安徽省宿州市XX中学2017届中考第一次模拟考试数学试题含答案

合集下载

安徽省宿州市中考数学一模考试试卷

安徽省宿州市中考数学一模考试试卷

安徽省宿州市中考数学一模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共15题;共30分)1. (2分) (2017八下·朝阳期中) 下列计算正确的是()A .B .C .D .2. (2分)一项“过关游戏”规定:在过第n关时要将一颗质地均匀的骰子(六个面上分别刻有1到6的点数)抛掷n次,若n次抛掷所出现的点数之和大于n2 ,则算过关;否则不算过关,则能过第2关的概率是()A .B .C .D .3. (2分)已知下列一组数:1,,,,,…;用代数式表示第n个数,则第n个数是()A .B .C .D .4. (2分)如图O是圆心,半径OC垂直弦AB于点D,AB=8,OB=5,则OD等于()A . 2B . 3C . 4D . 55. (2分)如图,国旗上的五角星的五个角的度数是相同的,每一个角的度数都是()A . 30°B . 35°C . 36°D . 42°6. (2分) (2020八上·绵阳期末) 某市政工程队准备修建一条长1200米的污水处理管道.在修建完400米后,为了能赶在讯期前完成,采用新技术,工作效率比原来提升了25%.结果比原计划提前4天完成任务.设原计划每天修建管道x米,依题意列方程得()A .B .C .D .7. (2分)在一个不透明的盒子里装着除颜色外完全相同的黑、白两种小球共40个.小颖做摸球实验.她将盒子里面的球搅匀后从中随机摸出一个球记下颜色后放回,不断重复上述过程,多次试验后,得到表中的数据数据,并得出了四个结论,其中正确的是()摸球的次数n10020030050080010003000摸到白球的次数m70128171302481599903摸到白球的频率0.750.640.570.6040.6010.5990.602A . 试验1500次摸到白球的频率比试验800次的更接近0.6B . 从该盒子中任意摸出一个小球,摸到白球的频率约为0.6C . 当试验次数n为2000时,摸到白球的次数m一定等于1200D . 这个盒子中的白球定有28个8. (2分)下列计算正确的是()A .B .C .D .9. (2分)方程3x2-4x+1=0 ()A . 有两个不相等的实数根B . 只有一个实数根C . 有两个相等的实数根D . 没有实数根10. (2分) (2016七上·微山期末) 如图,当过O点画不重合的2条射线时,共组成1个角;当过O点画不重合的3条射线时,共组成3个角;当过O点画不重合的4条射线时,共组成6个角;….根据以上规律,当过O 点画不重合的10条射线时,共组成()个角.A . 28B . 36C . 45D . 5511. (2分)不等式组的解集是3<x<a+2,则a的取值范围是()A . a>1B . a≤3C . a<1或a>3D . 1<a≤312. (2分) (2020八上·海拉尔期末) 如图,中,,,,分别为边的中点,将绕点顺时针旋转到的位置,则整个旋转过程中线段所扫过部分的面积(即阴影部分面积)为()A .B .C .D .13. (2分)为保护生态环境,某县响应国家“退耕还林”号召,将某一部分耕地改为林地,改变后,林地面积和耕地面积共有180平方千米,耕地面积是林地面积的25%,为求改变后林地面积和耕地面积各多少平方千米.设改变后耕地面积x平方千米,林地地面积y平方千米,根据题意,列出如下四个方程组,其中正确的是()A .B .C .D .14. (2分)已知圆锥侧面展开图的扇形半径为2cm,面积是cm2 ,则扇形的弧长和圆心角的度数分别为A .B .C .D .15. (2分) (2016九上·端州期末) 关于抛物线y=(x-1)2-2,下列说法中错误的是()A . 顶点坐标为(1,-2)B . 对称轴是直线x=1C . 当x>1时,y随x的增大而减小D . 开口方向向上二、填空题 (共5题;共5分)16. (1分)(2018·甘肃模拟) 若单项式﹣xm﹣2y3与 xny2m﹣3n的和仍是单项式,则m﹣n=________.17. (1分)(2016·遵义) 字母a,b,c,d各代表正方形、线段、正三角形、圆四个图形中的一种,将它们两两组合,并用字母连接表示,如表是三种组合与连接的对应表,由此可推断图形的连接方式为________.18. (1分)一个多项式的2倍减去5mn﹣4得﹣3mn+2,则这个多项式是________.19. (1分) (2019九上·朝阳期末) 如图,在5×5的正方形网格中,每个小正方形的边长均为1,点A、B、C都在格点上,则cos∠BAC的值为________.20. (1分)如果甲的身高数或体重数至少有一项比乙大,则称甲不亚于乙,在200个小伙子中,如果某人不亚于其他199人,就称他为棒小伙子,那么,200个小伙子中的棒小伙子最多可能有________ .三、综合题 (共7题;共70分)21. (11分) (2018七上·江都期中) 观察下列等式:第1个等式: = = ×(1- );第2个等式: = = ×( - );第3个等式: = = ×( - );第4个等式: = = ×( - );…请回答下列问题:(1)按以上规律列出第5个等式: =________=________;(2)用含n的代数式表示第n个等式: =________=________(n为正整数);(3)求的值.22. (10分) (2017八上·乌拉特前旗期末) 先化简,再求值:(﹣)÷ ,其中a=1,b=﹣3.23. (2分) (2019九下·绍兴期中) 某调查机构将今年绍兴市民最关注的热点话题分为消费.教育.环保.反腐及其它共五类.根据最近一次随机调查的相关数据,绘制的统计图表如下:根据以上信息解答下列问题:(1)本次共调查________人,请在答题卡上补全条形统计图并标出相应数据;________(2)若绍兴市约有500万人口,请你估计最关注教育问题的人数约为多少万人?(3)在这次调查中,某单位共有甲.乙.丙.丁四人最关注教育问题,现准备从这四中随机抽取两人进行座谈,求抽取的两人恰好是甲和乙的概率(画树状图或列表说明).24. (15分) (2018九上·海安月考) 已知关于x的一元二次方程x2+2x+a=0,(1)若该方程的一个根为1,求a的值及该方程的另一根;(2)若方程有两个不相等的实数根,求a的取值范围.25. (2分) (2018八下·青岛期中) 某市的出租车收费y(元)与路程x(千米)之间的函数关系如图所示:(1)图中AB段的意义是________.(2)当x>2时,y与x的函数关系式为________.(3)张先生打算乘出租车从甲地去丙地,但需途径乙地办点事,已知甲地到乙地的路程为1km,乙地至丙地的路程是3km,现有两种打车方案:方案一:先打车从甲地到乙地,办完事后,再打另一部出租车去丙地方案二:先打车从甲地到乙地,让出租车司机等候,办完事后,继续乘该车去丙地(出租车等候期间,张先生每分钟另付0.2元,假设计价器不变)张先生应选择哪种方案较为合算?试说明理由。

宿州市中考数学一模试卷

宿州市中考数学一模试卷

宿州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分)计算(-20)+17的结果是()A . -3B . 3C . -2017D . 20172. (2分) (2017九上·孝南期中) 下列图形是轴对称而不是中心对称图形的是()A . 平行四边形B . 等边三角形C . 菱形D . 正方形3. (2分)(2012·葫芦岛) 下列运算中,正确的是()A . a3÷a2=aB . a2+a2=a4C . (ab)3=a4D . 2ab﹣b=2a4. (2分)(2018·重庆模拟) 不等式组的解集是()A . ﹣1≤x≤4B . x<﹣1或x≥4C . ﹣1<x<4D . ﹣1<x≤45. (2分) (2019七下·和平月考) 如图,下列条件,不能判定的是(A .B .C .D .6. (2分)(2019·花都模拟) 如图所示是小明在某条道路所统计的某个时段来往车辆的车速情况,下列说法中正确的是()A . 中位数是52.5B . 众数是8C . 众数是52D . 中位数是53二、填空题 (共6题;共6分)7. (1分) (2018七下·东台期中) 肥皂泡沫的泡壁厚度大约是0.0007mm,则数据0.0007用科学记数法表示为________8. (1分)Rt△ABC中,∠C=90°,CD为斜边AB上的高,若BC=4,sinA=,则BD的长为________ .9. (1分)如图,正六边形ABCDEF内接于⊙O,若⊙O的半径为3,则阴影部分的面积为________ (结果保留π).10. (1分)(2019·玉林模拟) 二元一次方程组的解是________.11. (1分)(2017·启东模拟) 已知3是一元二次方程x2﹣4x+c=0的一个根,则方程的另一个根是________.12. (1分) (2017八上·阳谷期末) 如图,点A(2,2 ),N(1,0), ∠AON=60°,点M为平面直角坐标系内一点,且MO=MA,则MN的最小值为________.三、解答题 (共11题;共121分)13. (10分) (2016八上·桑植期中) 计算:(1)﹣2+(π﹣3.14)0(2)÷ .14. (5分) (2017九上·黑龙江开学考) 先化简,再求代数式÷(x﹣)的值,其中x=2sin60°+tan45°.15. (10分)某商场为了吸引顾客,设立了一个可以自由转动的转盘(如下图),并规定:购买100元的商品,就能获得一次转动转盘的机会,如果转盘停止后,指针正好对准红、绿、黄、白区域,那么顾客就可以分别得到80元、30元、10元、0元的购物券,凭购物券仍然可以在商场购物;如果顾客不愿意转转盘,那么可以直接获得购物券10元.(1)每转动一次转盘所获购物券金额的平均数是多少?(2)若在此商场购买100元的货物,那么你将选择哪种方式获得购物券?(3)小明在家里也做了一个同样的转盘做实验,转10次后共获得购物券96元,他说还是不转转盘直接领取购物券合算,你同意小明的说法吗?请说明理由.16. (10分) (2020九下·武汉月考) 请仅用无刻度的直尺完成下列画图,不写画法,保留画图痕迹.(用虚线表示画图过程,实线表示画图结果)(1)如图①,四边形 ABCD 中,AB=AD,∠B=∠D,画出四边形 ABCD 的对称轴 m;(2)如图②,四边形 ABCD 中,AD∥BC,∠A=∠D,画出 BC 边的垂直平分线 n.(3)如图③,△ABC 的外接圆的圆心是点 O,D 是的中点,画一条直线把△ABC 分成面积相等的两部分.17. (5分)(2018·陕西) 周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D竖起标杆DE,使得点E与点C、A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.18. (15分)如图,在平面直角坐标系xOy中,一次函数y=ax+b(a,b是常数,且a≠0)的图象与反比例函数(k是常数,且k≠0)的图象交于一、三象限内的A,B两点,与x轴交于点C,点A的坐标为(2,m),点B的坐标为(n,﹣2),tan∠BOC= .(1)求点B的坐标及反比例函数和一次函数的表达式;(2)将直线AB沿y轴向下平移6个单位长度后,分别与双曲线交于E,F两点,连结OE,OF,求△EOF的面积.19. (15分) (2018七下·深圳期末) 国家规定,中小学生每天在校体育活动时间不低于1小时,为了解这项政策的落实情况,有关部门就“你某天在校体育活动时间是多少”的问题,在某校随机抽查了部分学生,再根据活动时间t(小时)进行分组(A组:t<0.5,B组:0.5≤t<1,C组:1≤t<1.5,D组:t≥1.5),绘制成如下两幅不完整统计图,请根据图中信息回答问题:(1)此次抽查的学生数为________人,并补全条形统计图________;(2)从抽查的学生中随机询问一名学生,该生当天在校体育活动时间低于1小时的概率是________;(3)若当天在校学生数为1200人,请估计在当天达到国家规定体育活动时间的学生有________人.20. (10分)某学校计划购进一批电脑和电子白板,经过市场考察得知,购买1台电脑和2台电子白板需要3.5万元,购买2台电脑和1台电子白板需要2.5万元.(1)求每台电脑,每台电子白板各多少万元?(2)根据学校实际,需至少购进电脑和电子白板共30台,总费用不超过28万元,那么电子白板最多能买几台?21. (15分)如图,A是半径为6cm的⊙O上的定点,动点P从A出发,以πcm/s的速度沿圆周按顺时针方向运动,当点P回到A时立即停止运动.设点P运动时间为t(s)(1)当t=6s时,∠POA的度数是________;(2)当t为多少时,∠POA=120°;(3)如果点B是OA延长线上的一点,且AB=AO,问t为多少时,△POB为直角三角形?请说明理由.22. (10分) (2016九上·鞍山期末) 如图,AB是⊙O的直径,点C在⊙O上,CD与⊙O相切,AD∥BC,连结OD,AC.(1)求证:∠B=∠DCA;(2)若tanB= ,OD= ,求⊙O的半径长.23. (16分)(2016·海南) 如图1,抛物线y=ax2﹣6x+c与x轴交于点A(﹣5,0)、B(﹣1,0),与y轴交于点C(0,﹣5),点P是抛物线上的动点,连接PA、PC,PC与x轴交于点D.(1)求该抛物线所对应的函数解析式;(2)若点P的坐标为(﹣2,3),请求出此时△APC的面积;(3)过点P作y轴的平行线交x轴于点H,交直线AC于点E,如图2.①若∠APE=∠CPE,求证:;②△APE能否为等腰三角形?若能,请求出此时点P的坐标;若不能,请说明理由.参考答案一、单选题 (共6题;共12分)1-1、2-1、3-1、4-1、5-1、6-1、二、填空题 (共6题;共6分)7-1、8-1、9-1、10-1、11-1、12-1、三、解答题 (共11题;共121分)13-1、13-2、14-1、15-1、15-2、15-3、16-1、16-2、16-3、17-1、18-1、18-2、19-1、19-2、19-3、20-1、20-2、21-1、21-2、22-1、22-2、23-1、23-2、23-3、。

宿州市中考数学一模试卷

宿州市中考数学一模试卷

宿州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2020·荆门模拟) 的相反数的倒数是()A .B .C . 2D .2. (2分) (2017七下·乐亭期末) 某种细菌直径约为0.00000067mm,若将0.00000067mm用科学记数法表示为 mm(n为负整数),则n的值为().A . -5B . -6C . -7D . -83. (2分)(2019·贵阳) 如图,在3×3的正方形网格中,有三个小正方形己经涂成灰色,若再任意涂灰1个白色的小正方形(每个白色的小正方形被涂成灰色的可能性相同),使新构成灰色部分的图形是轴对称图形的概率是()A .B .C .D .4. (2分)如图所示:数轴上点A所表示的数为a,则a的值是()A . +1B . -+1C . -1D .5. (2分)一个几何体是由若干个相同的立方体组成,其主视图和左视图如图所示,则组成这个几何体的立方体个数不可能的是()A . 15个B . 13个C . 11个D . 5个6. (2分)若平行四边形的一边长为5,它的两条对角线的长可能是()A . 4和3B . 4和8C . 4和6D . 2和127. (2分)(2020·大通模拟) 如图,在边长为1的正方形网格中,连结格点和和交于,为()A . 1B . 2C .D .8. (2分)(2013·湖州) 如图,已知四边形ABCD是矩形,把矩形沿直线AC折叠,点B落在点E处,连接DE.若DE:AC=3:5,则的值为()A .B .C .D .9. (2分) (2015九上·平邑期末) 如图所示是二次函数y=ax2+bx+c图象的一部分,图象过A点(3,0),二次函数图象对称轴为x=1,给出四个结论:①b2>4ac;②bc<0;③2a+b=0;④a+b+c=0,其中正确结论是()A . ②④B . ①③C . ②③D . ①④10. (2分) (2019九下·昆明模拟) 如图,在菱形ABCD中,∠BAC=60°,AC与BD交于点O,E为CD延长线上的一点,且CD=DE,连接BE分别交AC,AD于点F、G,连接OG,则下列结论中一定成立的是().①OG= AB;②与△EGD全等的三角形共有5个;③S四边形ODGF>S△ABF;④由点A、B、D、E构成的四边形是菱形.A . ①③④B . ①④C . ①②③D . ②③④二、填空题 (共7题;共8分)11. (1分)函数y=中,自变量x的取值范围是________12. (2分)推理填空:已知:如图,AC∥DF,直线AF分别直线BD、CE 相交于点G、H,∠1=∠2,求证:∠C=∠D.(请在横线上填写结论,在括号中注明理由)解:∵∠1=∠2 (________ )∠1=∠DGH (________ )∴∠2=________(________ )∴________(________ )∴∠C=________(________)又∵AC∥DF (________ )∴∠D=∠A BG (________ )∴∠C=∠D(________ ).13. (1分)某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:工种人数每人每月工资/元电工57000木工46000瓦工55000现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名,与调整前相比,该工程队员工月工资的方差________(填“变小”、“不变”或“变大”).14. (1分)若代数式有意义,则的取值范围是________.15. (1分) (2016八上·江宁期中) 如图,在Rt△ACB中,∠ACB=90°,BC=3,AC=4,在直线BC上找一点P,使得△ABP为以AB为腰的等腰三角形,则PC的长度为________.16. (1分) (2018九上·大石桥期末) 如图,顺次连接圆内接矩形各边的中点,得到菱形ABCD,若BD=10,DF=4,则菱形ABCD的边长为________.17. (1分) (2019七上·龙华期中) 观察下面一列数:2,5,10,x , 26,37,50,65,…,根据规律,其中x所表示的数是________.三、解答题 (共9题;共49分)18. (5分)(2017·迁安模拟) 按照如下步骤计算:6﹣2÷( + ﹣﹣).(1)计算:( + ﹣﹣)÷6﹣2;(2)根据两个算式的关系,直接写出6﹣2÷( + ﹣﹣)的结果.19. (5分)(2018·深圳模拟) 若a+b=1,且a≠0,求(a+ )÷ 的值.20. (2分)(2018·黄梅模拟) △OAB是⊙O的内接三角形,∠AOB=120°,过O作OE⊥AB于点E,交⊙O于点C,延长OB至点D,使OB=BD,连CD.(1)求证: CD是⊙O切线;(2)若F为OE上一点,BF的延长线交⊙O于G,连OG,,CD=6 ,求S△GOB .21. (7分)(2020·龙华模拟) 在“停课不停学”期间,某校数学兴趣小组对本校同学观看教学视频所使用的工具进行了调查,并从中随机抽取部分数据进行分析,将分析结果绘制成了如下两幅不完整的统计表与统计图。

安徽省宿州市埇桥区2017年中考数学一模试卷含解析

安徽省宿州市埇桥区2017年中考数学一模试卷含解析

2017年安徽省宿州市埇桥区中考数学一模试卷一、选择题(共10小题,每小题4分,满分40分)1.tan60°=()A.B.C.1 D.2.如图,在△ABC中,点D、E分别在边AB、AC上,AD:DB=2:3,∠B=∠ADE,则DE:BC 等于()A.1:2 B.1:3 C.2:3 D.2:53.若反比例函数y=的图象位于第一、三象限,则a的取值范围是()A.a>0 B.a>3 C.a>D.a<4.如果关于x的一元二次方程2x2﹣x+k=0有两个实数根,那么k的取值范围是()A.k≥B.k≤C.k≥﹣D.k≤﹣5.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2 C. D.36.在如图所示的二次函数y=ax2+bx+c的图象中,大伟同学观察后得出了以下四条结论:①a<0,b>0,c>0;②b2﹣4ac=0;③<c;④关于x的一元二次方程ax2+bx+c=0有一个正根,你认为其中正确的结论有()A.1条B.2条C.3条D.4条7.铅球的左视图是()A.圆B.长方形C.正方形D.三角形8.点P反比例函数y=﹣的图象上,过点P分别作坐标轴的垂线段PM、PN,则四边形OMPN的面积=()A.B.2 C.2 D.19.从3,1,﹣2这三个数中任取两个不同的数作为M点的坐标,则M点刚好落在第一象限的概率是()A.B.C.D.10.如图,在▱ABCD中,点E、F分别在边AD、BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有()个.A.1 B.2 C.3 D.4二、填空题(本大题共有4小题,每小题5分,共20分)11.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC= .12.把抛物线y=﹣2x2+4x﹣5向左平移3个单位后,它与y轴的交点是.13.如图,在正方形ABCD中,点E、F分别在BC、CD上,且BE=DF,若∠EAF=30°,则sin ∠EDF= .14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,点O在中线CD上,设OC=xcm,当半径为3cm的⊙O与△ABC的边相切时,x= .三、解答题(本大题共有2小题,共16分)15.在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.16.如图,是用7个相同的正方体积木摆成的几何体的俯视图,请你画出其中一种情况的主视图和它相应的左视图.四、解答题(本大题共有2小题,共16分)17.矩形ABCD在坐标系中如图所示放置.已知点B、C在x轴上,点A在第二象限,D(2,4),BC=6,反比例函数y=(x<0)的图象经过点A.(1)求k值;(2)把矩形ABCD向左平移,使点C刚好与原点重合,此时线段AB与反比例函数y=的交点坐标是什么?18.如图,AB是半圆O的直径,点C在圆弧上,D是弧AC的中点,OD与AC相交于点E.求证:△ABC∽△COE.五、解答题(本大题共有2小题,共20分)19.设a,b是方程x2+x﹣2016=0的两个不相等的实数根.(1)a+b= ;ab= ;(2)求代数式a2+2a+b的值.20.为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,绘制了直方图(1)根据直方图提供的信息,这组数据的中位数落在范围内;(2)估计数据落在1.00~1.15中的频率是;(3)将上面捕捞的200条鱼分别作一记号后再放回水库.几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,请根据这一情况估算该水库中鱼的总条数.六、解答题(本大题共有1小题,共12分)21.如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD=.(1)求旗杆EF的高;(2)求旗杆EF与实验楼CD之间的水平距离DF的长.七、解答题(本大题共有1小题,共12分)22.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.八、解答题(本大题共有1小题,共14分)23.如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.(1)点A的坐标是;抛物线l1的解析式是;(2)当BM=3时,求b的值;(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2.①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围;②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN的最小值与此时b的值.2017年安徽省宿州市埇桥区中考数学一模试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.tan60°=()A.B.C.1 D.【考点】特殊角的三角函数值.【分析】根据特殊角的三角函数值求解即可.【解答】解:tan60°=.故选D.2.如图,在△ABC中,点D、E分别在边AB、AC上,AD:DB=2:3,∠B=∠ADE,则DE:BC 等于()A.1:2 B.1:3 C.2:3 D.2:5【考点】相似三角形的判定与性质.【分析】因为∠ADE=∠B,所以可证明DE∥BC,所以△ADE∽△ABC,根据相似三角形的对应边对应成比例可求出解DE:BC的值.【解答】解:∵∠ADE=∠B,∴DE∥BC,∴△ADE∽△ABC,∴AD:AB=DE:BC,∵AD:DB=2:3,∴AD:AB=2:5,∴AD:AB=DE:BC=2:5故选D.3.若反比例函数y=的图象位于第一、三象限,则a的取值范围是()A.a>0 B.a>3 C.a>D.a<【考点】反比例函数的性质.【分析】根据反比例函数的图象在第一、第三象限列出关于a的不等式,求出a的取值范围即可.【解答】解:∵反比例函数y=的图象在第一、第三象限,∴2a﹣3>0,解得a>.故选C.4.如果关于x的一元二次方程2x2﹣x+k=0有两个实数根,那么k的取值范围是()A.k≥B.k≤C.k≥﹣D.k≤﹣【考点】根的判别式.【分析】由于方程有实数根,则根的判别式△≥0,由此建立关于k的不等式,解不等式即可求得k的取值范围.【解答】解:∵关于x的一元二次方程2x2﹣x+k=0有两个实数根,∴△=b2﹣4ac=1﹣4×2k=1﹣8k≥0,∴k≤.故选B.5.⊙O过点B,C,圆心O在等腰直角△ABC内部,∠BAC=90°,OA=1,BC=6,则⊙O的半径为()A. B.2 C. D.3【考点】垂径定理;勾股定理;等腰直角三角形.【分析】根据等腰三角形三线合一的性质知:若过A作BC的垂线,设垂足为D,则AD必垂直平分BC;由垂径定理可知,AD必过圆心O;根据等腰直角三角形的性质,易求出BD、AD 的长,进而可求出OD的值;连接OB根据勾股定理即可求出⊙O的半径.【解答】解:过A作AD⊥BC,由题意可知AD必过点O,连接OB;∵△BAC是等腰直角三角形,AD⊥BC,∴BD=CD=AD=3;∴OD=AD﹣OA=2;Rt△OBD中,根据勾股定理,得:OB==.故选C.6.在如图所示的二次函数y=ax2+bx+c的图象中,大伟同学观察后得出了以下四条结论:①a<0,b>0,c>0;②b2﹣4ac=0;③<c;④关于x的一元二次方程ax2+bx+c=0有一个正根,你认为其中正确的结论有()A.1条B.2条C.3条D.4条【考点】抛物线与x轴的交点.【分析】由抛物线的开口方向判断a的符号,由抛物线与y轴的交点判断c的符号,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:①抛物线的开口方向向下,则a<0,抛物线与y轴交于正半轴,则c>0.抛物线的对称轴位于y轴的左侧,则a、b同号,则b<0.故①错误;②据图所知,抛物线与x轴有2个不同的交点,则b2﹣4ac>0,故②错误;③∵a<0,∴<0,∴c﹣>c,∴>c;故③错误;④据图所知,抛物线与x轴有2个不同的交点,其中一个交点位于x的正半轴,则关于x 的一元二次方程ax2+bx+c=0有一个正根,故④正确;故选:A.7.铅球的左视图是()A.圆B.长方形C.正方形D.三角形【考点】简单几何体的三视图.【分析】左视图是从左边看所得到的图形.【解答】解:球的左视图是圆,故选:A.8.点P反比例函数y=﹣的图象上,过点P分别作坐标轴的垂线段PM、PN,则四边形OMPN的面积=()A.B.2 C.2 D.1【考点】反比例函数系数k的几何意义.【分析】在反比例函数y=图象上任取一点,过这一个点向x轴和y轴分别作垂线,与坐标轴围成的矩形的面积是定值|k|.【解答】解:∵点P反比例函数y=﹣的图象上,∴过点P分别作坐标轴的垂线段PM、PN,所得四边形OMPN的面积为|﹣2|=2.故选(C)9.从3,1,﹣2这三个数中任取两个不同的数作为M点的坐标,则M点刚好落在第一象限的概率是()A.B.C.D.【考点】列表法与树状图法;点的坐标.【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与M点刚好落在第一象限的情况即可求出问题答案.【解答】解:画树状图得:∵共有6种等可能的结果,其中(1,3),(3,1)点落在第一项象限,∴M点刚好落在第一象限的概率==,故选B.10.如图,在▱ABCD中,点E、F分别在边AD、BC上,且EF∥CD,G为边AD延长线上一点,连接BG,则图中与△ABG相似的三角形有()个.A.1 B.2 C.3 D.4【考点】相似三角形的判定;平行四边形的性质.【分析】先利用平行四边形的性质得到CD∥AB,AD∥BC,则根据平行于三角形的一边的直线与其他两边相交,所构成的三角形与原三角形相似可判断△DGM∽△AGB,△DGM∽△CBM,再利用EF∥CD可判断△DGM∽△EGN,△CBM∽△FBN,然后根据相似的传递性可得到答案.【解答】解:如图,∵四边形ABCD为平行四边形,∴CD∥AB,AD∥BC,∴△DGM∽△AGB,△DGM∽△CBM,∵EF∥CD,∴△DGM∽△EGN,△CBM∽△FBN,∴△DGM∽△AGB∽△FBN∽△CBM∽△EGN.故选D.二、填空题(本大题共有4小题,每小题5分,共20分)11.如图,E是矩形ABCD的对角线的交点,点F在边AE上,且DF=DC,若∠ADF=25°,则∠BEC= 115°.【考点】矩形的性质.【分析】由∠ADF求出∠CDF,再由等腰三角形的性质得出∠ACD,从而求出∠ACB,最后用等腰三角形的性质即可.【解答】解:∵四边形ABCD是矩形,∴∠ADC=∠BCD=90°,BE=CE,∵∠ADF=25°,∴∠CDF=∠ADC﹣∠ADF=90°﹣25°=65°,∵DF=DC,∴∠DFC=∠DCA===,∴∠BCE=∠BCD﹣∠DCA=90°﹣=,∵BE=CE,∴∠BCE=180°﹣2∠BCE=180°﹣65°=115°,故答案为115°12.把抛物线y=﹣2x2+4x﹣5向左平移3个单位后,它与y轴的交点是(0,﹣11).【考点】二次函数图象与几何变换.【分析】利用配方法将已知抛物线解析式转化为顶点式,然后得到平移后抛物线解析式,根据新解析式求解即可.【解答】解:y=﹣2x2+4x﹣5=﹣2(x﹣1)2﹣3,其顶点坐标是(1,﹣3),将其向左平移3个单位后的顶点坐标是(﹣2,﹣3),故其抛物线解析式为:y=﹣2(x+2)2﹣3=﹣2x2﹣8x﹣11.所以它与y轴的交点是(0,﹣11).故答案是:(0,﹣11).13.如图,在正方形ABCD中,点E、F分别在BC、CD上,且BE=DF,若∠EAF=30°,则sin ∠EDF= .【考点】正方形的性质;解直角三角形.【分析】首先证明△ABE≌△ADF,设正方形ABCD边长为a,求出EC、ED即可解决问题.【解答】解:∵四边形ABCD是正方形,∴AB=AD,∠B=∠ADF=∠BAD=90°,在△ABE和△ADF中,,∴△ABE≌△ADF,∴∠BAE=∠FAD,∵∠EAF=30°,∴∠BAE=∠FAD=30°,设正方形ABCD边长为a,则tan30°=,∴BE=a,∴EC=a﹣a,DE== a∴sin∠EDF===故答案为.14.如图,在Rt△ABC中,∠ACB=90°,∠A=30°,AC=15cm,点O在中线CD上,设OC=xcm,当半径为3cm的⊙O与△ABC的边相切时,x= 2,3或6 .【考点】切线的性质;含30度角的直角三角形.【分析】先求出AB=10,∠BDC=∠BCD=60°∠ACD=30°,分三种情况,利用⊙O的切线的特点构造直角三角形,用三角函数求解即可.【解答】解:Rt△ABC中,∠ACB=90°,∠A=30°,∴∠B=60°,AB=10,∵CD为中线,∴CD=AD=BD=AB=5,∴∠BDC=∠BCD=∠B=60°,∠ACD=∠A=30°,∵半径为3cm的⊙O,∴DE=3,①当⊙O与AB相切时,如图1,过点O做OE⊥AB于E,在RT△ODE中,∠BDC=60°,DE=3,∴sin∠BDC=,∴OD===2;∴x=OC=CD﹣OD=5﹣2=3;②当⊙O与BC相切时,如图2,过O作OE⊥BC,在RT△OCE中,∠BCD=60°,OE=3,∴sin∠BCD=,∴OC===2cm;∴x=OC=2;③当⊙O与AC相切时,如图3,过O作OE⊥AC于E,在RT△OCE中,∠ACD=30°,OE=3,∴sin∠ACD=,∴OC===6,∴x=OC=6.故答案为2,3或6.三、解答题(本大题共有2小题,共16分)15.在如图的正方形网格中,点O在格点上,⊙O的半径与小正方形的边长相等,请利用无刻度的直尺完成作图,在图(1)中画出一个45°的圆周角,在图(2)中画出一个22.5°的圆周角.【考点】作图—应用与设计作图;圆周角定理.【分析】(1)若圆周角为45°,根据圆周角定理可知45°所对的圆心角为90°,所以先画出圆心角为90°的角后,在圆心角为90°优弧上找出任意一点连接即可得出45°的圆心角.(2)若圆周角为22.5°,根据圆周角定理可知22.5°所对的圆心角为45°,所以先画出圆心角为45°的角后,在圆心角为45°优弧上找出任意一点连接即可得出22.5°的圆心角.【解答】解:(1)如图1,连接OA、OB,在优弧AB上任意找一点C,连接AC、AB∠ACB为所求作(2)如图2,连接OA交圆O于点C,在优弧BC上任意找一点D,连接CD、BD,∠CDB为所求作16.如图,是用7个相同的正方体积木摆成的几何体的俯视图,请你画出其中一种情况的主视图和它相应的左视图.【考点】作图﹣三视图;由三视图判断几何体.【分析】共有7个相同的正方体积木摆成,因此小正方体的数量可能是,由此图可得主视图每列小正方形数目分别为2,2,左视图从左到右每列小正方形数目分别为1,2,2.【解答】解:如图所示:.四、解答题(本大题共有2小题,共16分)17.矩形ABCD在坐标系中如图所示放置.已知点B、C在x轴上,点A在第二象限,D(2,4),BC=6,反比例函数y=(x<0)的图象经过点A.(1)求k值;(2)把矩形ABCD向左平移,使点C刚好与原点重合,此时线段AB与反比例函数y=的交点坐标是什么?【考点】反比例函数图象上点的坐标特征;矩形的性质;坐标与图形变化﹣平移.【分析】(1)根据矩形的性质求出点A的坐标,利用待定系数法求出k值;(2)根据平移规律求出点B的坐标,计算即可.【解答】解:(1)∵点D的坐标为(2,4),BC=6,∴OB=4,AB=4,∴点A的坐标为(﹣4,4),∵反比例函数y=(x<0)的图象经过点A,∴4=,解得,k=﹣16;(2)把矩形ABCD向左平移,使点C刚好与原点重合,则点B的坐标为(﹣6,0),当x=﹣6时,y=﹣=,∴此时线段AB与反比例函数y=的交点坐标是(﹣6,).18.如图,AB是半圆O的直径,点C在圆弧上,D是弧AC的中点,OD与AC相交于点E.求证:△ABC∽△COE.【考点】相似三角形的判定;圆周角定理.【分析】由已知得∠OEC=∠BCA=90°,由OA=OC,得∠BAC=∠OCE,根据有两对角对应相等的三角形相似可得到:△ABC∽△COE.【解答】证明:∵AB为⊙O的直径,∴∠BCA=90°,又D是弧AC的中点,∴OE⊥AC,即:∠OEC=∠BCA=90°.又∵OA=OC,∴∠BAC=∠OCE,∴△ABC∽△COE.五、解答题(本大题共有2小题,共20分)19.设a,b是方程x2+x﹣2016=0的两个不相等的实数根.(1)a+b= ﹣1 ;ab= ﹣2016 ;(2)求代数式a2+2a+b的值.【考点】根与系数的关系.【分析】(1)根据x1,x2是一元二次方程ax2+bx+c=0(a≠0)的两根时,则x1+x2=﹣,x1x2=,代值计算即可;(2)先根据一元二次方程的解的定义得到a2+a﹣2016=0,即a2=﹣a+2016,则a2+2a+b可化简为a+b+2016,再根据根与系数的关系得a+b=﹣1,然后利用整体代入的方法计算.【解答】解:(1)∵a,b是方程x2+x﹣2016=0的两个不相等的实数根∴a+b=﹣1;ab=﹣2016;故答案为:﹣1.﹣2016;(2)∵a是方程x2+x﹣2016=0的实数根,∴a2+a﹣2016=0,∴a2=﹣a+2016,∴a2+2a+b=﹣a+2016+2a+b=a+b+2016,∵a、b是方程x2+x﹣2016=0的两个实数根,∴a+b=﹣1,∴a2+2a+b=﹣1+2016=2015.20.为了了解某水库养殖鱼的有关情况,从该水库多个不同位置捕捞出200条鱼,称得每条鱼的质量(单位:千克),并将所得数据分组,绘制了直方图(1)根据直方图提供的信息,这组数据的中位数落在 1.10~1.15 范围内;(2)估计数据落在1.00~1.15中的频率是0.53 ;(3)将上面捕捞的200条鱼分别作一记号后再放回水库.几天后再从水库的多处不同的位置捕捞150条鱼,其中带有记号的鱼有10条,请根据这一情况估算该水库中鱼的总条数.【考点】频数(率)分布直方图;用样本估计总体.【分析】(1)中位数是数据按照从小到大的顺序排列,位于数据中间位置的数.(2)频率=频数除以总数,可先算出频数,求出结果即可.(3)先算出捞到记号鱼的频率被200除就可以就得结果.【解答】解:(1)从直方图可得出这组数据的中位数位于1.10~1.15范围内.(2)(10+40+56)÷200=0.53,频率是0.53.(3)200÷(10÷150)=3000,故水库中的鱼大约有3000条.故答案为:1.10~1.15;0.53.六、解答题(本大题共有1小题,共12分)21.如图,某生在旗杆EF与实验楼CD之间的A处,测得∠EAF=60°,然后向左移动12米到B处,测得∠EBF=30°,∠CBD=45°,sin∠CAD=.(1)求旗杆EF的高;(2)求旗杆EF与实验楼CD之间的水平距离DF的长.【考点】解直角三角形的应用.【分析】(1)汽车∠BEA=30°=∠EBF,得出AB=AE=12米,在△AEF中,由三角函数汽车EF 即可;(2)设CD=x米,证出BD=CD=x米,由三角函数得出方程,解方程求出x,再求出AF,即可得出结果.【解答】解:(1)∵∠EAF=60°,∠EBF=30°,∴∠BEA=30°=∠EBF,∴AB=AE=12米,在△AEF中,EF=AE×sin∠EAF=12×sin60°=6米,答:旗杆EF的高为6米;(2)设CD=x米,∵∠CBD=45°,∠D=90°,∴BD=CD=x米,∵sin∠CAD=,∴tan∠CAD==,∴,解得:x=36米,在△AEF中,∠AEF=60°﹣30°=30°,∴AF=AE=6米,∴DF=BD+AB+AF=36+12+6=54(米),答:旗杆EF与实验楼CD之间的水平距离DF的长为54米.七、解答题(本大题共有1小题,共12分)22.如图1所示,将一个边长为2的正方形ABCD和一个长为2、宽为1的矩形CEFD拼在一起,构成一个大的矩形ABEF,现将小矩形CEFD绕点C顺时针旋转,得到矩形CE′F′D′,旋转角为α.(1)当点D′恰好落在EF边上时,求旋转角α的值;(2)如图2,G为BC的中点,且0°<α<90°,求证:GD′=E′D;(3)小矩形CEFD绕点C顺时针旋转一周的过程中,△DCD′与△CBD′能否全等?若能,直接写出旋转角α的值;若不能,说明理由.【考点】四边形综合题.【分析】(1)根据旋转的性质得CD′=CD=2,即可判定∠CD′E=30°,然后根据平行线的性质即可得到∠α=30°;(2)由G为BC中点可得CG=CE,然后根据“SAS”可判断△GCD′≌△E′CD,则GD′=E′D;(3)根据正方形的性质得CB=CD,而CD=CD′,则△BCD′与△DCD′为腰相等的两等腰三角形,当两顶角相等时它们全等,当△BCD′与△DCD′为钝角三角形时,可计算出α=135°,当△BCD′与△DCD′为锐角三角形时,可计算得到α=315°.【解答】(1)解:∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴CD′=CD=2,在Rt△CED′中,CD′=2,CE=1,∴∠CD′E=30°,∵CD∥EF,∴∠α=30°;(2)证明:∵G为BC中点,∴CG=1,∴CG=CE,∵长方形CEFD绕点C顺时针旋转至CE′F′D′,∴∠D′CE′=∠DCE=90°,CE=CE′=CG,∴∠GCD′=∠DCE′=90°+α,在△GCD′和△E′CD中,∴△GCD′≌△E′CD(SAS),∴GD′=E′D;(3)解:能.理由如下:∵四边形ABCD为正方形,∴CB=CD,∵CD′=CD′,∴△BCD′与△DCD′为腰相等的两等腰三角形,当∠BCD′=∠DCD′时,△CBD′≌△DCD′,当△BCD′与△DCD′为钝角三角形时,则旋转角α==135°,当△BCD′与△DCD′为锐角三角形时,∠BCD′=∠DCD′=∠BCD=45°则α=360°﹣=315°,即旋转角a的值为135°或315°时,△BCD′与△DCD′全等.八、解答题(本大题共有1小题,共14分)23.如图,已知抛物线l1经过原点与A点,其顶点是P(﹣2,3),平行于y轴的直线m与x轴交于点B(b,0),与抛物线l1交于点M.(1)点A的坐标是(﹣4,0);抛物线l1的解析式是y=﹣(x+2)2+3 ;(2)当BM=3时,求b的值;(3)把抛物线l1绕点(0,1)旋转180°,得到抛物线l2.①直接写出当两条抛物线对应的函数值y都随着x的增大而减小时,x的取值范围﹣2<x <2 ;②直线m与抛物线l2交于点N,设线段MN的长为n,求n与b的关系式,并求出线段MN的最小值与此时b的值.【考点】二次函数综合题.【分析】(1)根据O和A是对称点即可求得A的坐标,然后利用待定系数法即可求得抛物线的解析式;(2)BM=3则M的纵坐标是3或﹣3,代入抛物线解析式求得M的横坐标,即B的横坐标;(3)M和N的横坐标相等,则设横坐标是b,则利用b可以表示出M和N的纵坐标,即可表示出MN的长,则根据二次函数的性质即可求解.【解答】解:(1)∵顶点P的坐标是(﹣2,3),即对称轴是x=﹣2,∴A的坐标是(﹣4,0).设抛物线的解析式是y=a(x+2)2+3,把(0,0)代入得4a+3=0,解得a=﹣,则抛物线的解析式是y=﹣(x+2)2+3.故答案是:(﹣4,0),y=﹣(x+2)2+3.(2)在y=﹣(x+2)2+3中,令y=﹣3,则﹣(x+2)2+3=﹣3,解得:x=﹣2﹣2或2﹣2.当在y=﹣(x+2)2+3中,令y=3时,则﹣(x+2)2+3=3,解得x=﹣2,即b=﹣2.则b=﹣2或2﹣2或﹣2﹣2;(3)P(﹣2,3)关于(0,1)的对称点是(2,﹣1),则抛物线L2的解析式是y=(x﹣2)2﹣1,①当﹣2<x<2时,两条抛物线对应的函数值y都随着x的增大而减小.答案是:﹣2<x<2;②设M的坐标是(b,﹣),则N的坐标是(b,(b﹣2)2﹣1),则MN=(b﹣2)2﹣1)﹣[﹣]=b2+2.则当b=0时,MN最小,是2.。

安徽省宿州市中考数学一模试卷

安徽省宿州市中考数学一模试卷

安徽省宿州市中考数学一模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共8题;共16分)1. (2分) (2018八上·深圳期中) 在0,0.2,3π, (相邻两个1之间0的个数逐次加1),,中,无理数有()个A . 2个B . 3个C . 4个D . 5个2. (2分)(2019·秀洲模拟) 下列计算中,正确的是()A . a6÷a2=a3B . (a+1)2=a2+1C . (﹣a)3=﹣a3D . (ab3)2=a2b53. (2分) (2017八下·丛台期末) 甲乙两人在跳远练习中,6次成绩分别为(单位:米):甲:3.8 3.8 3.9 3.9 4.0 4.0;乙:3.8 3.9 3.9 3.9 3.9 4.0.则这次跳远练习中,甲乙两人成绩方差的大小关系是()A . >B . <C . =D . 无法确定4. (2分)如图所示,是一个长8m、宽6m的矩形小花园,根据需要将它的长缩短xm、宽增加xm,要想使修改后的小花园面积达到最大,则x应为()A . 1mB . 1.5mC . 2mD . 2.5m5. (2分) (2016九上·连城期中) 下列图形中,既是轴对称图形又是中心对称图形的是()A .B .C .D .6. (2分) (2019·长春模拟) 如图,在菱形ABCD中,E,F分别是AC,AD的中点,若EF=2,则菱形ABCD 的周长是()A . 8B . 12C . 16D . 207. (2分)已知一个物体由x个相同的正方体堆成,它的主视图和左视图如图,那么x的最大值是()A . 12B . 11C . 10D . 98. (2分)函数y=x(x﹣4)是()A . 一次函数B . 二次函数C . 正比例函数D . 反比例函数二、填空题 (共10题;共16分)9. (1分)今年“双十一”网购狂欢中,阿里巴巴交出571亿元的成绩单.将571亿元用科学记数法表示应为________元.10. (1分)在函数y=中,自变量x的取值范围是________ .11. (1分)把3x3﹣6x2y+3xy2分解因式的结果是________ .12. (1分)如图,已知第一象限内的点A在反比例函y=上,第二象限的点B在反比例函数y=上,且OA⊥OB,tanA=,则k的值为________ .13. (1分)媒体是获取信息的一个重要渠道,主要媒体有________14. (1分)(2017·雁江模拟) 水仙花是漳州市花,如图,在长为14m,宽为10m的长方形展厅,划出三个形状、大小完全一样的小长方形摆放水仙花,则每个小长方形的周长为________ m.15. (7分) (2017七下·南京期中) 如图,点D、E分别在AB、BC上,AF∥BC ,DE∥AC ,求证:∠1=∠2.请你将证明过程补充完整:证明:∵AF∥BC∴________=________,(理由是:________)∵DE∥AC∴________=________,(理由是:________)∴∠1=∠2. (理由是:________)16. (1分)如图,MN是⊙O的直径,若∠A=10°,∠PMQ=40°,以PM为边作圆的内接正多边形,则这个正多边形是________ 边形.17. (1分) (2019九下·崇川月考) 如图,A,B,C三点在正方形网格线的交点处,将△ACB绕着点A逆时针旋转得到△AC′B′,若A,C,B′三点共线,则tan∠B′CB=________.18. (1分) (2017八下·鞍山期末) 如图,四边形ABCD是矩形纸片,AB=2,对折矩形纸片ABCD,使AD与BC重合,折痕为MN,展平后再过点B折叠矩形纸片,使点A落在MN上的点G处,折痕BE与MN相交于点H;再次展平,连接BG,EG,延长EG交BC于点F.有如下结论:①EG=FG;②∠ABG=60°;③AE=1;④△BEF是等边三角形;其中正确结论的序号是________.三、解答题 (共10题;共122分)19. (10分)(2017·赤壁模拟) 计算下列各题(1)计算:4sin60°﹣|3﹣ |+()﹣2;(2)解方程:x2﹣ x﹣ =0.20. (10分)计算。

2017年安徽省滁州市中考数学一模试卷

2017年安徽省滁州市中考数学一模试卷

2017年安徽省滁州市中考数学一模试卷一、选择题:本大题共10小题,每小题3分,共30分.在每小题给出的四个选项中,只有一个选项符合题目要求.1.(3分)﹣2的倒数是()A.﹣B.C.2D.﹣22.(3分)随着经济发展,人民的生活水平不断提高,旅游业快速增长,2016年国民出境旅游超过120 000 000人次,将120 000 000用科学记数法表示为()A.1。

2×109B.12×107C.0.12×109D.1。

2×108 3.(3分)下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.4.(3分)含30°角的直角三角板与直线l1、l2的位置关系如图所示,已知l1∥l2,∠ACD=∠A,则∠1=()A.70°B.60°C.40°D.30°5.(3分)下列说法正确的是()A.打开电视,它正在播广告是必然事件B.要考察一个班级中的学生对建立生物角的看法适合用抽样调查C.在抽样调查过程中,样本容量越大,对总体的估计就越准确D.甲、乙两人射中环数的方差分别为S甲2=2,S乙2=4,说明乙的射击成绩比甲稳定6.(3分)若a2﹣ab=0(b≠0),则=()A.0B.C.0或D.1或27.(3分)如图是“明清影视城"的一扇圆弧形门,小红到影视城游玩,他了解到这扇门的相关数据:这扇圆弧形门所在的圆与水平地面是相切的,AB=CD=0。

25米,BD=1.5米,且AB、CD与水平地面都是垂直的.根据以上数据,请你帮小红计算出这扇圆弧形门的最高点离地面的距离是()A.2米B.2.5米C.2.4米D.2。

1米8.(3分)已知x+=3,则下列三个等式:①x2+=7,②x﹣,③2x2﹣6x=﹣2中,正确的个数有()A.0个B.1个C.2个D.3个9.(3分)已知二次函数y=x2﹣2mx(m为常数),当﹣1≤x≤2时,函数值y的最小值为﹣2,则m的值是()A.B.C.或D.或10.(3分)如图,平面直角坐标系xOy中,矩形OABC的边OA、OC分别落在x、y轴上,点B坐标为(6,4),反比例函数y=的图象与AB边交于点D,与BC 边交于点E,连结DE,将△BDE沿DE翻折至△B’DE处,点B'恰好落在正比例函数y=kx图象上,则k的值是()A.B.C.D.二、填空题:本大题共6小题,每小题3分,共18分.11.(3分)3﹣2=.12.(3分)二元一次方程组==x+2的解是.13.(3分)如图,直线a、b垂直相交于点O,曲线C关于点O成中心对称,点A 的对称点是点A',AB⊥a于点B,A’D⊥b于点D.若OB=3,OD=2,则阴影部分的面积之和为.14.(3分)点A、B、C在格点图中的位置如图所示,格点小正方形的边长为1,则点C到线段AB所在直线的距离是.15.(3分)庄子说:“一尺之椎,日取其半,万世不竭".这句话(文字语言)表达了古人将事物无限分割的思想,用图形语言表示为图1,按此图分割的方法,可得到一个等式(符号语言):1=+++…++….图2也是一种无限分割:在△ABC中,∠C=90°,∠B=30°,过点C作CC1⊥AB于点C1,再过点C1作C1C2⊥BC于点C2,又过点C2作C2C3⊥AB于点C3,如此无限继续下去,则可将利△ABC分割成△ACC1、△CC1C2、△C1C2C3、△C2C3C4、…、△C n﹣2C n﹣1C n、….假设AC=2,这些三角形的面积和可以得到一个等式是.16.(3分)对于函数y=x n+x m,我们定义y’=nx n﹣1+mx m﹣1(m、n为常数).例如y=x4+x2,则y’=4x3+2x.已知:y=x3+(m﹣1)x2+m2x.(1)若方程y′=0有两个相等实数根,则m的值为;(2)若方程y′=m﹣有两个正数根,则m的取值范围为.三、本大题共3小题,每小题9分,共27分。

安徽省宿州市灵璧县2017年中考数学一模试卷(含解析)(1)

安徽省宿州市灵璧县2017年中考数学一模试卷(含解析)(1)

2017年安徽省宿州市灵璧县中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣4的倒数是()A.﹣4 B.4 C.﹣D.2.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.23.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米4.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.5.分式方程﹣=0的根是()A.﹣1 B.1 C.3 D.06.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=447.下列数据3,2,3,4,5,2,2的中位数是()A.5 B.4 C.3 D.28.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A .26°B .64°C .52°D .128°9.如图,△ABC 是等腰直角三角形,∠A=90°,BC=4,点P 是△ABC 边上一动点,沿B→A→C 的路径移动,过点P 作PD ⊥BC 于点D ,设BD=x ,△BDP 的面积为y ,则下列能大致反映y 与x 函数关系的图象是( )A .B .C .D .10.如图,已知点A (﹣8,0),B (2,0),点C 在直线y=﹣上,则使△ABC 是直角三角形的点C 的个数为( )A .1B .2C .3D .4二、填空题(本大题共4小题,每小题5分,共20分)11.不等式组的解集是 .12.分解因式:x 3﹣2x 2+x= .13.如图,正十二边形A 1A 2…A 12,连接A 3A 7,A 7A 10,则∠A 3A 7A 10= .14.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:|﹣3|+tan30°﹣﹣0.16.先化简,再求值:(﹣x﹣1)÷,选一个你喜欢的数代入求值.四、解答题(本小题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是:A(﹣3,1),B(0,3),C (0,1)(1)将△ABC以点O为旋转中心顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)分别连结AB1,BA1后,求四边形ABA1B1的面积.18.观察下列关于自然数的等式:(1)32﹣4×12=5 (1)(2)52﹣4×22=9 (2)(3)72﹣4×32=13 (3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4×2= ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.五、解答题(本大题共2小题,每小题10分,共20分)19.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.20.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤的解集.六、解答题(本题满分12分)21.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).七、解答题(本题满分12分)22.如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=,求⊙O的半径r及sinB.八、解答题(本题满分14分)23.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b= ,c= ,点B的坐标为;(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.2017年安徽省宿州市灵璧县磬乡协作校中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)1.﹣4的倒数是()A.﹣4 B.4 C.﹣D.【考点】倒数.【分析】根据乘积为1的两个数互为倒数,可得一个数的倒数.【解答】解:﹣4的倒数是﹣,故选:C.2.若(x+2)(x﹣1)=x2+mx+n,则m+n=()A.1 B.﹣2 C.﹣1 D.2【考点】多项式乘多项式.【分析】依据多项式乘以多项式的法则,进行计算,然后对照各项的系数即可求出m,n的值.【解答】解:∵原式=x2+x﹣2=x2+mx+n,∴m=1,n=﹣2.∴m+n=1﹣2=﹣1.故选:C.3.我国计划在2020年左右发射火星探测卫星,据科学研究,火星距离地球的最近距离约为5500万千米,这个数据用科学记数法可表示为()A.5.5×106千米B.5.5×107千米C.55×106千米D.0.55×108千米【考点】科学记数法—表示较大的数.【分析】科学记数法的表示形式为a×10n的形式.其中1≤|a|<10,n为整数,确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:5500万=5.5×107.故选:B.4.如图是一个由4个相同的正方体组成的立体图形,它的主视图是()A.B.C.D.【考点】简单组合体的三视图.【分析】找到从正面看所得到的图形即可,注意所有的看到的棱都应表现在主视图中.【解答】解:从正面看易得第一层有2个正方形,第二层左边有一个正方形,第三层左边有一个正方形.故选A.5.分式方程﹣=0的根是()A.﹣1 B.1 C.3 D.0【考点】解分式方程.【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解.【解答】解:去分母得:4x﹣x+3=0,解得:x=﹣1,经检验x=﹣1是分式方程的解,故选A6.小明所在城市的“阶梯水价”收费办法是:每户用水不超过5吨,每吨水费x元;超过5吨,超过部分每吨加收2元,小明家今年5月份用水9吨,共交水费为44元,根据题意列出关于x的方程正确的是()A.5x+4(x+2)=44 B.5x+4(x﹣2)=44 C.9(x+2)=44 D.9(x+2)﹣4×2=44【考点】由实际问题抽象出一元一次方程.【分析】根据题意可以列出相应的方程,从而可以解答本题.【解答】解:由题意可得,5x+(9﹣5)(x+2)=5x+4(x+2)=44,故选A.7.下列数据3,2,3,4,5,2,2的中位数是()A.5 B.4 C.3 D.2【考点】中位数.【分析】求中位数要把数据按从小到大的顺序排列,位于最中间的一个数或两个数的平均数为中位数.【解答】解:题目中数据共有7个,把数据按从小到大的顺序排列为2,2,2,3,3,4,5,故中位数是按从小到大排列后第4个数是3,故这组数据的中位数是3.故选C.8.如图,AB∥CD,直线EF分别交AB、CD于E、F两点,∠BEF的平分线交CD于点G,若∠EFG=52°,则∠EGF等于()A.26°B.64°C.52°D.128°【考点】平行线的性质.【分析】根据平行线及角平分线的性质解答.【解答】解:∵AB∥CD,∴∠BEF+∠EFG=180°,∴∠BEF=180°﹣52°=128°;∵EG平分∠BEF,∴∠BEG=64°;∴∠EGF=∠BEG=64°(内错角相等).故选:B.9.如图,△ABC是等腰直角三角形,∠A=90°,BC=4,点P是△ABC边上一动点,沿B→A→C的路径移动,过点P作PD⊥BC于点D,设BD=x,△BDP的面积为y,则下列能大致反映y与x函数关系的图象是()A.B.C.D.【考点】动点问题的函数图象.【分析】过A点作AH⊥BC于H,利用等腰直角三角形的性质得到∠B=∠C=45°,BH=CH=AH=BC=2,分类讨论:当0≤x≤2时,如图1,易得PD=BD=x,根据三角形面积公式得到y=x2;当2<x≤4时,如图2,易得PD=CD=4﹣x,根据三角形面积公式得到y=﹣x2+2x,于是可判断当0≤x≤2时,y与x的函数关系的图象为开口向上的抛物线的一部分,当2<x≤4时,y与x的函数关系的图象为开口向下的抛物线的一部分,然后利用此特征可对四个选项进行判断.【解答】解:过A点作AH⊥BC于H,∵△ABC是等腰直角三角形,∴∠B=∠C=45°,BH=CH=AH=BC=2,当0≤x≤2时,如图1,∵∠B=45°,∴PD=BD=x,∴y=•x•x=x2;当2<x≤4时,如图2,∵∠C=45°,∴PD=CD=4﹣x,∴y=•(4﹣x)•x=﹣x2+2x,故选B10.如图,已知点A(﹣8,0),B(2,0),点C在直线y=﹣上,则使△ABC是直角三角形的点C的个数为()A.1 B.2 C.3 D.4【考点】一次函数图象上点的坐标特征;勾股定理的逆定理.【分析】根据∠A为直角,∠B为直角与∠C为直角三种情况进行分析.【解答】解:如图,①当∠A为直角时,过点A作垂线与直线的交点W(﹣8,10),②当∠B为直角时,过点B作垂线与直线的交点S(2,2.5),③若∠C为直角则点C在以线段AB为直径、AB中点E(﹣3,0)为圆心的圆与直线y=﹣的交点上.过点E作x轴的垂线与直线的交点为F(﹣3,),则EF=∵直线y=﹣与x轴的交点M为(,0),∴EM=,FM==∵E到直线y=﹣的距离d==5∴以线段AB为直径、E(﹣3,0)为圆心的圆与直线y=﹣恰好有一个交点.所以直线y=﹣上有一点C满足∠C=90°.综上所述,使△ABC是直角三角形的点C的个数为3,故选:C.二、填空题(本大题共4小题,每小题5分,共20分)11.不等式组的解集是x<1 .【考点】解一元一次不等式组.【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集.【解答】解:,解①得x<,解②得x<1,则不等式组的解集是x<1.故答案是:x<1.12.分解因式:x3﹣2x2+x= x(x﹣1)2.【考点】提公因式法与公式法的综合运用.【分析】首先提取公因式x,进而利用完全平方公式分解因式即可.【解答】解:x3﹣2x2+x=x(x2﹣2x+1)=x(x﹣1)2.故答案为:x(x﹣1)2.13.如图,正十二边形A1A2…A12,连接A3A7,A7A10,则∠A3A7A10= 75°.【考点】多边形内角与外角.【分析】如图,作辅助线,首先证得=⊙O的周长,进而求得∠A3OA10==150°,运用圆周角定理问题即可解决.【解答】解:设该正十二边形的中心为O,如图,连接A10O和A3O,由题意知, =⊙O的周长,∴∠A3OA10==150°,∴∠A3A7A10=75°,故答案为:75°.14.如图,正方形ABCD的边长为1,AC,BD是对角线.将△DCB绕着点D顺时针旋转45°得到△DGH,HG交AB于点E,连接DE交AC于点F,连接FG.则下列结论:①四边形AEGF是菱形②△AED≌△GED③∠DFG=112.5°④BC+FG=1.5其中正确的结论是①②③.【考点】旋转的性质;全等三角形的判定;菱形的判定;正方形的性质.【分析】首先证明△ADE≌△GDE,再求出∠AEF、∠AFE、∠GEF、∠GFE的度数,推出AE=EG=FG=AF,由此可以一一判断.【解答】证明:∵四边形ABCD是正方形,∴AD=DC=BC=AB,∠DAB=∠ADC=∠DCB=∠ABC=90°,∠ADB=∠BDC=∠CAD=∠CAB=45°,∵△DHG是由△DBC旋转得到,∴DG=DC=AD,∠DGE=∠DCB=∠DAE=90°,在RT△ADE和RT△GDE中,,∴AED≌△GED,故②正确,∴∠ADE=∠EDG=22.5°,AE=EG,∴∠AED=∠AFE=67.5°,∴AE=AF,同理△AEF≌△GEF,可得EG=GF,∴AE=EG=GF=FA,∴四边形AEGF是菱形,故①正确,∵∠DFG=∠GFC+∠DFC=∠BAC+∠DAC+∠ADF=112.5°,故③正确.∵AE=FG=EG=BG,BE=AE,∴BE>AE,∴AE<,∴CB+FG<1.5,故④错误.故答案为①②③.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:|﹣3|+tan30°﹣﹣0.【考点】实数的运算;零指数幂;特殊角的三角函数值.【分析】根据实数的运算方法,零指数幂的求法,以及特殊角的三角函数值,求出|﹣3|+tan30°﹣﹣0的值是多少即可.【解答】解:|﹣3|+tan30°﹣﹣0=3+×﹣2﹣1=3+1﹣2﹣1=3﹣216.先化简,再求值:(﹣x﹣1)÷,选一个你喜欢的数代入求值.【考点】分式的化简求值.【分析】首先把括号内的分式约分,然后通分相加,把除法转化为乘法,计算乘法即可化简,然后化简x的值,代入求解即可.【解答】解:原式=[﹣(x+1)]•=[﹣(x+1)]•=•=1﹣(x﹣1)=2﹣x.当x=0时,原式=2.四、解答题(本小题共2小题,每小题8分,共16分)17.如图,在平面直角坐标系中,直角△ABC的三个顶点分别是:A(﹣3,1),B(0,3),C (0,1)(1)将△ABC以点O为旋转中心顺时针旋转90°,画出旋转后对应的△A1B1C1;(2)分别连结AB1,BA1后,求四边形ABA1B1的面积.【考点】作图﹣旋转变换;扇形面积的计算.【分析】(1)利用网格特点和旋转的性质画出A、B、C的对应点A1、B1、C1,从而得到△A1B1C1;(3)利用两个梯形的面积和减去一个三角形的面积计算四边形ABA1B1的面积.【解答】解:(1)如图,△A1B1C1为所作;(2)如图,四边形ABA1B1的面积=(1+3)×3+×(1+3)×3﹣×1×6=9.18.观察下列关于自然数的等式:(1)32﹣4×12=5 (1)(2)52﹣4×22=9 (2)(3)72﹣4×32=13 (3)…根据上述规律解决下列问题:(1)完成第五个等式:112﹣4× 5 2= 21 ;(2)写出你猜想的第n个等式(用含n的式子表示),并验证其正确性.【考点】整式的混合运算;规律型:数字的变化类.【分析】(1)根据前三个找出规律,写出第五个等式;(2)用字母表示变化规律,根据完全平方公式计算,即可证明.【解答】解:(1)112﹣4×52=21,故答案为:5;21;(2)第n个等式为:(2n+1)2﹣4n2=4n+1,证明:(2n+1)2﹣4n2=4n2+4n+1﹣4n2=4n+1.五、解答题(本大题共2小题,每小题10分,共20分)19.南沙群岛是我国固有领土,现在我南海渔民要在南沙某海岛附近进行捕鱼作业,当渔船航行至B处时,测得该岛位于正北方向20(1+)海里的C处,为了防止某国海巡警干扰,就请求我A 处的渔监船前往C处护航,已知C位于A处的北偏东45°方向上,A位于B的北偏西30°的方向上,求A、C之间的距离.【考点】解直角三角形的应用﹣方向角问题.【分析】作AD⊥BC,垂足为D,设CD=x,利用解直角三角形的知识,可得出AD,继而可得出BD,结合题意BC=CD+BD可得出方程,解出x的值后即可得出答案.【解答】解:如图,作AD⊥BC,垂足为D,由题意得,∠ACD=45°,∠ABD=30°.设CD=x,在Rt△ACD中,可得AD=x,在Rt△ABD中,可得BD=x,又∵BC=20(1+),CD+BD=BC,即x+x=20(1+),解得:x=20,∴AC=x=20(海里).答:A、C之间的距离为20海里.20.已知,如图,一次函数y=kx+b(k、b为常数,k≠0)的图象与x轴、y轴分别交于A、B两点,且与反比例函数y=(n为常数且n≠0)的图象在第二象限交于点C.CD⊥x轴,垂足为D,若OB=2OA=3OD=6.(1)求一次函数与反比例函数的解析式;(2)求两函数图象的另一个交点坐标;(3)直接写出不等式;kx+b≤的解集.【考点】反比例函数与一次函数的交点问题.【分析】(1)先求出A、B、C坐标,再利用待定系数法确定函数解析式.(2)两个函数的解析式作为方程组,解方程组即可解决问题.(3)根据图象一次函数的图象在反比例函数图象的下方,即可解决问题,注意等号.【解答】解:(1)∵OB=2OA=3OD=6,∴OB=6,OA=3,OD=2,∵CD⊥OA,∴DC∥OB,∴=,∴=,∴CD=10,∴点C坐标(﹣2,10),B(0,6),A(3,0),∴解得,∴一次函数为y=﹣2x+6.∵反比例函数y=经过点C(﹣2,10),∴n=﹣20,∴反比例函数解析式为y=﹣.(2)由解得或,故另一个交点坐标为(5,﹣4).(3)由图象可知kx+b≤的解集:﹣2≤x<0或x≥5.六、解答题(本题满分12分)21.某校在践行“社会主义核心价值观”演讲比赛中,对名列前20名的选手的综合分数m进行分组统计,结果如表所示:(2)若用扇形图来描述,求分数在8≤m<9内所对应的扇形图的圆心角大小;(3)将在第一组内的两名选手记为:A1、A2,在第四组内的两名选手记为:B1、B2,从第一组和第四组中随机选取2名选手进行调研座谈,求第一组至少有1名选手被选中的概率(用树状图或列表法列出所有可能结果).【考点】列表法与树状图法;频数(率)分布表;扇形统计图.【分析】(1)根据被调查人数为20和表格中的数据可以求得a的值;(2)根据表格中的数据可以得到分数在8≤m<9内所对应的扇形图的圆心角大;(3)根据题意可以写出所有的可能性,从而可以得到第一组至少有1名选手被选中的概率.【解答】解:(1)由题意可得,a=20﹣2﹣7﹣2=9,即a的值是9;(2)由题意可得,分数在8≤m<9内所对应的扇形图的圆心角为:360°×=162°;(3)由题意可得,所有的可能性如下图所示,故第一组至少有1名选手被选中的概率是: =,即第一组至少有1名选手被选中的概率是.七、解答题(本题满分12分)22.如图,以△ABC的BC边上一点O为圆心,经过A,C两点且与BC边交于点E,点D为CE的下半圆弧的中点,连接AD交线段EO于点F,若AB=BF.(1)求证:AB是⊙O的切线;(2)若CF=4,DF=,求⊙O的半径r及sinB.【考点】切线的判定.【分析】(1)连接OA、OD,如图,根据垂径定理得OD⊥BC,则∠D+∠OFD=90°,再由AB=BF,OA=OD得到∠BAF=∠BFA,∠OAD=∠D,加上∠BFA=∠OFD,所以∠OAD+∠BAF=90°,则OA⊥AB,然后根据切线的判定定理即可得到AB是⊙O切线;(2)先表示出OF=4﹣r,OD=r,在Rt△DOF中利用勾股定理得r2+(4﹣r)2=()2,解方程得到r的值,那么OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.然后在Rt△AOB中利用勾股定理得AB2+OA2=OB2,即AB2+32=(AB+1)2,解方程得到AB=4的值,再根据三角函数定义求出sinB.【解答】(1)证明:连接OA、OD,如图,∵点D为CE的下半圆弧的中点,∴OD⊥BC,∴∠EOD=90°,∵AB=BF,OA=OD,∴∠BAF=∠BFA,∠OAD=∠D,而∠BFA=∠OFD,∴∠OAD+∠BAF=∠D+∠BFA=90°,即∠OAB=90°,∴OA⊥AB,∴AB是⊙O切线;(2)解:OF=CF﹣OC=4﹣r,OD=r,DF=,在Rt△DOF中,OD2+OF2=DF2,即r2+(4﹣r)2=()2,解得r1=3,r2=1(舍去);∴半径r=3,∴OA=3,OF=CF﹣OC=4﹣3=1,BO=BF+FO=AB+1.在Rt△AOB中,AB2+OA2=OB2,∴AB2+32=(AB+1)2,∴AB=4,OB=5,∴sinB==.八、解答题(本题满分14分)23.如图,在平面直角坐标系中,已知抛物线y=x2+bx+c过A,B,C三点,点A的坐标是(3,0),点C的坐标是(0,﹣3),动点P在抛物线上.(1)b= ﹣2 ,c= ﹣3 ,点B的坐标为(﹣1,0);(直接填写结果)(2)是否存在点P,使得△ACP是以AC为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,说明理由;(3)过动点P作PE垂直y轴于点E,交直线AC于点D,过点D作x轴的垂线.垂足为F,连接EF,当线段EF的长度最短时,求出点P的坐标.【考点】二次函数综合题.【分析】(1)将点A和点C的坐标代入抛物线的解析式可求得b、c的值,然后令y=0可求得点B 的坐标;(2)分别过点C和点A作AC的垂线,将抛物线与P1,P2两点先求得AC的解析式,然后可求得P1C 和P2A的解析式,最后再求得P1C和P2A与抛物线的交点坐标即可;(3)连接OD.先证明四边形OEDF为矩形,从而得到OD=EF,然后根据垂线段最短可求得点D的纵坐标,从而得到点P的纵坐标,然后由抛物线的解析式可求得点P的坐标.【解答】解:(1)∵将点A和点C的坐标代入抛物线的解析式得:,解得:b=﹣2,c=﹣3.∴抛物线的解析式为y=x2﹣2x﹣3.∵令x2﹣2x﹣3=0,解得:x1=﹣1,x2=3.∴点B的坐标为(﹣1,0).故答案为:﹣2;﹣3;(﹣1,0).(2)存在.理由:如图所示:①当∠ACP1=90°.由(1)可知点A的坐标为(3,0).设AC的解析式为y=kx﹣3.∵将点A的坐标代入得3k﹣3=0,解得k=1,∴直线AC的解析式为y=x﹣3.∴直线CP1的解析式为y=﹣x﹣3.∵将y=﹣x﹣3与y=x2﹣2x﹣3联立解得x1=1,x2=0(舍去),∴点P1的坐标为(1,﹣4).②当∠P2AC=90°时.设AP2的解析式为y=﹣x+b.∵将x=3,y=0代入得:﹣3+b=0,解得b=3.∴直线AP2的解析式为y=﹣x+3.∵将y=﹣x+3与y=x2﹣2x﹣3联立解得x1=﹣2,x2=3(舍去),∴点P2的坐标为(﹣2,5).综上所述,P的坐标是(1,﹣4)或(﹣2,5).(3)如图2所示:连接OD.由题意可知,四边形OFDE是矩形,则OD=EF.根据垂线段最短,可得当OD⊥AC时,OD最短,即EF最短.由(1)可知,在Rt△AOC中,∵OC=OA=3,OD⊥AC,∴D是AC的中点.又∵DF∥OC,∴.∴点P的纵坐标是.∴,解得:.∴当EF最短时,点P的坐标是:(,)或(,).。

安徽省2017届中考数学一模试卷(解析版)

安徽省2017届中考数学一模试卷(解析版)

2017年安徽省中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.14.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<28.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.59.如图,在扇形AOB 中,∠AOB=90°,=,点D 在OB 上,点E 在OB 的延长线上,当正方形CDEF 的边长为2时,则阴影部分的面积为( )A .2π﹣4B .4π﹣8C .2π﹣8D .4π﹣410.二次函数y=ax 2+bx +c (a ≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是( )A .abc <0B .a ﹣b +c <0C .b 2﹣4ac >0D .3a +c >0二、填空题(本大题共4小题,每小题5分,满分20分)11.(5分)二次函数y=x 2+1的最小值是 .12.(5分)如图,点A 、B 、C 在⊙O 上,∠A=36°,则∠O= .13.(5分)如图,△ABC 与△A ′B ′C ′都是等腰三角形,且AB=AC=5,A ′B ′=A ′C ′=3,若∠B +∠B ′=90°,则△ABC 与△A ′B ′C ′的面积比为 .14.(5分)如图,在正方形纸片ABCD 中,对角线AC 、BD 交于点O ,折叠正方形纸片ABCD ,使AD 落在BD 上,点A 恰好与BD 上的点F 重合,展开后,折痕DE 分别交AB ,AC 于点E 、G ,连接GF ,有下列结论:①∠AGD=112.5°;②tan ∠AED=+1;③四边形AEFG 是菱形;④S △ACD =S △OCD .其中正确结论的序号是 .(把所有正确结论的序号都填在横线上)三、解答题(本大题共2小题,每小题8分,满分16分)15.(8分)计算:2cos60°﹣|﹣4sin45°|16.(8分)如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.四、解答题(本大题共2小题,每小题8分,满分16分)17.(8分)如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.18.(8分)某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)20.(10分)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.六、解答题(本题满分12分)21.(12分)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.七、解答题(本题满分12分)22.(12分)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.八、解答题(本题满分14分)23.(14分)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B 的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.2017年安徽省滁州市全椒县中考数学一模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A、B、C、D四个选项,其中只有一个是正确的,请把正确答案的代号天下下表中1.若反比例函数y=的图象经过点(2,﹣1),则k的值为()A.﹣2 B.2 C.﹣D.【考点】反比例函数图象上点的坐标特征.【分析】由一个已知点来求反比例函数解析式,只要把已知点的坐标代入解析式就可求出比例系数.【解答】解:把点(2,﹣1)代入解析式得﹣1=,解得k=﹣2.故选A.【点评】此题主要考查了反比例函数图象上点的坐标特征.把已知点的坐标代入可求出k值,即得到反比例函数的解析式.2.二次函数y=x2﹣2x的顶点为()A.(1,1)B.(2,﹣4)C.(﹣1,1)D.(1,﹣1)【考点】二次函数的性质.【分析】把二次函数化成顶点式,可得出二次函数的顶点坐标.【解答】解:∵y=x2﹣2x=(x﹣1)2﹣1,∴其顶点坐标为(1,﹣1),故选D.【点评】本题主要考查二次函数的顶点坐标,掌握二次函数的顶点式y=a(x﹣h)2+k的顶点坐标为(h,k)是解题的关键.3.如图,在Rt△ABC中,∠C=90°,AB=2BC,则sinB的值为()A.B.C.D.1【考点】特殊角的三角函数值.【分析】根据AB=2BC直接求sinB的值即可.【解答】解:∵Rt△ABC中,∠C=90°,AB=2BC,∴sinA===;∴∠A=30°∴∠B=60°∴sinB=故选C.【点评】本题考查了锐角三角函数的定义,解决本题时,直接利用正弦的定义求解即可.4.如图,将一个小球摆放在圆柱上底面的正中间,则该几何体的俯视图是()A. B.C.D.【考点】简单组合体的三视图.【分析】根据俯视图是从上边看得到的图形,可得答案.【解答】解:从上边看是一个实线的同心圆,故选:C.【点评】本题考查了简单组合体的三视图,俯视图是从上边看得到的图形.5.从分别标有数﹣3,﹣2,﹣1,1,2,3的六张没有明显差别的卡片中,随机抽取一张,所抽卡片上的数的绝大于﹣2的概率是()A.B.C.D.【考点】概率公式.【分析】根据概率公式可得答案.【解答】解:∵﹣3,﹣2,﹣1,1,2,3的六张卡片中,大于﹣2的有﹣1,1,2,3这4张,∴所抽卡片上的数大于﹣2的概率是=,故选:D.【点评】本题主要考查概率公式,掌握随机事件A的概率P(A)=事件A可能出现的结果数÷所有可能出现的结果数是解题的关键.6.某人沿斜坡坡度i=1:2的斜坡向上前进了6米,则他上升的高度为()A.3米B.米C.2米D.米【考点】解直角三角形的应用﹣坡度坡角问题.【分析】由坡度定义可得位置升高的高度即为坡角所对的直角边.根据题意可得tan∠A=,AB=10m,可解出直角边BC,即得到位置升高的高度.【解答】解:由题意得,BC:AC=1:2.∴BC:AB=1:.∵AB=6m,∴BC=m.故选B.【点评】本题主要考查坡度的定义和解直角三角形的应用,注意画出示意图会使问题具体化.7.已知二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,则k的取值范围是()A.k≥3 B.k<3 C.k≤3且k≠2 D.k<2【考点】抛物线与x轴的交点.【分析】根据二次函数图象与x轴有交点可得出关于x的一元二次方程有解,根据根的判别式结合二次项系数非零即可得出关于k的一元一次不等式组,解不等式组即可得出结论.【解答】解:∵二次函数y=(k﹣2)x2+2x+1的图象与x轴有交点,∴一元二次方程(k﹣2)x2+2x+1=0有解,∴,解得:k≤3且k≠2.故选:C.【点评】本题考查了抛物线与x轴的交点、根的判别式以及解一元一次不等式组,根据根的判别式△≥0结合二次项系数非零找出关于k的一元一次不等式组是解题的关键.8.如图,在矩形ABCD中,AB=6,BC=8,点E在对角线BD上,且BE=6,连接AE并延长交DC于点F,则CF等于()A.2 B.3 C.4 D.5【考点】相似三角形的判定与性质;矩形的性质.【分析】根据勾股定理求出BD,得到DE的长,根据相似三角形的性质得到比例式,代入计算即可求出DF的长,求出CF的长度.【解答】解:∵四边形ABCD是矩形,∴∠BAD=90°,又AB=CD=6,BC=AD=8,∴BD==10,∵BE=6,∴DE=10﹣6=4,∵AB∥CD,∴=,即=,解得,DF=4,则CF=CD﹣DF=6﹣4=2,故选:A.【点评】本题考查的是矩形的性质、相似三角形的判定和性质,掌握矩形的性质定理和相似三角形的判定定理、性质定理是解题的关键.9.如图,在扇形AOB中,∠AOB=90°,=,点D在OB上,点E在OB的延长线上,当正方形CDEF的边长为2时,则阴影部分的面积为()A.2π﹣4 B.4π﹣8 C.2π﹣8 D.4π﹣4【考点】扇形面积的计算;正方形的性质.【分析】连接OC,根据勾股定理可求OC的长,根据题意可得出阴影部分的面积=扇形BOC的面积﹣△ODC的面积,依此列式计算即可求解.【解答】解:连接OC,如图所示:∵在扇形AOB中∠AOB=90°,=,∴∠COD=45°,∴OD=CD,∴OC==4,∴阴影部分的面积=扇形BOC的面积﹣△ODC的面积=﹣×(2)2=2π﹣4.故选:A.【点评】此题考查了正方形的性质和扇形面积的计算,解题的关键是得到扇形半径的长度.10.二次函数y=ax2+bx+c(a≠0)的图象如图所示,其对称轴为x=1,则下列结论中错误的是()A.abc<0 B.a﹣b+c<0 C.b2﹣4ac>0 D.3a+c>0【考点】二次函数图象与系数的关系.【分析】A.由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,由a与0的关系并结合抛物线的对称轴判断b与0的关系,即可得出abc与0的关系;B.由二次函数的图象可知当x=﹣1时y<0,据此分析即可;C.利用抛物线与x轴的交点的个数进行分析即可;D.由对称轴x=﹣=1,可得b=﹣2a,又由B知a﹣b+c<0,可得3a+c<0,可判断.【解答】解:A、由抛物线开口向下,可得a<0,由抛物线与y轴的交点在x轴的上方,可得c>0,由抛物线的对称轴为x=1,可得﹣>0,则b>0,∴abc<0,故A正确,不符合题意;B.当x=﹣1时,y<0,则a﹣b+c<0,故B正确,不符合题意;C.由抛物线与x轴有两个交点,可得b2﹣4ac>0,故C正确,不符合题意;D.∵对称轴x=﹣=1,∴b=﹣2a,∵a﹣b+c<0,∴3a+c<0,故D错误,符合题意;故选D.【点评】本题考查了二次函数图象与系数的关系.关键是熟记二次函数y=ax2+bx+c(a≠0)系数符号由抛物线开口方向、对称轴、抛物线与y轴的交点、抛物线与x轴交点的个数确定.二、填空题(本大题共4小题,每小题5分,满分20分)11.二次函数y=x2+1的最小值是1.【考点】二次函数的最值.【分析】根据二次函数解析式得特点可知,当x=0时取得最小值1.【解答】解:由二次函数y=x2+1得到:该抛物线的开口方向向上,且顶点坐标是(0,1).所以二次函数y=x2+1的最小值是1.故答案是:1.【点评】本题考查了二次函数的最值.求二次函数的最大(小)值有三种方法,第一种可由图象直接得出,第二种是配方法,第三种是公式法.12.如图,点A、B、C在⊙O上,∠A=36°,则∠O=72°.【考点】圆周角定理.【分析】根据同弧所对的圆心角是圆周角的2倍得出结论.【解答】解:由图形得:∠O=2∠A=2×36°=72°;故答案为:72°,【点评】本题考查了圆周角与圆心角的关系,属于基础题,比较简单,明确在同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半.13.如图,△ABC与△A′B′C′都是等腰三角形,且AB=AC=5,A′B′=A′C′=3,若∠B+∠B′=90°,则△ABC与△A′B′C′的面积比为25:9.【考点】解直角三角形;等腰三角形的性质.【分析】先根据等腰三角形的性质得到∠B=∠C,∠B′=∠C′,根据三角函数的定义得到AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,然后根据三角形面积公式即可得到结论.【解答】解:过A作AD⊥BC于D,过A′作A′D′⊥B′C′于D′,∵△ABC与△A′B′C′都是等腰三角形,∴∠B=∠C,∠B′=∠C′,BC=2BD,B′C′=2B′D′,∴AD=AB•sinB,A′D′=A′B′•sinB′,BC=2BD=2AB•cosB,B′C′=2B′D′=2A′B′•cosB′,∵∠B+∠B′=90°,∴sinB=cosB′,sinB′=cosB,∵S△BAC=AD•BC=AB•sinB•2AB•cosB=25sinB•cosB,S△A′B′C′=A′D′•B′C′=A′B′•cosB′•2A′B′•sinB′=9sinB′•cosB′,∴S△BAC :S△A′B′C′=25:9,故答案为:25:9.【点评】本题考查了互余两角的关系,解直角三角形:在直角三角形中,由已知元素求未知元素的过程就是解直角三角形.也考查了等腰三角形的性质和三角形面积公式.14.如图,在正方形纸片ABCD中,对角线AC、BD交于点O,折叠正方形纸片ABCD,使AD 落在BD上,点A恰好与BD上的点F重合,展开后,折痕DE分别交AB,AC于点E、G,连接GF,有下列结论:①∠AGD=112.5°;②tan∠AED=+1;③四边形AEFG是菱形;④S△ACD=S△OCD.其中正确结论的序号是①②③.(把所有正确结论的序号都填在横线上)【考点】翻折变换(折叠问题);菱形的性质;解直角三角形.【分析】根据翻转变换的性质、正方形的性质进行计算,判断即可.【解答】解:∵四边形ABCD是正方形,∴∠ADB=45°,由折叠的性质可知,∠ADE=∠BDE=22.5°,∴∠AGD=180°﹣90°﹣22.5°=112.5°,①正确;设AE=x,∵△BEF是等腰直角三角形,∴BE=EF=AE=x,∴x+x=1,解得,x=﹣1,∴tan∠AED==+1,②正确;由同位角相等可知,GF∥AB,EF∥AC,∴四边形AEFG是平行四边形,由折叠的性质可知,EA=EF,∴四边形AEFG是菱形,③正确;=2S△OCD,④错误,由正方形的性质可知,S△ACD故答案为:①②③.【点评】本题考查的是翻转变换的性质、菱形的性质、解直角三角形的应用,掌握翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15.计算:2cos60°﹣|﹣4sin45°|【考点】实数的运算;特殊角的三角函数值.【分析】原式利用特殊角的三角函数值,以及绝对值的代数意义化简即可得到结果.【解答】解:原式=2×﹣=1﹣.【点评】此题考查了实数的运算,以及特殊角的三角函数值,熟练掌握运算法则是解本题的关键.16.如图,在△ABC中,∠BAC=45°,AB=AC,D为△ABC内一点,AD=4,如果把△ABD绕点A 按逆时针方向旋转,使AB与AC重合,求点D运动的路径长.【考点】轨迹;等腰三角形的性质;旋转的性质.【分析】由△ABD绕点A按逆时针方向旋转,AB与AC重合知旋转角为45°,根据弧长公式可得答案.【解答】解:∵△ABD绕点A按逆时针方向旋转,AB与AC重合,∴旋转角为45°,∴的长为=π.【点评】本题主要考查旋转的性质、弧长公式,熟练掌握旋转的性质得出旋转角度数是解题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17.如图,⊙O的半径为2,弦AB=2,点C在弦AB上,AC=AB,求OC的长.【考点】垂径定理;勾股定理.【分析】作OH⊥AB于H,根据垂径定理得AH=BH=AB=,再在Rt△BOH中,根据勾股定理得OH=1,由AC=AB得AC=,则CH=AH﹣AC=,然后根据勾股定理可计算出OC的长.【解答】解:作OH⊥AB于H,如图,∵OH⊥AB,∴AH=BH,∴AH=BH=AB=×2=,在Rt△BOH中,OB=2,BH=,∴OH==1,∵AC=AB=×2=,∴CH=AH﹣AC=﹣=,在Rt△OHC中,OC==.【点评】本题考查了垂径定理:平分弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.18.某校举办校级篮球赛,进入决赛的队伍有A、B、C、D,要从中选出两队打一场比赛.(1)若已确定A打第一场,再从其余三队中随机选取一队,求恰好选中D队的概率.(2)请用画树状图或列表法,求恰好选中B、C两队进行比赛的概率.【考点】列表法与树状图法.【分析】(1)由已确定A打第一场,再从其余三队中随机选取一队,直接利用概率公式求解即可求得答案;(2)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与恰好选中B、C两队进行比赛的情况,再利用概率公式即可求得答案.【解答】解:(1)∵已确定A打第一场,再从其余三队中随机选取一队,∴恰好选中D队的概率;(2)画树状图得:∵一共有12种可能出现的结果,它们都是等可能的,符合条件的有两种,∴P(B、C两队进行比赛)==.【点评】此题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.五、解答题(本大题共2小题,每小题10分,满分20分)19.(10分)(2017•全椒县一模)要在宽为36m的公路的绿化带MN(宽为4m)的中央安装路灯,路灯的灯臂AD的长为3m,且与灯柱CD成120°(如图所示),路灯采用圆锥形灯罩,灯罩的轴线AB与灯臂垂直.当灯罩的轴线通过公路路面一侧的中间时(除去绿化带的路面部分),照明效果最理想,问:应设计多高的灯柱,才能取得最理想的照明效果?(精确到0.01m,参考数据≈1.732)【考点】解直角三角形的应用.【分析】延长BA,CD交于点P,解直角三角形得到AP=PD•cos30°和BC的长,通过△PAD∽△PCB,得出=,代入数据即可得到结论.【解答】解:如图,延长BA,CD交于点P,∵∠PAD=∠PCB=90°,∠ADC=120°,∴∠P=30°,∵AD=3,∴PD=6,AP=PD•cos30°=3,BC=(18﹣2)÷2+2=10.∵∠P=∠P,∠PAD=∠PCB=90°,∴△PAD∽△PCB,∴=,∴PC==10m,∴CD=PC﹣PD=10﹣6≈11.32m.则应设计11.32m高的灯柱,才能取得最理想的照明效果.【点评】本题考查了相似三角形的性质,直角三角形的性质,锐角三角函数的概念,正确的作出辅助线构造相似三角形是解题的关键.20.(10分)(2017•全椒县一模)如图,在平面直角坐标系中,已知反比例函数y=(x>0)的图象和菱形OABC,且OB=4,tan∠BOC=.(1)求A、B、C三点的坐标;(2)若将菱形向右平移,菱形的两个顶点恰好同时落在反比例函数的图象上,猜想这是哪两个点,并求菱形的平移距离和反比例函数的解析式.【考点】待定系数法求反比例函数解析式;菱形的性质;坐标与图形变化﹣平移;解直角三角形.【分析】(1)根据菱形性质得出AC⊥OB,OD=BD,AD=CD,解直角三角形即可得出答案;(2)设矩形平移后A的坐标是(2,6﹣x),C的坐标是(6,4﹣x),得出k=2(6﹣x)=6(4﹣x),求出x,即可得出矩形平移后A的坐标,代入反比例函数的解析式求出即可.【解答】解:(1)连接AC,交y轴于D,∵四边形形OABC是菱形,∴AC⊥OB,OD=BD,AD=CD,∵OB=4,tan∠BOC=.∴OD=2,CD=1,∴A(﹣1,2),B(0,4),C(1,2);(2)B、C落在反比例函数的图象上,设菱形平移后B的坐标是(x,4),C的坐标是(1+x,2),∵B、C落在反比例函数的图象上,∴k=4x=2(1+x),解得x=1,即菱形平移后B的坐标是(1,4),代入反比例函数的解析式得:k=1×4=4,即B、C落在反比例函数的图象上,菱形的平移距离是1,反比例函数的解析式是y=.【点评】本题考查了矩形性质,用待定系数法求反比例函数的解析式,平移的性质的应用,主要考查学生的计算能力.六、解答题(本题满分12分)21.(12分)(2017•全椒县一模)如图,OA是⊙M的直径,点B在x轴上,连接AB交⊙M 于点C.(1)若点A的坐标为(0,2),∠ABO=30°,求点B的坐标.(2)若D为OB的中点,求证:直线CD是⊙O的切线.【考点】切线的判定;坐标与图形性质.【分析】(1)由点A的坐标可知OA的长度,根据∠ABO的度数可知,AB的长度为4,利用勾股定理即可求出OB的长度,从而求出B的坐标.(2)连接OC、MC、证明∠OCB为直角,根据D为OB的中点,可知∠DCO=∠DOC,易知∠OCM=∠COM,所以∠MCO+∠DCO=∠MCD=90°,即可求证MC⊥CD.【解答】解:(1)∵A的坐标为(0,2)∴OA=2,∵∠ABO=30°,∠AOB=90°,∴AB=2OA=4,∴由勾股定理可知:OB=2,∴B(2,0)(2)连接OC,MC∵OA是⊙M的直径,∴∠ACO=90°,∴∠OCB=90°,在Rt△OCB中,D为OB的中点,∴CD=OB=OD,∴∠DCO=∠DOC,∵MC=MO,∴∠OCM=∠COM∵∠MOC+∠DOC=∠AOB=90°,∴∠MCO+∠DCO=∠MCD=90°即MC⊥CD∴直线CD是⊙M的切线.【点评】本题考查切线的判定,解题的关键是连接MC、OC、根据直角三角形斜边上中线的性质,圆周角定理,等腰三角形的性质求出MC⊥CD,本题属于中等题型.七、解答题(本题满分12分)22.(12分)(2017•全椒县一模)如图,抛物线的顶点为C(1,﹣2),直线y=kx+m与抛物线交于A、B来两点,其中A点在x轴的正半轴上,且OA=3,B点在y轴上,点P为线段AB上的一个动点(点P与点A、B不重合),过点P且垂直于x轴的直线与这条抛物线交于点E.(1)求直线AB的解析式.(2)设点P的横坐标为x,求点E的坐标(用含x的代数式表示).(3)求△ABE面积的最大值.【考点】二次函数综合题.【分析】(1)由条件可先求得抛物线解析式,则可求得B点坐标,再利用待定系数法可求得直线AB解析式;(2)由条件可知P、E的横坐标相同,又点E在抛物线上,则可表示出E点坐标;(3)由(2)可用x表示出PE的长,则可用x表示出△ABE的面积,再利用二次函数的性质可求得其最大值.【解答】解:(1)∵抛物线顶点坐标为(1,﹣2),∴可设抛物线解析式为y=a(x﹣1)2﹣2,∵OA=3,且点A在x轴的正半轴上,∴A(3,0),∴0=a(3﹣1)2﹣2,解得a=,∴抛物线解析式为y=(x﹣1)2﹣2=x2﹣x﹣,当x=0时可得y=﹣,∴B(0,﹣),设直线AB解析式为y=kx+b,把A、B坐标代入可得,解得,∴y=x﹣;(2)∵点P为线段AB上的一个动点,且PE⊥x轴,∴点E的横坐标为x,∵点E在抛物线上,∴E点的坐标为(x, x2﹣x﹣);(3)∵点P为线段AB上的一点,∴P(x, x﹣),则E(x, x2﹣x﹣),∴PE=x﹣﹣(x2﹣x﹣)=﹣x2+x,由(2)可知点B到PE的距离x,点A以PE的距离为3﹣x,=PE•x+PE•(3﹣x)=PE•(x+3﹣x)=PE=(﹣x2+x)=﹣x2+x=﹣(x﹣∴S△ABE)2+,∵﹣<0,∴当x=时,S有最大值,最大值为,△ABE∴△ABE面积的最大值为.【点评】本题为二次函数的综合应用,涉及待定系数法、二次函数的性质、三角形的面积及方程思想等知识.在(1)中求得B点坐标是解题的关键,在(2)中注意E点横坐标与P点横坐标相同是解题的关键,在(3)中用P点坐标表示出△ABE的面积是解题的关键.本题考查知识点较多,综合性较强,难度适中.八、解答题(本题满分14分)23.(14分)(2017•全椒县一模)如图1,在平面直角坐标系中,O为坐标原点,点A的坐标为(﹣8,0),点B的坐标为(﹣8,6),直线BC∥x轴,交y轴于点C,将四边形OABC 绕点O按顺时针方向旋转α度得到四边形OA′B′C′,此时直线OA′、直线B′C′分别与直线BC相交于点P、Q.(1)四边形OABC的形状是矩形,当α=90°时,的值是.(2)①如图2,当四边形OA′B′C′的顶点B′落在y轴正半轴上时,求的值;②如图3,当四边形OA′B′C′的顶点B′落在BC的延长线上时,求△OPB′的面积.(3)在四边形OABC旋转过程中,当0°<α≤180°时,是否存在这样的点P和点Q,使BP=BQ?若存在,请直接写出点P的坐标;若不存在,请说明理由.【考点】几何变换综合题.【分析】(1)根据有一个角是直角的平行四边形进行判断当α=90°时,就是长与宽的比;(2)①利用相似三角形求得CP的比,就可求得BP,PQ的值;②根据勾股定理求得PB′的长,再根据三角形的面积公式进行计算.(3)构造全等三角形和直角三角形,运用勾股定理求得PC的长,进一步求得坐标【解答】解:(1)图1,四边形OA′B′C′的形状是矩形;∵点A的坐标为(﹣8,0),点B(﹣8,6),∴AB∥OC,∵BC∥x轴,∴四边形OABC是平行四边形.又OC⊥OA,∴平行四边形OABC的形状是矩形;当α=90°时,P与C重合,如图1,BP=8,BQ=BP+OC=8+6=14,∴,即是矩形的长与宽的比,则.故答案为矩形,;(2)①图2,∵∠POC=∠B′OA′,∠PCO=∠OA′B′=90°,∴△COP∽△A′OB′.∴,即,∴CP=,BP=BC﹣CP=.同理△B′CQ∽△B′C′O,∴,∴∴CQ=3,BQ=BC+CQ=11.∴,∴;②图3,在△OCP和△B′A′P中,,∴△OCP≌△B′A′P(AAS).∴OP=B′P.设B′P=x,在Rt△OCP中,(8﹣x)2+62=x2,解得x=.=××6=.∴S△OPB′(3)存在这样的点P和点Q,使BP=BQ.点P的坐标是P1(﹣9﹣,6),P2(﹣,6).理由:过点Q作QH⊥OA′于H,连接OQ,则QH=OC′=OC,∵S △POQ =PQ •OC ,S △POQ =OP •QH ,∴PQ=OP .设BP=x ,∵BP=BQ ,∴BQ=2x ,如图4,当点P 在点B 左侧时,OP=PQ=BQ +BP=3x ,在Rt △PCO 中,(8+x )2+62=(3x )2,解得x 1=1+,x 2=1﹣(不符实际,舍去). ∴PC=BC +BP=9+,∴P (﹣9﹣,6).如图5,当点P 在点B 右侧时,∴OP=PQ=BQ ﹣BP=x ,PC=8﹣x .在Rt △PCO 中,(8﹣x )2+62=x 2,解得x=.∴PC=BC ﹣BP=8﹣=, ∴P (﹣,6),综上可知,存在点P (﹣9﹣,6)或(﹣,6),使BP=BQ .。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

安徽省宿州市XX 中学2017届中考第一次模拟考试数学试题含答案2017年中考模拟数学试说明:本试卷共八大题,计23小题,满分150分,考试时间120分钟―、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的,请把正确答案的代号填在下表中. 1.估计6的值在A.2到3之间B.3到4之间C.4到5之间D.5到6之间2.某市举行中小学生器乐交流比赛,有45支队伍参赛,他们参赛的成绩各不相同,要取前23名获奖,某代表队已经知道了自己的成绩,他们想知道自己是否获奖,只需再知道这45支队伍成绩的 A 中位数 B.平均数 C.最高分 D.方差3.图为一根圆柱形的空心钢管,它的主视图是4.中国高铁运营里程排世界第一,2016年,中国铁路总公司对铁路投资继续坪持超8000亿元高位,8000亿用科学记数法表示为、A.8000x108B.8x1010C.0.8x1011D.8x1O 115.已知点M (l —2m ,m —1)在第四象限,则m 的取值范围在数轴上表示正确的是A .B .C .D .6.下列各式中.,正确的是A.632x xx=⋅ B.x x=2C.12-=-x xx x D.41)21(122+-=+-x x x7.将一把直尺与一块三角板如图所示放置,若o401=∠则2∠的度数为A.50°B.110°C.130°D.150°8.如图,用相同的小正方形按照某种规律进行摆放,则第8个图形中小正方形的个数是A.71B.78C.85D.899.已知函数:y=ax 2-1(a 是常数,a ≠0),下列结论正确的是 A.当a=l 时,函数图象过点(-1,1)B.当a=l 时,函数图象与x 轴有一个交点C.若a>0,则当x ≥l 时,y 随x 的增大而减小D.若a<0,则当x ≤1时,y 随x 的增大而增大10.如图,在Rt △ABC 中,∠ACB=90°,∠=60°,AC=1,将△ABC 绕点C 顺时针旋转得△A 1B 1C ,且点A 1落在边AB 边上,取BB 1的中点D ,连接GD ,则CD 的长为A.23 B.3 C.2 D.3得分评卷人二、填空题(本大题共4小题,每小题5分,满分20分) 11.分解因式:a 2b+2ab 2+b 3=_______.12.某快递公司的分拣工小王和小华,在分拣同一类物件时,小王分拣60个物件所用的时间与小华分拣45个物件所用的时间相同•已知小王每小时比小华多分拣8个物件,设小华每小时分拣x 个物件,根据题意列出的方程是 :13.如图,已知⊙O 是等腰Rt △ABC 的外接圆,点D 是C A 上的一点,BD 交AC 于点额,若BC=4,AD=54,则AE 的长是______14.反比例函数为常数)(a a ,0xa y 1>=和x2y 2=在第一象限内的图象如图所示,点M 在x 2y 2=的图象上,MC 丄x 轴于点C ,交xa y 1=的图象于点A ,MD 丄y 轴于点D ,交xa y 1=的图象于点B ,当点M 在x2y 2=的图象上运动时,以下结论:①S △CDB=S △CCA②四边形OAMB 的面积为2-a ③当a=l 时,点A 是MC 的中点④若S 四边形OAMB+S △CDB ,则四边形OCMD 为正方形.其中正确是 (把所有正确结论的序号写在横线上) 三、(本大题共2小题,每小题8分,满分16分) 15.计算27)21-(|tan60-3|4-n 8-o++)(【解】16.解方程组⎩⎨⎧-=+-=-73y x 23y 2x 3【解】四、(本大题共2小题,每小题8分,满分16分)17.小丹、小林是某中学八年级的同班同学在升入九年级时,要重新分班,他们将被随即编入A.B.C 三个班 (1)请你用画树状图法或列举法,列出所有可能的结果【解】(2)求两人再次成为同班同学的概率.【解】18.在如图所示的方格纸中,每个小方格都是边长为1个单位的正方形,△ABC的三个顶点都在格点上(每个小方格的顶点叫格点),(1)画出△ABC绕点O顺时针旋转90°后的△A1B1C1.(2)求△OAA1的面积【解】五、(本大题共2小题,每小题10分,满分20分)19.某地2016年为做好“精准扶贫”,投人资金1280万元用于异地安置,并规划投入资金逐年增加,预计2018年投人的资金将比2016年多1600万元.(1)从2016年到2018年,该地投人异地安置资金的年平均增长率为多少?【解】(2)在2016年异地安置的具体实施中,该地另外投入资金不低于500万元用于优先搬迁租房奖励,规定前1000户(含第1000户)每户每天奖励8元,1000户以后每户每天奖励5元,按租房400天计算,试求2016年该地至少有多少户享受到优先搬迁租房奖励.【解】20.图为放置在水平桌面上的台灯的平面示意图,可伸缩式灯臂AO长为40 cm,与水平面所形成的夹角∠OAM恒为75°(不受灯臂伸缩的影响).由光源0射出的光线沿灯罩形成光线OC,OB,与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°.(1)求该台灯照亮桌面的宽度BC.(不考虑其他因素,结果精确到1 cm,参考数据:sin75°≈0.97,cos75°≈0.26,3≈1.73)【解】(2)若灯臂最多可伸长至60 cm,不调整灯罩的角度,能否让台灯照亮桌面85 cm的宽度?【解】六、(本题满分12分)21.已知反比例函数:xk =y 的图象在第二、四象限,一次函数为y=kx+b(b>0),直线x=1与x 轴交于点B,与直线y=kx+b交于点A ,直线x=3与x 轴交于点C ,与直线y=kx+b 交于点D.点A ,D 都在第一象限,直线y=kx+b 与x 轴交于点E ,与y 轴交于点F , (1)当43=EAED 且△OFE 的面积等于227时,求这个一次函数的解析式.【解】(2)在(1)的条件下,根据函数图象,试求不等式b kx xk +>的解集.【解】七、(本题满分12分)22.如图,正方形OABC 的边长为4,对角线相交于点P ,顶点A 、C 分别在x 轴、y 轴的正半轴上,抛物线L 经过0、P 、A 三点,点E 是正方形内的抛物线上的动点. (1)点P 的坐标为______(2)求抛物线L 的解析式. 【解】(3)求△OAE 与△OCE 的面积之和的最大值. 【解】八、{本题满分14分) 23.【探究证明】(1)某班数学课题学习小组对矩形内两条互相垂直的线段与矩形两邻边的数量关系进行探究,提出下列问题,请你给出证明.如图1,在矩形ABCD 中,EF 丄GH ,EF 分别交AB 、CD 于点E 、F ,GH 分别交AD 、BC 于点G.H 求证:ABAD GHEF =【证明】【结论应用】(2)如图2,在满足(1)的条件下,又AM 丄BN,点M 、N 分别在边BC 、CD 上,若1511=GHEF ,则AMBN 的值为【联系拓展】(3)如图3,在四边形ABCD 中,∠ABC=∠ADC=90°,AB=AD=10,BC=CD=5,AM 丄DN,点M 、N 分别在边BC 、AB 上,求AMDN 的值.【解】2017年中考模拟数学试答案l.A 2.A 3.B 4.D 5.B 6.C 7.C 8.D 9.D 10.A 11.b (a+b )2 12.xx 45860=+13.x=1 14.①②③ 15.解:原式=1+3-3-4+33=2316.解得⎩⎨⎧-==6y -1x17.解(1)画树状图如下由树状图可知所有可能的结果为AA,AB,AC,BA,BB,BC ,CA ,CB,CC ⑵由(1)可知两人再次成为同班同学的概率=93=3118.解⑴所画图形如下所示:(2)S △AOA 1=21OA ·OA 1=21×13=21319.解,(1)设该地投入异地安设资金的年平均增长率为X , 根据题意.得1280(1+x)2=1280+1600,................... 解得x=0.5或x=-2.5(舍)答,从2016年到2018年,该地投人异地安置资金的年平均增长率为50%. ⑵设2016年该地有a 户享受到优先搬迁租房奖励, 根据题意.得l000x8x400+(a —1000x5x400≥5 000 000,... 解得a ≥1900.答2016年该地至少有1900户李受到优先搬迁租房奖励 20.解:⑴在直角三角形ACO 中,4075sin OC OAOC o==故OC=40sin75o在直角三角形BCO 中,BCOC o=30tan ,故oOC BC 30tan ==40sin75o3⨯解得BC ≈67答.该台灯照亮水平两的宽度BC 大约是67cm (2)即台灯可以照亮桌面85 cm 的宽度 21.解:(1)因为BC=2,BE=EC+BC22,解,(1)(2,2) (2)A (),(2325) (3)270≤<b23.解:(1)10,垂直(2)①不全图形如图2所示②(1)中NM 与AB 的位置关系不发生变化因为∠ACB=90 AC=BC 所以∠CAB=∠B=45 所以∠CAN+∠NAM=45所以∠CAN+∠DAC=45 所以∠NAM=∠DAC 在Rt △AND 中ADAN =cos ∠DAN=cos45=22 所以MN ⊥AB(3)BD 的长为6时ME 的场最小最小值是2提示,如图3所示连接ME,EB,过M 作MG ⊥EB 于G ,过A 作AK ⊥AB 交BD 的延长线于K ,则AKB 是等腰三角形在ADK 与ABE 中。

⎪⎩⎪⎨⎧=∠=∠=AE AD BAE KAD AB AK ,所以ADK=AED ,所以ABE=K=45 所以△BMG 是等腰三角形,因为BC=4,所以AB=42,MB=22所以MG=2 因为∠G=90o ,所以ME ≥MG 所以当ME=MG 时,ME 的值最小。

此时ME=BE=2,所以DK=BE=2,因为CK=BC=4, 所以CD=2,BD=6∠∠。

相关文档
最新文档