算机。
以通用的计算机硬件及操作系统为依托,实现各种仪器功能。
虚拟仪器主要是指这种方式。
下面的框图反映了常见的虚拟仪器方案。
图Ⅰ-1虚拟仪器方案虚拟仪器的主要特点有:1.尽可能采用了通用的硬件,各种仪器的差异主要是软件。
2.可充分发挥计算机的能力,有强大的数据处理功能,可以创造出功能更强的仪器。
3.用户可以根据自己的需要定义和制造各种仪器。
虚拟仪器实际上是一个按照仪器需求组织的数据采集系统。
虚拟仪器的研究中涉及的基础理论主要有计算机数据采集和数字信号处理。
目前在这一领域内,使用较为广泛的计算机语言是美国NI公司的LabVIEW。
二LabVIEW简介LabVIEW(Laboratory Virtual instrument Engineering)是一种图形化的编程语言,它广泛地被工业界、学术界和研究实验室所接受,视为一个标准的数据采集和仪器控制软件。
LabVIEW集成了与满足GPIB、VXI、RS-232和RS-485协议的硬件及数据采集卡通讯的全部功能。
它还内置了便于应用TCP/IP、ActiveX等软件标准的库函数。
这是一个功能强大且灵活的软件。
利用它可以方便地建立自己的虚拟仪器,其图形化的界面使得编程及使用过程都生动有趣。
图形化的程序语言,又称为“G”语言。