2015-2016年江西省宜春市高安市七年级下学期期中数学试卷带解析答案

合集下载

2015-2016第二学期期中七年级数学参考答案

2015-2016第二学期期中七年级数学参考答案

2015—2016学年度第二学期期中质量评估试题七年级数学参考答案及评分标准11. 9; 12. 80°; 13.(5,0); 14. 4; 15. 100°;16. 一 三、解答题(一)17. 解:34)2(3-----=3+2-2-3 ……………4分 =0 ……………6分 18. 解:∵a ∥b∴∠2=∠3 ……………2分 ∵∠1+∠3=180°∴∠1+∠2=180° ……………4分 ∴∠2=180°-∠1 ∵∠1=118°∴∠2=180°-118°=62° ……………6分 19.(1)图(略) 图……………4分(2)A 1(0,6);B 1(-1,2) ……………6分 四、解答题(二) 20. 解: )223(328)2(32---+-+-=2232322+--+- ……………4分 =2 ……………7分 21. 解:∵∠1=∠2∴AB ∥CD ……………2分 ∴∠3+∠4=180° ……………4分 ∴∠4=180°-∠3 ……………6分 ∵∠3=108°∴∠4=180°-108°=72° ……………7分 22.(每空1分)∵AB ∥DC (已知)∴∠1=∠CFE (两直线平行,同位角相等)……………2分 ∵AE 平分∠BAD (已知)∴∠1=∠2(角平分线的定义) ……………4分 ∴∠2=∠CFE ……………5分 ∵∠CFE=∠E (已知)∴∠2=∠E …………6分 ∴AD ∥BC (内错角相等,两直线平行). …………7分五、解答题(三) 23. 解:100)1(2=-x101±=-x …………4分 110+±=x11=x …………7分或9-=x …………9分24. 证明:∵DE ‖BC (已知)∴∠ADE =∠ABC (两直线平行,同位角相等) …………2分 ∵DF 、BE 分别平分∠ADE 、∠ABC ∴∠ADF =12∠ADE∠ABE =12∠ABC (角平分线的定义) …………4分∴∠ADF =∠ABE …………5分∴ DF ‖BE (同位角相等,两直线平行) …………7分 ∴∠FDE =∠DEB. (两直线平行,内错角相等) …………9分 25. 解:(1)C (0,2),D (4,2),…………2分(2)依题意,得S 四边形ABDC =AB ×OC=4×2=8; …………3分 (3)存在. …………4分。

江西省宜春市高安市2015-2016学年七年级(下)期中数学试卷(含解析)

江西省宜春市高安市2015-2016学年七年级(下)期中数学试卷(含解析)

江西省宜春市高安市2015-2016学年七年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个2.若x轴上的点P到y轴的距离为3,则点P为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)3.下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠A+∠ADC=180°;C.∠1=∠2 D.∠A=∠54.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)5.下列命题中:①立方根等于它本身的数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.正确的有()A.1个B.2个C.3个D.4个6.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0) C.(1,4)D.(8,3)二、填空题(本大题共6小题,每小题3分,共18分)7.的立方根是.8.把命题“同位角相等”改写成“如果…那么…”的形式为.9.若≈44.90,≈14.20,则≈.10.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.11.如图,将一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=35°,则∠2=.12.平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(﹣1,0),点C在y轴上,如果三角形ABC 的面积等于6,则点C的坐标为.三、(本大题共5小题,每小题6分,共30分)13.计算:|1﹣|+×﹣.14.根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;(3)写出图中与∠O相等的角.15.求下列各式中x的值:(1)25x2+25=41;(2)(2x﹣3)3=﹣64.16.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BA C.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.17.将直角三角形ABC沿CB方向平移CF的长度后,得到直角三角形DEF.已知DG=4,CF=6,AC=10,求阴影部分的面积.四、(本大题共4小题,每小题8分,共32分)18.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.19.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(2)在(2)的条件下,写出A1、O1、B1的坐标;(3)求五边形AA1O1OB的面积.20.已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.21.如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.五、(本大题共1小题,共10分)22.如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.(1)求∠2的度数;(2)FC与AD平行吗?为什么?(3)根据以上结论,你能确定∠ADB与∠FCB的大小关系吗?请说明理由.六、(本大题共1小题,共12分)23.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.2015-2016学年江西省宜春市高安市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:0.101001…,,共3个.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.若x轴上的点P到y轴的距离为3,则点P为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)【分析】根据x轴上的点P到y轴的距离为3,可得点P的横坐标为±3,进而根据x轴上点的纵坐标为0可得具体坐标.【解答】解:∵x轴上的点P到y轴的距离为3,∴点P的横坐标为±3,∵x轴上点的纵坐标为0,∴点P的坐标为(3,0)或(﹣3,0),故选:B.【点评】本题考查了点的坐标的相关知识;用到的知识点为:x轴上点的纵坐标为0.3.下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【分析】根据平行线的判定方法对各选项分析判断后利用排除法求解.【解答】解:A、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD(同旁内角互补,两直线平行),故本选项错误.C、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),判定的不是AB∥CD,故本选项正确;D、∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),故本选项错误;故选C.【点评】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,要注意内错角、同位角、同旁内角与截线、被截线的关系.4.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)【分析】根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.【解答】解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(1,2).故选:A.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.下列命题中:①立方根等于它本身的数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.正确的有()A.1个B.2个C.3个D.4个【分析】利用立方根的定义及求法、平方根的定义及求法分别判断后即可确定正确的选项.【解答】解:①立方根等于它本身的数有﹣1,0,1,正确;②负数没有立方根,错误;③=2,错误;④任何正数都有两个立方根,且它们互为相反数,错误;⑤平方根等于它本身的数有0,故错误,故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解立方根的定义及求法、平方根的定义及求法,难度不大.6.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)【分析】根据反弹时反射角等于入射角画出点的运动轨迹,表示出点的坐标,总结规律得到答案.【解答】解:当点P第1次碰到矩形的边时,点P的坐标为(3,0),当点P第2次碰到矩形的边时,点P的坐标为(7,4),当点P第3次碰到矩形的边时,点P的坐标为(8,3),当点P第4次碰到矩形的边时,点P的坐标为(5,0),当点P第5次碰到矩形的边时,点P的坐标为(1,4),当点P第6次碰到矩形的边时,点P的坐标为(0,3),当点P第7次碰到矩形的边时,点P的坐标为(3,0),2016÷6=336,故当点P第2016次碰到矩形的边时,点P的坐标为:(0,3).故选:A.【点评】本题考查的是根据图形找出点的坐标的变化规律,正确理解题意、画出合适的示意图、表示出变化过程中各点的坐标、正确总结规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.的立方根是2.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵=8,∴的立方根是2;故答案为:2.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.8.把命题“同位角相等”改写成“如果…那么…”的形式为如果两个角是同位角,那么这两个角相等.【分析】命题有题设与结论组成,把命题的题设写在如果的后面,结论写在那么的后面即可.【解答】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.故答案为如果两个角是同位角,那么这两个角相等.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.若≈44.90,≈14.20,则≈ 4.490.【分析】先将2016写成20.16×100,再运用二次根式的性质进行化简计算.【解答】解:∵≈44.90∴≈44.90即×≈44.90∴×10≈44.90即≈4.490故答案为:4.490【点评】本题主要考查了算术平方根,解决问题的关键是根据二次根式的性质进行化简.解题时需要运用公式:=×(a≥0,b≥0).10.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=2.【分析】先求出(﹣1)的范围,再根据范围求出即可.【解答】解:∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案是:2.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.11.如图,将一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=35°,则∠2=125°.【分析】由∠1、∠3与三角板的直角三角之和为平角可算出∠3的度数,再由矩形对边平行结合“两直线平行,同旁内角互补”得出∠2+∠3=180°,代入∠3的度数即可求出结论.【解答】解:在图形中标出∠3,如图所示.∵∠1+∠3+90°=180°,∠1=35°,∴∠3=90°﹣35°=55°.∵矩形对边平行,∴∠2+∠3=180°,∴∠2=180°﹣∠3=125°.故答案为:125°.【点评】本题考查了平行线的性质以及角的计算,解题的关键是求出∠3=55°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.12.平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(﹣1,0),点C在y轴上,如果三角形ABC 的面积等于6,则点C的坐标为(0,4)或(0,﹣4).【分析】先求出AB的长度,再根据三角形的面积求出点C的纵坐标,然后根据y轴上点的坐标特征写出即可.【解答】解:∵点A的坐标为(2,0),点B的坐标为(﹣1,0),∴A、B都在x轴上,且AB=2﹣(﹣1)=3,设点C的纵坐标为y,∵△ABC的面积等于6,∴×3×|y|=6,解得y=±4,∵点C在y轴上,∴点C的坐标为(0,4)或(0,﹣4).故答案为:(0,4)或(0,﹣4).【点评】本题考查了坐标与图形性质,三角形的面积,易错点在于要注意点C有两种情况.三、(本大题共5小题,每小题6分,共30分)13.计算:|1﹣|+×﹣.【分析】本题涉及绝对值、立方根、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1﹣×﹣=﹣1﹣=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握绝对值、立方根、二次根式化简等考点的运算.14.根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;(3)写出图中与∠O相等的角.【分析】(1)利用三角板的直角,过点P作OA⊥PQ即可;(2)过点P画线段PC∥OB交OA于点C,画线段PD∥OA交OB于点D即可;(3)利用平行线的性质即可求解.【解答】解:(1)如图所示:(2)如图所示:(3)与∠O相等的角有:∠ACP,∠PDB,∠P.【点评】本题主要考查了基本作图的中的垂线和平行线的作法以及作一个角等于已知角,要求能够熟练地运用尺规作图,并保留作图痕迹.15.求下列各式中x的值:(1)25x2+25=41;(2)(2x﹣3)3=﹣64.【分析】(1)方程整理后,开方即可求出解;(2)方程开立方即可求出解.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)开立方得:2x﹣3=﹣4,解得:x=﹣.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.16.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BA C.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BA C.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.17.将直角三角形ABC沿CB方向平移CF的长度后,得到直角三角形DEF.已知DG=4,CF=6,AC=10,求阴影部分的面积.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,CF=6,∴AD∥BE,AD=BE=6,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=6×10=60.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.四、(本大题共4小题,每小题8分,共32分)18.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.【分析】(1)利用对顶角、邻补角的定义直接回答即可;(2)根据对顶角相等求出∠BOD的度数,再根据∠BOE:∠EOD=2:3求出∠BOE的度数,然后利用互为邻补角的两个角的和等于180°即可求出∠AOE的度数.【解答】解:(1)∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;(2)∵∠DOE=∠AOC=70°,∠DOE=∠BOE+∠EOD及∠BOE:∠EOD=2:3,∴得,∴,∴∠BOE=28°,∴∠AOE=180°﹣∠BOE=152°.【点评】本题主要考查了对顶角,邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180°求解.19.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(2)在(2)的条件下,写出A1、O1、B1的坐标;(3)求五边形AA1O1OB的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用所画图形进而得出A1、O1、B1的坐标;(3)直接利用五边形AA1O1OB所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△A1O1B1,即为所求;(2)A1(﹣2,3)、B1(﹣3,0)、C1(0,2);(3)五边形AA1O1OB的面积为:3×6﹣×1×3﹣×1×2﹣×2×3=18﹣5.5=12.5.【点评】此题主要考查了平移变换以及图形面积求法,根据题意得出对应点位置是解题关键.20.已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出4a﹣5b+8的值,然后根据立方根的定义求解.【解答】解:∵2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,∴2a+1=9,3a+2b﹣4=﹣8,解得a=4,b=﹣8,∴4a﹣5b+8=4×4﹣5×(﹣8)+8=64,∴4a﹣5b+8的立方根是4.【点评】本题考查了平方根,立方根的定义,列式求出a、b的值是解题的关键.21.如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.【解答】解:(1)∵点A、B分别表示1,,∴AB=﹣1,即x=﹣1;(2)∵x=﹣1,∴(x﹣)2=(﹣1﹣)2=(﹣1)2=1.【点评】本题考查的是实数与数轴及两点间的距离,熟知实数与数轴上的点是一、一对应关系是解答此题的关键.五、(本大题共1小题,共10分)22.如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.(1)求∠2的度数;(2)FC与AD平行吗?为什么?(3)根据以上结论,你能确定∠ADB与∠FCB的大小关系吗?请说明理由.【分析】(1)利用平角定义,根据题意确定出∠2的度数即可;(2)FC与AD平行,理由为:利用内错角相等两直线平行即可得证;(3)∠ADB=∠FCB,理由为:由FC与AD平行,利用两直线平行同位角相等即可得证.【解答】解:(1)∵∠1=∠2,∠BAC=20°,∠1+∠2+∠BAC=180°,∴∠2=80°;(2)∵∠2=∠ACF=80°,∴FC∥AD;(3)∠ADB=∠FCB,理由为:证明:∵FC∥AD,∴∠ADB=∠FC B.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.六、(本大题共1小题,共12分)23.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质易得a=﹣2,b=2,然后根据三角形面积公式计算;(2)过E作EF∥AC,根据平行线性质得BD∥AC∥EF,且∠3=∠CAB=∠1,∠4=∠ODB=∠2,所以∠AED=∠1+∠2=(∠CAB+∠ODB);然后把∠CAB+∠ODB=∠5+∠6=90°代入计算即可;(3)分类讨论:设P(0,t),当P在y轴正半轴上时,过P作MN∥x轴,AN∥y轴,BM∥y轴,利用S△APC=S﹣S△ANP﹣S△CMP=4可得到关于t的方程,再解方程求出t;梯形MNAC当P在y轴负半轴上时,运用同样方法可计算出t.【解答】解:(1)∵(a+2)2+=0,∴a=2=0,b﹣2=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2),∴△ABC的面积=×2×4=4;(2)解:∵CB∥y轴,BD∥AC,∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,过E作EF∥AC,如图①,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠CAB=∠1,∠4=∠ODB=∠2,∴∠AED=∠1+∠2=(∠CAB+∠ODB)=45°;(3)解:①当P在y轴正半轴上时,如图②,设P(0,t),过P作MN∥x轴,AN∥y轴,BM∥y轴,﹣S△ANP﹣S△CMP=4,∵S△APC=S梯形MNAC∴﹣t﹣(t﹣2)=4,解得t=3,②当P在y轴负半轴上时,如图③∵S△APC=S﹣S△ANP﹣S△CMP=4梯形MNAC∴+t﹣(2﹣t)=4,解得t=﹣1,∴P(0,﹣1)或(0,3).【点评】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.。

七年级下册 期中数学试卷(有答案) (2)

七年级下册 期中数学试卷(有答案) (2)

七年级(下)期中数学试卷一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x62.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温3.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.4.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)5.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣57.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.139.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为.12.∠1=35°,则∠1的余角为,补角为.13.计算:a m=3,a n=8,则a m+n=.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为.15.若x2﹣mx+25是完全平方式,则m=.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是.(填序号)能够得到AB∥CD的条件是.(填序号)三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×11118.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(),∴∠2=∠(等量代换),∴DB∥EC(),∴∠DBC+∠C=180°(两直线平行,),∵∠C=∠D(),∴∠DBC+=180°(等量代换),∴DF∥AC(,两直线平行),∴∠A=∠F()21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg弹簧长度1212.51313.51414.515y/cm(1)由表格知,弹簧原长为cm,所挂物体每增加1kg弹簧伸长cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为,图2中阴影部分面积为,对照两个图形的面积可以验证公式(填公式名称)请写出这个乘法公式.(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.七年级(下)期中数学试卷参考答案与试题解析一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项符合题目要求1.下列运算正确的是()A.x6÷x3=x2B.(﹣2x)3=﹣8x3C.x6•x4=x24D.(x3)3=x6【分析】依据同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方法则计算即可.【解答】解:A、x6÷x3=x3,故A错误;B、(﹣2x)3=﹣8x3,故B正确;C、x6•x4=x10,故C错误;D、(x3)3=x9,故D错误.故选:B.【点评】本题主要考查的是同底数幂的乘除、积的乘方、同底数幂的乘法、幂的乘方,熟练掌握相关法则是解题的关键.2.骆驼被称为“沙漠之舟”,它的体温随时间的变化而发生较大的变化.在这一问题中,自变量是()A.时间B.骆驼C.沙漠D.体温【分析】因为骆驼的体温随时间的变化而变化,符合“对于一个变化过程中的两个量x和y,对于每一个x的值,y都有唯一的值和它相对应”的函数定义,自变量是时间.【解答】解:∵骆驼的体温随时间的变化而变化,∴自变量是时间;故选:A.【点评】此题考查常量和变量问题,函数的定义:设x和y是两个变量,D是实数集的某个子集,若对于D中的每个值x,变量y按照一定的法则有一个确定的值y与之对应,称变量y为变量x的函数.3.下列各图中,过直线l外点P画l的垂线CD,三角板操作正确的是()A.B.C.D.【分析】根据垂线的作法,用直角三角板的一条直角边与l重合,另一条直角边过点P后沿直角边画直线即可.【解答】解:根据分析可得D的画法正确,故选:D.【点评】此题主要考查了垂线的画法,同学们应熟练掌握垂线画法,此知识考查较多.4.下列多项式的乘法能用平方差公式计算的是()A.(﹣a﹣b)(a﹣b)B.(﹣x+2)(x﹣2)C.(﹣2x﹣1)(2x+1)D.(﹣3x+2)(﹣2x+3)【分析】根据平方差公式对各选项进行逐一分析即可.【解答】解:A、原式可化为﹣(a+b)(a﹣b),能用平方差公式计算,故本选项正确;B、原式可化为﹣(x﹣2)(x﹣2),不能用平方差公式计算,故本选项错误;C、原式可化为﹣(2x+1)(2x+1),不能用平方差公式计算,故本选项错误;D、不符合两个数的和与这两个数的差相乘,不能用平方差公式计算,故本选项错误.故选:A.【点评】本题考查的是平方差公式,熟知两个数的和与这两个数的差相乘,等于这两个数的平方差是解答此题的关键.5.如图,立定跳远比赛时,小明从点A起跳落在沙坑内P处.若AP=2.3米,则这次小明跳远成绩()A.大于2.3米B.等于2.3米C.小于2.3米D.不能确定【分析】直接利用垂线段最短进而得出小明跳远成绩.【解答】解:过点P作PE⊥AC,垂足为E,∵AP=2.3米,∴这次小明跳远成绩小于2.3米.故选:C.【点评】此题主要考查了垂线段最短,正确掌握垂线段的性质是解题关键.6.若(y+3)(y﹣2)=y2+my+n,则m+n的值为()A.5B.﹣6C.6D.﹣5【分析】先根据多项式乘以多项式的法则计算(y+3)(y﹣2),再根据多项式相等的条件即可求出m、n的值.【解答】解:(y+3)(y﹣2)=y2﹣2y+3y﹣6=y2+y﹣6,∵(y+3)(y﹣2)=y2+my+n,∴m=1、n=﹣6,则m+n=﹣5,故选:D.【点评】本题主要考查多项式乘以多项式的法则:(a+b)(m+n)=am+an+bm+bn.注意不要漏项,漏字母,有同类项的合并同类项.7.下列说法,其中错误的有()①相等的两个角是对顶角;②若∠1+∠2=180°,则∠1与∠2互为补角;③同位角相等;④垂线段最短:⑤同一平面内,两条直线的位置关系有:相交,平行和垂直⑥过直线外一点,有且只有一条直线与这条直线平行A.1个B.2个C.3个D.4个【分析】依据对顶角的性质、补角的定义、平行线的性质、垂线段的性质以及平行线的定义进行判断即可.【解答】解:①相等的两个角不一定是对顶角,故错误;②若∠1+∠2=180°,则∠1与∠2互为补角,故正确;③同位角不一定相等,故错误;④垂线段最短,故正确;⑤在同一平面内,两条直线的位置关系有平行、相交,故错误;⑥过直线外一点,有且只有一条直线与这条直线平行,故正确;故选:C.【点评】本题主要考查了对顶角的性质、补角的定义、平行线的性质、垂线段的性质,解题时注意:同一平面内,两条直线的位置关系:平行或相交.8.已知a+b=3,ab=2,则a2+b2+2ab的值为()A.5B.7C.9D.13【分析】根据完全平方公式即可求出答案.【解答】解:当a+b=3时,原式=(a+b)2=32=9,故选:C.【点评】本题考查完全平方公式,解题的关键是熟练运用完全平方公式,本题属于基础题型.9.如图,直线l1∥l2,等腰直角△ABC的两个顶点A、B分别落在直线l1、l2上,∠ACB=90°,若∠1=15°,则∠2的度数是()A.35°B.30°C.25°D.20°【分析】根据等腰直角三角形的性质可得∠CAB=45°,根据平行线的性质可得∠2=∠3,进而可得答案.【解答】解:∵△ABC是等腰直角三角形,∴∠CAB=45°,∵l1∥l2,∴∠2=∠3,∵∠1=15°,∴∠2=45°﹣15°=30°,故选:B.【点评】此题主要考查了平行线的性质,关键是掌握两直线平行,内错角相等.10.如图,正方形ABCD的边长为4,P为正方形边上一动点,它沿A→D→C→B→A的路径匀速移动,设P点经过的路径长为x,△APD的面积是y,则下列图象能大致反映变量y与变量x的关系图象的是()A.B.C.D.【分析】根据动点P在正方形各边上的运动状态分类讨论△APD的面积即可.【解答】解:有点P运动状态可知,当0≤x≤4时,点P在AD上运动,△APD的面积为0当4≤x≤8时,点P在DC上运动,△APD的面积y=×4×(x﹣4)=2x﹣8当8≤x≤12时,点P在CB上运动,△APD的面积y=8当12≤x≤16时,点P在BA上运动,△APD的面积y=×4×(16﹣x)=﹣2x+32故选:B.【点评】本题为动点问题的函数图象探究题,考查了当动点到达临界点前后的图象变化,解答时根据临界点画出一般图形分段讨论即可.二、填空题:本题共6小题,每小题4分,共24分11.研究表明,H1N1流感球形病毒细胞的直径约为0.00000156m,用科学记数法表示这个数为 1.56×10﹣6.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,其中1≤|a|<10,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.由此可得,此题的a=1.56,10的指数为﹣6.【解答】解:0.000 001 56=1.56×10﹣6m.【点评】本题考查用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.12.∠1=35°,则∠1的余角为55°,补角为145°.【分析】根据余角和补角的定义求出即可.【解答】解:∵∠1=35°,∴∠1的余角为90°﹣∠1=55°,补角为180°﹣∠1=145°,故答案为:55°,145°.【点评】本题考查了余角与补角,知道∠1的余角为90°﹣∠1和∠1的补角为180°﹣∠1是解此题的关键.13.计算:a m=3,a n=8,则a m+n=24.【分析】同底数幂相乘,底数不变指数相加.【解答】解:∵a m=3,a n=8,∴a m+n=a m•a n=3×8=24.故答案是:24.【点评】考查了同底数幂的乘法.同底数幂的乘法法则:同底数幂相乘,底数不变,指数相加.14.△ABC底边BC上的高是8,如果三角形的底边BC长为x,那么三角形的面积y可以表示为y =4x.【分析】根据三角形的面积公式求出即可.【解答】解:∵△ABC底边BC上的高是8,三角形的底边BC长为x,∴三角形的面积y可以表示为y==4x,故答案为:y=4x.【点评】本题考查了列代数式和三角形的面积,能熟记三角形的面积公式是解此题的关键.15.若x2﹣mx+25是完全平方式,则m=±10.【分析】原式利用完全平方公式的结构特征判断即可确定出m的值.【解答】解:∵x2﹣mx+25是完全平方式,∴m=±10,故答案为:±10【点评】此题考查了完全平方式,熟练掌握完全平方公式是解本题的关键.16.如图,现给出下列条件:①∠1=∠2,②∠B=∠5,③∠3=∠4,④∠5=∠D,⑤∠B+∠BCD=180°,其中能够得到AD∥BC的条件是①④.(填序号)能够得到AB∥CD的条件是②③⑤.(填序号)【分析】同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行,据此进行判断即可.【解答】解:∵①∠1=∠2,∴AD∥BC;②∵∠B=∠5,∴AB∥DC;③∵∠3=∠4,∴AB∥CD;④∵∠5=∠D,∴AD∥BC;⑤∵∠B+∠BCD=180°,∴AB∥CD,∴能够得到AD∥BC的条件是①④,能够得到AB∥CD的条件是②③⑤,故答案为:①④,②③⑤.【点评】本题主要考查了平行线的判定,解题时注意:同位角相等,两直线平行;内错角相等,两直线平行;同旁内角互补,两直线平行.三、解答题:本题共8小题,共86分,应写出文字说明,过程或演算步骤17.(20分)计算(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2(2)(x﹣5)(2x+5)+2x(3﹣x)(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0(4)运用乘法公式计算:1122﹣113×111【分析】(1)根据多项式除以多项式和合并同类项可以解答本题;(2)根据多项式乘多项式、单项式乘多项式可以解答本题;(3)根据幂的乘方、负整数指数幂、零指数幂可以解答本题;(4)根据平方差公式可以解答本题.【解答】解:(1)(6x4﹣4x3+2x2)÷(﹣2x2)+3x2=﹣3x2+2x﹣1+3x2=2x﹣1;(2)(x﹣5)(2x+5)+2x(3﹣x)=2x2﹣5x﹣25+6x﹣2x2=x﹣25;(3)(﹣1)2016+(﹣)﹣2﹣(3.14﹣π)0=1+4﹣1=4;(4)1122﹣113×111=1122﹣(112+1)×(112﹣1)=1122﹣1122+1=1.【点评】本题考查整式的混合运算、实数的运算、幂的乘方、负整数指数幂、零指数幂,解答本题的关键是明确它们各自的计算方法.18.(8分)如图,以点B为顶点,射线BC为一边,利用尺规作∠EBC,使得∠EBC=∠A.(1)用尺规作出∠EBC.(不写作法,保留作图痕迹,要写结论)(2)EB与AD一定平行吗?简要说明理由.【分析】分两种情况:①根据同位角相等两直线平行,过D点作AD的平行线即可.②当所作的角在BC下方.【解答】解:(2)EB与AD不一定平行.①当所作的角在BC上方时平行.∵∠EBC=∠A,∴EB∥AD.当所作的角在BC下方,所作的角对称时EB与AD就不平行.【点评】此题主要考查学生对平行线的判定和尺规作图相关知识的理解和掌握,此题难度不大,属于基础题.19.(8分)先化简,再求值(a+2b)(a﹣2b)﹣(a+2b)2+4ab,其中a=1,b=.【分析】先根据完全平方公式和平方差公式算乘法,再合并同类项,最后代入求出即可.【解答】解:原式=a2﹣4b2﹣a2﹣4ab﹣4b2+4ab=﹣8b2,当b=时,原式=﹣8×=﹣.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)已知:如图,∠1=∠2,∠C=∠D.求证:∠A=∠F.证明:∵∠1=∠2(已知),又∠1=∠DMN(对顶角相等),∴∠2=∠DMN(等量代换),∴DB∥EC(同位角相等,两直线平行),∴∠DBC+∠C=180°(两直线平行,同旁内角互补),∵∠C=∠D(已知),∴∠DBC+∠D=180°(等量代换),∴DF∥AC(同旁内角互补,两直线平行),∴∠A=∠F(两直线平行,内错角相等)【分析】根据平行线的性质与判定即可求出答案.【解答】解:故答案为:对顶角;DMN;同为角相等,两直线平行;同旁内角互补;已知;∠D;同旁内角互补;两直线平行,内错角相等【点评】本题考查平行线的性质与判定,解题的关键是灵活运用平行线的性质与判定,本题属于基础题型.21.(8分)如图为一位旅行者在早晨8时从城市出发到郊外所走路程与时间的变化图.根据图回答问题:(1)9时,10时30分,12时所走的路程分别是多少千米?(2)他中途休息了多长时间?(3)他从休息后直达目的地这段时间的速度是多少?(列式计算)【分析】(1)根据图象看相对应的y的值即可.(2)休息时,时间在增多,路程没有变化,表现在函数图象上是与x轴平行.(3)这段时间的平均速度=这段时间的总路程÷这段时间.【解答】解:(1)看图可知y值为:4km,9km,15km,故9时,10时30分,12时所走的路程分别是4km,9km,15km;(2)根据图象可得,路程没有变化,但时间在增长,故表示该旅行者在休息:10.5﹣10=0.5小时=30分钟;(3)根据求平均速度的公式可得:(15﹣9)÷(12﹣10.5)=4千米/时.【点评】本题主要考查了实际问题的函数图象,正确理解函数的图象所表示的意义是解决问题的关键,注意休息时表现在函数图象上是与x轴平行的线段.22.(10分)如图,AB∥CD,∠A=50°,∠C=45°,求∠P的度数.下面提供三种思路:(1)过P作FG∥AB(2)延长AP交直线CD于M;(3)延长CP交直线AB于N.请选择两种思路,求出∠P的度数.【分析】过P作PG∥AB或延长AP交直线CD于M或延长CP交直线AB于N,利用平行线的性质以及三角形外角性质进行计算即可.【解答】解:(1)过P作PG∥AB,∵AB∥CD,∴AB∥CD∥PG,∴∠A=∠APG,∠C=∠CPG,∴∠APC=APG+∠CPG=∠A+∠C=50°+45°=95°;(2)延长AP交直线CD于M;∵AB∥CD,∴∠A=∠AMC=50°,又∵∠C=45°,∴∠APC=∠AMC+∠C=50°+45°=95°;(3)延长CP交直线AB于N.∵AB∥CD,∴∠C=∠ANC=45°,又∵∠A=50°,∴∠APC=∠ANC+∠A=45°+50°=95°.【点评】本题考查了平行线的性质,熟记性质是解题的关键,此类题目的难点在于过拐点作辅助线.23.(10分)在一定限度内弹簧挂上物体后会伸长,测得一弹簧长度y(cm)与所挂物体质量x(kg)有如下关系:(假设都在弹性限度内)0123456所挂物体质量x/kg1212.51313.51414.515弹簧长度y/cm(1)由表格知,弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm.(2)请写出弹簧长度y(cm)与所挂物体质量x(kg)之间的关系式.(3)预测当所挂物体质量为10kg时,弹簧长度是多少?(4)当弹簧长度为20cm时,求所挂物体的质量.【分析】(1)由表格可得弹簧原长以及所挂物体每增加1kg弹簧伸长的长度;(2)由(1)中结论可求出弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式.(3)令x=10时,求出y的值即可.(4)令y=20时,求出x的值即可.【解答】解:(1)由表可知:弹簧原长为12cm,所挂物体每增加1kg弹簧伸长0.5cm,故答案为:12,0.5;(2)弹簧总长y(cm)与所挂重物x(kg)之间的函数关系式为y=0.5x+12,(3)当x=10kg时,代入y=0.5x+12,解得y=17cm,即弹簧总长为17cm.(4)当y=20kg时,代入y=0.5x+12,解得x=16,即所挂物体的质量为16kg.【点评】本题考查了函数的关系式及函数值,关键在于根据图表信息列出等式,然后变形为函数的形式.24.(14分)从边长为a的正方形中剪掉一个边长为b的正方形(如图1),然后将剩余部分拼成一个长方形(如图2).(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式(填公式名称)请写出这个乘法公式a2﹣b2=(a+b)(a﹣b).(2)应用(1)中的公式,完成下列各题:①已知x2﹣4y2=15,x+2y=3,求x﹣2y的值;②计算:(2+1)(22+1)(24+1)(28+1)……(264+1)+1.【分析】(1)根据两个图形中阴影部分的面积相等,即可列出等式;(2)①把x2﹣4y2利用(1)的结论写成两个式子相乘的形式,然后把x+2y=4代入即可求解;②利用平方差公式化成式子相乘的形式即可求解.【解答】解:(1)图1中阴影部分面积为a2﹣b2,图2中阴影部分面积为(a+b)(a﹣b),对照两个图形的面积可以验证平方差公式:a2﹣b2=(a+b)(a﹣b).故答案为:a2﹣b2,(a+b)(a﹣b),平方差,a2﹣b2=(a+b)(a﹣b).(2)①∵x2﹣4y2=(x+2y)(x﹣2y),∴15=3(x﹣2y),∴x﹣2y=5;②(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(2﹣1)(2+1)(22+1)(24+1)(28+1)……(264+1)+1=(22﹣1)(22+1)(24+1)(28+1)……(264+1)+1=(24﹣1)(24+1)(28+1)……(264+1)+1=(28﹣1)(28+1)……(264+1)+1=(264﹣1)(264+1)+1=2128﹣1+1=2128.【点评】本题主要考查了平方差公式的几何表示,运用几何直观理解、解决平方差公式的推导过程,通过几何图形之间的数量关系对平方差公式做出几何解释.表示出图形阴影部分面积是解题的关键.。

宜春市高安市2015-2016学年七年级下期中数学试卷含答案解析

宜春市高安市2015-2016学年七年级下期中数学试卷含答案解析
江西省宜春市高安市 2015-2016 学年七年级(下)期中数学试
卷(解析版)
一、选择题(本大题共 6 小题,每小题 3 分,共 18 分) 1.在 0, ,0.101001…, , , 这 6 个数中,无理数有( ) A.1 个 B.2 个 C.3 个 D.4 个 2.若 x 轴上的点 P 到 y 轴的距离为 3,则点 P 为( ) A.(3,0) B.(3,0)或(﹣3,0) C.(0,3) D.(0,3)或(0,﹣3) 3.下列条件不能判定 AB∥CD 的是( )

A.∠3=∠4 B.∠A+∠ADC=180° C.∠1=∠2 D.∠A=∠5 4.已知线段 CD 是由线段 AB 平移得到的,点 A(﹣1,4)的对应点为 C(4,7),则点 B ( , )的对应点 D 的坐标为( )
﹣4 ﹣1 A.(1,2) B.(2,9) C.(5,3) D.(﹣9,﹣4) 5.下列命题中: ①立方根等于它本身的数有﹣1,0,1; ②负数没有立方根; ③ =2; ④任何正数都有两个立方根,且它们互为相反数; ⑤平方根等于它本身的数有 0 和 1. 正确的有( ) A.1 个 B.2 个 C.3 个 D.4 个 6.如图,动点 P 从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时 反射角等于入射角,当点 P 第 2016 次碰到矩形的边时,点 P 的坐标为( )
五、(本大题共 1 小题,共 10 分) 22.如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°. (1)求∠2 的度数; (2)FC 与 AD 平行吗?为什么? (3)根据以上结论,你能确定∠ADB 与∠FCB 的大小关系吗?请说明理由.
六、(本大题共 1 小题,共 12 分) 23.如图 1,在平面直角坐标系中,A(a,0),C(b,2),且满足 ,过 C 作 CB⊥x 轴于 B. (1)求△ABC 的面积. (2)若过 B 作 BD∥AC 交 y 轴于 D,且 AE,DE 分别平分∠CAB,∠ODB,如图 2,求 ∠AED 的度数. (3)在 y 轴上是否存在点 P,使得△ABC 和△ACP 的面积相等?若存在,求出 P 点坐 标;若不存在,请说明理由.

江西省宜春市高安市2015-2016学年七年级(下)期中数学试卷(含解析)

江西省宜春市高安市2015-2016学年七年级(下)期中数学试卷(含解析)

江西省宜春市高安市2015-2016学年七年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个2.若x轴上的点P到y轴的距离为3,则点P为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)3.下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠A+∠ADC=180°;C.∠1=∠2 D.∠A=∠54.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)5.下列命题中:①立方根等于它本身的数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.正确的有()A.1个B.2个C.3个D.4个6.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0) C.(1,4)D.(8,3)二、填空题(本大题共6小题,每小题3分,共18分)7.的立方根是.8.把命题“同位角相等”改写成“如果…那么…”的形式为.9.若≈44.90,≈14.20,则≈.10.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.11.如图,将一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=35°,则∠2=.12.平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(﹣1,0),点C在y轴上,如果三角形ABC 的面积等于6,则点C的坐标为.三、(本大题共5小题,每小题6分,共30分)13.计算:|1﹣|+×﹣.14.根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;(3)写出图中与∠O相等的角.15.求下列各式中x的值:(1)25x2+25=41;(2)(2x﹣3)3=﹣64.16.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BA C.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.17.将直角三角形ABC沿CB方向平移CF的长度后,得到直角三角形DEF.已知DG=4,CF=6,AC=10,求阴影部分的面积.四、(本大题共4小题,每小题8分,共32分)18.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.19.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(2)在(2)的条件下,写出A1、O1、B1的坐标;(3)求五边形AA1O1OB的面积.20.已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.21.如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.五、(本大题共1小题,共10分)22.如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.(1)求∠2的度数;(2)FC与AD平行吗?为什么?(3)根据以上结论,你能确定∠ADB与∠FCB的大小关系吗?请说明理由.六、(本大题共1小题,共12分)23.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.2015-2016学年江西省宜春市高安市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.在0,,0.101001…,,,这6个数中,无理数有()A.1个B.2个C.3个D.4个【分析】无理数就是无限不循环小数.理解无理数的概念,一定要同时理解有理数的概念,有理数是整数与分数的统称.即有限小数和无限循环小数是有理数,而无限不循环小数是无理数.由此即可判定选择项.【解答】解:无理数有:0.101001…,,共3个.故选C.【点评】此题主要考查了无理数的定义,其中初中范围内学习的无理数有:π,2π等;开方开不尽的数;以及像0.1010010001…,等有这样规律的数.2.若x轴上的点P到y轴的距离为3,则点P为()A.(3,0)B.(3,0)或(﹣3,0)C.(0,3)D.(0,3)或(0,﹣3)【分析】根据x轴上的点P到y轴的距离为3,可得点P的横坐标为±3,进而根据x轴上点的纵坐标为0可得具体坐标.【解答】解:∵x轴上的点P到y轴的距离为3,∴点P的横坐标为±3,∵x轴上点的纵坐标为0,∴点P的坐标为(3,0)或(﹣3,0),故选:B.【点评】本题考查了点的坐标的相关知识;用到的知识点为:x轴上点的纵坐标为0.3.下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠A+∠ADC=180°C.∠1=∠2 D.∠A=∠5【分析】根据平行线的判定方法对各选项分析判断后利用排除法求解.【解答】解:A、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD(同旁内角互补,两直线平行),故本选项错误.C 、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),判定的不是AB∥CD,故本选项正确;D、∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),故本选项错误;故选C.【点评】本题考查了平行线的判定,熟练掌握平行线的判定方法是解题的关键,要注意内错角、同位角、同旁内角与截线、被截线的关系.4.已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C(4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2)B.(2,9)C.(5,3)D.(﹣9,﹣4)【分析】根据点A、C的坐标确定出平移规律,再求出点D的坐标即可.【解答】解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(1,2).故选:A.【点评】本题考查了坐标与图形变化﹣平移,平移中点的变化规律是:横坐标右移加,左移减;纵坐标上移加,下移减.5.下列命题中:①立方根等于它本身的数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.正确的有()A.1个B.2个C.3个D.4个【分析】利用立方根的定义及求法、平方根的定义及求法分别判断后即可确定正确的选项.【解答】解:①立方根等于它本身的数有﹣1,0,1,正确;②负数没有立方根,错误;③=2,错误;④任何正数都有两个立方根,且它们互为相反数,错误;⑤平方根等于它本身的数有0,故错误,故选A.【点评】本题考查了命题与定理的知识,解题的关键是了解立方根的定义及求法、平方根的定义及求法,难度不大.6.如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3)B.(5,0)C.(1,4)D.(8,3)【分析】根据反弹时反射角等于入射角画出点的运动轨迹,表示出点的坐标,总结规律得到答案.【解答】解:当点P第1次碰到矩形的边时,点P的坐标为(3,0),当点P第2次碰到矩形的边时,点P的坐标为(7,4),当点P第3次碰到矩形的边时,点P的坐标为(8,3),当点P第4次碰到矩形的边时,点P的坐标为(5,0),当点P第5次碰到矩形的边时,点P的坐标为(1,4),当点P第6次碰到矩形的边时,点P的坐标为(0,3),当点P第7次碰到矩形的边时,点P的坐标为(3,0),2016÷6=336,故当点P第2016次碰到矩形的边时,点P的坐标为:(0,3).故选:A.【点评】本题考查的是根据图形找出点的坐标的变化规律,正确理解题意、画出合适的示意图、表示出变化过程中各点的坐标、正确总结规律是解题的关键.二、填空题(本大题共6小题,每小题3分,共18分)7.的立方根是2.【分析】根据算术平方根的定义先求出,再根据立方根的定义即可得出答案.【解答】解:∵=8,∴的立方根是2;故答案为:2.【点评】此题主要考查了立方根的定义,求一个数的立方根,应先找出所要求的这个数是哪一个数的立方.由开立方和立方是互逆运算,用立方的方法求这个数的立方根.注意一个数的立方根与原数的性质符号相同.8.把命题“同位角相等”改写成“如果…那么…”的形式为如果两个角是同位角,那么这两个角相等.【分析】命题有题设与结论组成,把命题的题设写在如果的后面,结论写在那么的后面即可.【解答】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.故答案为如果两个角是同位角,那么这两个角相等.【点评】本题考查了命题与定理:判断一件事情的语句,叫做命题.许多命题都是由题设和结论两部分组成,题设是已知事项,结论是由已知事项推出的事项,一个命题可以写成“如果…那么…”形式.有些命题的正确性是用推理证实的,这样的真命题叫做定理.9.若≈44.90,≈14.20,则≈ 4.490.【分析】先将2016写成20.16×100,再运用二次根式的性质进行化简计算.【解答】解:∵≈44.90∴≈44.90即×≈44.90∴×10≈44.90即≈4.490故答案为:4.490【点评】本题主要考查了算术平方根,解决问题的关键是根据二次根式的性质进行化简.解题时需要运用公式:=×(a≥0,b≥0).10.规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=2.【分析】先求出(﹣1)的范围,再根据范围求出即可.【解答】解:∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案是:2.【点评】本题主要考查了无理数的估算,解题关键是确定无理数的整数部分即可解决问题.11.如图,将一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=35°,则∠2=125°.【分析】由∠1、∠3与三角板的直角三角之和为平角可算出∠3的度数,再由矩形对边平行结合“两直线平行,同旁内角互补”得出∠2+∠3=180°,代入∠3的度数即可求出结论.【解答】解:在图形中标出∠3,如图所示.∵∠1+∠3+90°=180°,∠1=35°,∴∠3=90°﹣35°=55°.∵矩形对边平行,∴∠2+∠3=180°,∴∠2=180°﹣∠3=125°.故答案为:125°.【点评】本题考查了平行线的性质以及角的计算,解题的关键是求出∠3=55°.本题属于基础题,难度不大,解决该题型题目时,根据平行线的性质得出相等(或互补)的角是关键.12.平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(﹣1,0),点C在y轴上,如果三角形ABC 的面积等于6,则点C的坐标为(0,4)或(0,﹣4).【分析】先求出AB的长度,再根据三角形的面积求出点C的纵坐标,然后根据y轴上点的坐标特征写出即可.【解答】解:∵点A的坐标为(2,0),点B的坐标为(﹣1,0),∴A、B都在x轴上,且AB=2﹣(﹣1)=3,设点C的纵坐标为y,∵△ABC的面积等于6,∴×3×|y|=6,解得y=±4,∵点C在y轴上,∴点C的坐标为(0,4)或(0,﹣4).故答案为:(0,4)或(0,﹣4).【点评】本题考查了坐标与图形性质,三角形的面积,易错点在于要注意点C有两种情况.三、(本大题共5小题,每小题6分,共30分)13.计算:|1﹣|+×﹣.【分析】本题涉及绝对值、立方根、二次根式化简四个考点.针对每个考点分别进行计算,然后根据实数的运算法则求得计算结果.【解答】解:原式=﹣1﹣×﹣=﹣1﹣=﹣.【点评】本题考查实数的综合运算能力,是各地中考题中常见的计算题型.解决此类题目的关键是掌握绝对值、立方根、二次根式化简等考点的运算.14.根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;(3)写出图中与∠O相等的角.【分析】(1)利用三角板的直角,过点P作OA⊥PQ即可;(2)过点P画线段PC∥OB交OA于点C,画线段PD∥OA交OB于点D即可;(3)利用平行线的性质即可求解.【解答】解:(1)如图所示:(2)如图所示:(3)与∠O相等的角有:∠ACP,∠PDB,∠P.【点评】本题主要考查了基本作图的中的垂线和平行线的作法以及作一个角等于已知角,要求能够熟练地运用尺规作图,并保留作图痕迹.15.求下列各式中x的值:(1)25x2+25=41;(2)(2x﹣3)3=﹣64.【分析】(1)方程整理后,开方即可求出解;(2)方程开立方即可求出解.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)开立方得:2x﹣3=﹣4,解得:x=﹣.【点评】此题考查了立方根,以及平方根,熟练掌握各自的定义是解本题的关键.16.如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BA C.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【分析】根据平行线的判定与性质进行解答即可.【解答】解:∵AD⊥BC于D,EG⊥BC于G(已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BA C.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.【点评】本题考查的是平行线的判定与性质,用到的知识点为:同位角相等,两直线平行;两直线平行,内错角相等,同位角相等.17.将直角三角形ABC沿CB方向平移CF的长度后,得到直角三角形DEF.已知DG=4,CF=6,AC=10,求阴影部分的面积.【分析】根据平移的性质,经过平移,对应点所连的线段平行且相等,可得四边形ABED是平行四边形,再根据平行四边形的面积公式即可求解.【解答】解:∵将△ABC沿CB向右平移得到△DEF,CF=6,∴AD∥BE,AD=BE=6,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=6×10=60.【点评】本题主要考查平移的基本性质:①平移不改变图形的形状和大小;②经过平移,对应点所连的线段平行且相等,对应线段平行且相等,对应角相等.四、(本大题共4小题,每小题8分,共32分)18.如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.【分析】(1)利用对顶角、邻补角的定义直接回答即可;(2)根据对顶角相等求出∠BOD的度数,再根据∠BOE:∠EOD=2:3求出∠BOE的度数,然后利用互为邻补角的两个角的和等于180°即可求出∠AOE的度数.【解答】解:(1)∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;(2)∵∠DOE=∠AOC=70°,∠DOE=∠BOE+∠EOD及∠BOE:∠EOD=2:3,∴得,∴,∴∠BOE=28°,∴∠AOE=180°﹣∠BOE=152°.【点评】本题主要考查了对顶角,邻补角的定义,利用对顶角相等的性质和互为邻补角的两个角的和等于180°求解.19.在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(2)在(2)的条件下,写出A1、O1、B1的坐标;(3)求五边形AA1O1OB的面积.【分析】(1)直接利用平移的性质得出对应点位置进而得出答案;(2)利用所画图形进而得出A1、O1、B1的坐标;(3)直接利用五边形AA1O1OB所在矩形面积减去周围三角形面积进而得出答案.【解答】解:(1)如图所示:△A1O1B1,即为所求;(2)A1(﹣2,3)、B1(﹣3,0)、C1(0,2);(3)五边形AA1O1OB的面积为:3×6﹣×1×3﹣×1×2﹣×2×3=18﹣5.5=12.5.【点评】此题主要考查了平移变换以及图形面积求法,根据题意得出对应点位置是解题关键.20.已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.【分析】先根据平方根,立方根的定义列出关于a、b的二元一次方程组,再代入进行计算求出4a﹣5b+8的值,然后根据立方根的定义求解.【解答】解:∵2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,∴2a+1=9,3a+2b﹣4=﹣8,解得a=4,b=﹣8,∴4a﹣5b+8=4×4﹣5×(﹣8)+8=64,∴4a﹣5b+8的立方根是4.【点评】本题考查了平方根,立方根的定义,列式求出a、b的值是解题的关键.21.如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.【分析】(1)根据数轴上两点间的距离求出AB之间的距离即为x的值;(2)把x的值代入所求代数式进行计算即可.【解答】解:(1)∵点A、B分别表示1,,∴AB=﹣1,即x=﹣1;(2)∵x=﹣1,∴(x﹣)2=(﹣1﹣)2=(﹣1)2=1.【点评】本题考查的是实数与数轴及两点间的距离,熟知实数与数轴上的点是一、一对应关系是解答此题的关键.五、(本大题共1小题,共10分)22.如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.(1)求∠2的度数;(2)FC与AD平行吗?为什么?(3)根据以上结论,你能确定∠ADB与∠FCB的大小关系吗?请说明理由.【分析】(1)利用平角定义,根据题意确定出∠2的度数即可;(2)FC与AD平行,理由为:利用内错角相等两直线平行即可得证;(3)∠ADB=∠FCB,理由为:由FC与AD平行,利用两直线平行同位角相等即可得证.【解答】解:(1)∵∠1=∠2,∠BAC=20°,∠1+∠2+∠BAC=180°,∴∠2=80°;(2)∵∠2=∠ACF=80°,∴FC∥AD;(3)∠ADB=∠FCB,理由为:证明:∵FC∥AD,∴∠ADB=∠FC B.【点评】此题考查了平行线的判定,熟练掌握平行线的判定方法是解本题的关键.六、(本大题共1小题,共12分)23.如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P点坐标;若不存在,请说明理由.【分析】(1)根据非负数的性质易得a=﹣2,b=2,然后根据三角形面积公式计算;(2)过E作EF∥AC,根据平行线性质得BD∥AC∥EF,且∠3=∠CAB=∠1,∠4=∠ODB=∠2,所以∠AED=∠1+∠2=(∠CAB+∠ODB);然后把∠CAB+∠ODB=∠5+∠6=90°代入计算即可;(3)分类讨论:设P(0,t),当P在y轴正半轴上时,过P作MN∥x轴,AN∥y轴,BM∥y轴,利用S△APC=S﹣S△ANP﹣S△CMP=4可得到关于t的方程,再解方程求出t;梯形MNAC当P在y轴负半轴上时,运用同样方法可计算出t.【解答】解:(1)∵(a+2)2+=0,∴a=2=0,b﹣2=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2),∴△ABC的面积=×2×4=4;(2)解:∵CB∥y轴,BD∥AC,∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,过E作EF∥AC,如图①,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠CAB=∠1,∠4=∠ODB=∠2,∴∠AED=∠1+∠2=(∠CAB+∠ODB)=45°;(3)解:①当P在y轴正半轴上时,如图②,设P(0,t),过P作MN∥x轴,AN∥y轴,BM∥y轴,﹣S△ANP﹣S△CMP=4,∵S△APC=S梯形MNAC∴﹣t﹣(t﹣2)=4,解得t=3,②当P在y轴负半轴上时,如图③∵S△APC=S﹣S△ANP﹣S△CMP=4梯形MNAC∴+t﹣(2﹣t)=4,解得t=﹣1,∴P(0,﹣1)或(0,3).【点评】本题考查了平行线的判定与性质:两直线平行,内错角相等.也考查了非负数的性质、坐标与图形性质以及三角形面积公式.。

江西省宜春市高安中学2015-2016学年高一下学期期中数学试卷(重点班) 含解析

江西省宜春市高安中学2015-2016学年高一下学期期中数学试卷(重点班) 含解析

2015-2016学年江西省宜春市高安中学高一(下)期中数学试卷(重点班)一、选择题:(本大题共12道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.角α=的终边在()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.若三点共线则m的值为()A.B. C.﹣2 D.23.将y=sin2x的图象向左平移个单位,则平移后的图象所对应的函数的解析式为() A.B. C.D.4.若sin(α﹣β)cosα﹣cos(α﹣β)sinα=m,且β为第二象限角,则cosβ的值为()A. B.C.D.5.已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则函数f(x)的图象()A.关于直线x=对称B.关于点(,0)对称C.关于点(,0)对称D.关于直线x=对称6.设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B. C.2D.107.已知sinαcosα=,且<α<,则cosα﹣sinα的值为()A.B. C. D.8.如图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A. B.C. D.9.已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.10.函数y=2sinx(sinx+cosx)的最大值为()A.B.C.D.211.如图平行四边形ABCD中,=(1,2),=(﹣3,2),则•=()A.1 B.2 C.3 D.412.在△ABC中,已知tan()=sinC,给出以下论断:①=1;②1<sinA+sinB≤;③sin2A+cos2B=1;④cos2A+cos2B=sin2C.其中正确的是()A.①③B.②④C.①④D.②③二、填空题:本大题共4道小题,每小题5分,共20分.把答案填在题中横线上13.已知向量,满足||=2,与的夹角为60°,则在上的投影是______.14.已知x∈(﹣,0),cosx=,则tan2x=______.15.若函数y=sinx+mcosx图象的一条对称轴方程为,则实数m的值为______.16.如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=2,||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为______.三、解答题:本大题共6小题,共70分。

2015-2016年江西省宜春市高安中学高一(下)期中数学试卷和答案

2015-2016年江西省宜春市高安中学高一(下)期中数学试卷和答案

2015-2016学年江西省宜春市高安中学高一(下)期中数学试卷(重点班)一、选择题:(本大题共12道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)角α=的终边在()A.第一象限B.第二象限C.第三象限D.第四象限2.(5分)若三点共线则m的值为()A.B.C.﹣2D.23.(5分)将y=sin2x的图象向左平移个单位,则平移后的图象所对应的函数的解析式为()A.B.C.D.4.(5分)若sin(α﹣β)cosα﹣cos(α﹣β)sinα=m,且β为第二象限角,则cosβ的值为()A.B.C.D.5.(5分)已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则函数f (x)的图象()A.关于直线x=对称B.关于点(,0)对称C.关于点(,0)对称D.关于直线x=对称6.(5分)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.107.(5分)已知sinαcosα=,且<α<,则cosα﹣sinα的值为()A.B.C.D.8.(5分)如图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A.B.C.D.9.(5分)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.10.(5分)函数y=2sinx(sinx+cosx)的最大值为()A.B.C.D.211.(5分)如图平行四边形ABCD中,=(1,2),=(﹣3,2),则•=()A.1B.2C.3D.412.(5分)在△ABC中,已知tan()=sinC,给出以下论断:①=1;②1<sinA+sinB≤;③sin2A+cos2B=1;④cos2A+cos2B=sin2C.其中正确的是()A.①③B.②④C.①④D.②③二、填空题:本大题共4道小题,每小题5分,共20分.把答案填在题中横线上13.(5分)已知向量,满足||=2,与的夹角为60°,则在上的投影是.14.(5分)已知x∈(﹣,0),cosx=,则tan2x=.15.(5分)若函数y=sinx+mcosx图象的一条对称轴方程为,则实数m的值为.16.(5分)如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=2,||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为.三、解答题:本大题共6小题,共70分.第17题10分,其它每题12分,解答写出文字说明、证明过程或演算步骤.17.(10分)已知向,满足||=1,||=6,且•(﹣)=2,求:(1)与的夹角;(2)|2﹣|的模.18.(12分)已知函数,(1)求函数y=f(x)的最大、最小值以及相应的x值;(2)若x∈[0,2π],求函数y=f(x)的单调增区间;(3)若y>2,求x的取值范围.19.(12分)已知函数f(x)=Asin(ωx+φ)+b (ω>0,|φ|<)的图象的一部分如图所示:(1)求f(x)的表达式;(2)试写出f(x)的对称轴方程.20.(12分)已知cosα=,cos(α﹣β)=,且0<β<α<.求:(1)tan2α的值;(2)β的大小.21.(12分)已知函数f(x)=2sin2(+x)﹣cos2x(Ⅰ)求f(x)的周期和单调递增区间(Ⅱ)若关于x的方程f(x)﹣m=2在x∈[,]上有解,求实数m的取值范围.22.(12分)=(sinωx+cosωx,cosωx)(ω>0),=(cosωx﹣sinωx,2sinωx),函数f(x)=+t,若f(x)图象上相邻两个对称轴间的距离为,且当x ∈[0,π]时,函数f(x)的最小值为0.(1)求函数f(x)的表达式,并求f(x)的增区间;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.2015-2016学年江西省宜春市高安中学高一(下)期中数学试卷(重点班)参考答案与试题解析一、选择题:(本大题共12道小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.(5分)角α=的终边在()A.第一象限B.第二象限C.第三象限D.第四象限【解答】解:∵α==2π+,故α=的终边与的终边相同,而的终边在第三象限,故角α=的终边在第三象限,故选:C.2.(5分)若三点共线则m的值为()A.B.C.﹣2D.2【解答】解:,∵三点共线∴共线∴5(m﹣3)=﹣解得m=故选:A.3.(5分)将y=sin2x的图象向左平移个单位,则平移后的图象所对应的函数的解析式为()A.B.C.D.【解答】解:将个单位,则平移后的图象所对应的函数的解析式为y=sin2(x+)=,故选:C.4.(5分)若sin(α﹣β)cosα﹣cos(α﹣β)sinα=m,且β为第二象限角,则cosβ的值为()A.B.C.D.【解答】解:∵sin(α﹣β)cosα﹣cos(α﹣β)sinα=sin(α﹣β﹣α)=﹣sinβ=m,∴sinβ=﹣m,∵β为第二象限角,cosβ<0,cosβ=﹣=﹣,故选:C.5.(5分)已知函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,则函数f (x)的图象()A.关于直线x=对称B.关于点(,0)对称C.关于点(,0)对称D.关于直线x=对称【解答】解:∵函数f(x)=sin(ωx+)(ω>0)的最小正周期为π,∴由三角函数的周期公式,得T=,解得ω=2函数表达式为f(x)=sin(2x+)令2x+=kπ(k∈Z),得x=﹣(k∈Z),∴函数图象的对称中心为(﹣,0)(k∈Z)取k=1得一个对称中心为(,0),可得B项正确而C项不正确而函数图象的对称轴方程满足x=(k∈Z),而A、D两项的直线都不符合,故A、D均不正确故选:B.6.(5分)设x∈R,向量=(x,1),=(1,﹣2),且⊥,则|+|=()A.B.C.2D.10【解答】解:因为x∈R,向量=(x,1),=(1,﹣2),且⊥,所以x﹣2=0,所以=(2,1),所以=(3,﹣1),所以|+|=,故选:B.7.(5分)已知sinαcosα=,且<α<,则cosα﹣sinα的值为()A.B.C.D.【解答】解:∵sinαcosα=,∴(cosα﹣sinα)2=cos2α﹣2sinαcosα+sin2α=1﹣2sinαcosα=,∵<α<,∴cosα<sinα,即cosα﹣sinα<0,则cosα﹣sinα=﹣.故选:D.8.(5分)如图,已知正六边形P1P2P3P4P5P6,下列向量的数量积中最大的是()A.B.C.D.【解答】解:如图,已知正六边形P1P2P3P4P5P6,设边长|P1P2|=a,则∠P 2P1P3=.,=,∠P2P1P4=,|P1P4|=2a,=,=0,<0,∴数量积中最大的是,故选:A.9.(5分)已知a是实数,则函数f(x)=1+asinax的图象不可能是()A.B.C.D.【解答】解:∵函数f(x)=1+asinax(1)当a=0时,y=1,函数图象为:C故C正确(2)当a≠0时,f(x)=1+asinax 周期为T=,振幅为a若a>1时,振幅为a>1,T<2π,当0<a≤1,T≥2π.∵D选项的图象,振幅与周期的范围矛盾故D错误,故选:D.10.(5分)函数y=2sinx(sinx+cosx)的最大值为()A.B.C.D.2【解答】解:∵y=2sinx(sinx+cosx)∴y=2sin2x+2sinxcosx∴y=1﹣cos2x+sin2x=sin(2x﹣)+1∵当x∈R时,sin(2x﹣)∈[﹣1,1]∴y的最大值为+1,故选:A.11.(5分)如图平行四边形ABCD中,=(1,2),=(﹣3,2),则•=()A.1B.2C.3D.4【解答】解:在平行四边形ABCD中,由于+==(1,2),﹣==(﹣3,2),∴=(﹣1,2),=(﹣2,0),∴•=(﹣1,2)•(1,2)=﹣1+4=3,故选:C.12.(5分)在△ABC中,已知tan()=sinC,给出以下论断:①=1;②1<sinA+sinB≤;③sin2A+cos2B=1;④cos2A+cos2B=sin2C.其中正确的是()A.①③B.②④C.①④D.②③【解答】解:∵tan =sinC,∴=2sin cos,整理求得cos =,∴A+B=90°.对于①,由tanA=cotB,可得:tanAtanB=1,tanB不一定等于cotB,故①不正确.对于②,由上可得sinA+sinB=sinA+cosA=sin(A+45°),由45°<A+45°<135°,故有<sin(A+45°)≤1,∴1<sinA+sinB≤,所以②正确.对于③,sin2A+cos2B=sin2A+sin2A=2sin2A,不一定等于1,故③不正确.对于④,∵cos2A+cos2B=cos2A+sin2A=1,sin2C=sin290°=1,所以cos2A+cos2B=sin2C,所以④正确.故选:B.二、填空题:本大题共4道小题,每小题5分,共20分.把答案填在题中横线上13.(5分)已知向量,满足||=2,与的夹角为60°,则在上的投影是1.【解答】解:根据向量的投影定义,在上的投影等于||cos<,>=2×=1故答案为:114.(5分)已知x∈(﹣,0),cosx=,则tan2x=﹣.【解答】解:cos2x=2cos2x﹣1=∵∴2x∈(﹣π,0)∴sin2x=﹣=﹣∴tan2x==﹣故答案为:﹣15.(5分)若函数y=sinx+mcosx图象的一条对称轴方程为,则实数m的值为.【解答】解:函数y=sinx+mcosx=sin(x+θ),其中tanθ=m,,其图象关于直线对称,所以θ+=±,θ=,或θ=(舍去)所以tanθ=m=,故答案为:.16.(5分)如图,平面内有三个向量、、,其中与与的夹角为120°,与的夹角为30°,且||=2,||=1,||=,若=λ+μ(λ,μ∈R),则λ+μ的值为4.【解答】解:如图所示,过点C作CD∥OB交直线OA与点D.∵与的夹角为120°,与的夹角为30°,∴∠OCD=90°.在Rt△OCD中,∴==2,=4.又=λ+μ=,∴,.∴,.∴4=λ×2,2=μ×1,解得λ=2=μ.∴λ+μ=4.故答案为4.三、解答题:本大题共6小题,共70分.第17题10分,其它每题12分,解答写出文字说明、证明过程或演算步骤.17.(10分)已知向,满足||=1,||=6,且•(﹣)=2,求:(1)与的夹角;(2)|2﹣|的模.【解答】解:(1)∵•(﹣)=•﹣2=2,又||=1,||=6∴•=3,即||||cos<,>=3,解得cos<,>=又0≤<,>≤π,所以与的夹角为(2)|2﹣|2=42﹣4•+2=28,∴|2﹣|=218.(12分)已知函数,(1)求函数y=f(x)的最大、最小值以及相应的x值;(2)若x∈[0,2π],求函数y=f(x)的单调增区间;(3)若y>2,求x的取值范围.【解答】解:(1)当2x﹣,k∈Z时,函数y=f(x)取得最大值为3,当2x﹣,k∈Z时,函数y=f(x)取得最小值为﹣1;(2)令T=2x﹣,k∈Z.也即kπ﹣(k∈Z)时,函数y=2sinT+1单调递增.又x∈[0,2π],∴函数y=f(x)的单调增区间;(3)若y>2,∴,k∈Z.解得:,k∈Z.19.(12分)已知函数f(x)=Asin(ωx+φ)+b (ω>0,|φ|<)的图象的一部分如图所示:(1)求f(x)的表达式;(2)试写出f(x)的对称轴方程.【解答】解:(1)由图象可知,函数的最大值M=3,最小值m=﹣1,则A=,又,∴ω=,∴f(x)=2sin(2x+φ)+1,将x=,y=3代入上式,得φ)=1,∴,k∈Z,即φ=+2kπ,k∈Z,∴φ=,∴f(x)=2sin+1.(2)由2x+=+kπ,得x=+kπ,k∈Z,∴f(x)=2sin+1的对称轴方程为kπ,k∈Z.20.(12分)已知cosα=,cos(α﹣β)=,且0<β<α<.求:(1)tan2α的值;(2)β的大小.【解答】解:,.…(2分),…(4分).…(6分).因为cos(α﹣β)=,所以sin(α﹣β)=,所以cosβ=cos[α﹣(α﹣β)]=cosαcos(α﹣β)+sinαsin(α﹣β)=,所以β=.21.(12分)已知函数f(x)=2sin2(+x)﹣cos2x(Ⅰ)求f(x)的周期和单调递增区间(Ⅱ)若关于x的方程f(x)﹣m=2在x∈[,]上有解,求实数m的取值范围.【解答】解:(I)∵f(x)=2sin2(+x)﹣cos2x=1﹣cos(+2x)﹣cos2x=1+sin2x﹣cos2x=2sin(2x﹣)+1.(1分)∴周期T=π;(1分)令2kπ﹣≤2x﹣≤2kπ,解得kπ﹣≤x≤kπ,∴单调递增区间为[kπ﹣,kπ],(k∈Z).(2分)(II)∵x∈[,],所以2x﹣∈[,],∴sin(2x﹣)∈[,1],所以f(x)的值域为[2,3],(4分)而f(x)=m+2,所以m+2∈[2,3],即m∈[0,1](4分)22.(12分)=(sinωx+cosωx,cosωx)(ω>0),=(cosωx﹣sinωx,2sinωx),函数f(x)=+t,若f(x)图象上相邻两个对称轴间的距离为,且当x ∈[0,π]时,函数f(x)的最小值为0.(1)求函数f(x)的表达式,并求f(x)的增区间;(2)在△ABC中,若f(C)=1,且2sin2B=cosB+cos(A﹣C),求sinA的值.【解答】解:(1)函数f(x)=+t=cos2ωx+sin2ωx+t=2sin(2ωx+)+t,由=T==,可得ω=,∴f(x)=.当x∈[0,π]时,,函数f(x)的最小值为1+t=0,∴t=﹣1,∴.由,k∈z,可得3kπ﹣π≤x≤3kπ+,故f(x)的增区间为[3kπ﹣π,3kπ+],k∈z.(2)∵f(C)=1=2sin()﹣1,∴sin()=1,由0<C<π 可得,<<,∴=,∴C=,A+B=.又2sin2B=cos B+cos(A﹣C),∴2=cos(﹣A)+cos(A﹣),∴2cos2A=2sinA,即1﹣sin2A=sinA,再由sinA>0,求得sinA=.。

初一数学第二学期期中考试试卷(含答案)

初一数学第二学期期中考试试卷(含答案)

初一数学第二学期期中考试试卷(含答案)试卷满分:120分考试时间:100分钟一、选择题(本大题共10小题,每小题3分,共30分)1.下列图形中,由AB CD ∥,能得到12∠=∠的是( )2.下列各网格中的图形是用其图形中的一部分平移得到的是-------------( )A B C D 3.下列计算正确的是( )A .a 2+a 3=a 5B .a·a 2=a 2C .(ab)3=ab 3D .(-a 2)2=a 44.如图,已知△ABC 中,∠A =40°,剪去∠A 后成四边形,则∠1+∠2的和的度数为( )A .220°B .210°C .140°D .120°第4题图 5.如图,BE 、CF 都是△ABC 的角平分线,且∠BDC=1100,则∠A 的度数为( )A .50B .40C .70D .3506. 如图,∠ACB >90°,AD ⊥BC ,BE ⊥AC ,CF ⊥AB ,垂足分别为点D 、点E 、点F ,△ABC 中BC 边上的高是( )A. CF ;B.BE ;C.AD ;D.CD ; 7.如果,,那么三数的大小为( ) A. B. C. D. 8.若(x+5)(2x-n)=2x 2+mx-15,则( )A .m=-7,n=3B .m=7,n=-3C .m=-7,n=-3D .m=7,n=3(),990-=a ()11.0--=b 235-⎪⎭⎫ ⎝⎛-=c c b a >>b a c >>b c a >>a b c >>A CB D1 2 A CB D1 2 A .B .12 ACDC . B C AD .12 F E D CB A 第5题图 AB C D E F第6题图9. 如图,四边形ABCD 中,E 、F 、G 、H 依次是各边中点,O 是形 内一点,若四边形AEOH 、四边形BFOE 、四边形CGOF 的面积分 别为5、6、7,四边形DHOG 面积为( )A . 5B .6C .8D .9 10.观察下列等式:31=3,32=9,33=27,34=81,35=243,36=729, 37=2187…解答下列问题:3+32+33+34…+32013的末位数字是( ) A .0 B .1 C .3 D .7二、填空题(本大题共8小题,每空3分,共30分)11.一种细菌的半径是0.00000038厘米,用科学计数法表示为___ 厘米.12.若 ,3,6==n m a a =-n m a 2________ .若3=n x ,则=⋅n n x x )21()2(_______. 13. 二次三项式9)1(2++-x k x 是一个完全平方式,则k 的值是_________.14.一个多边形的每一个外角都是30°,则这个多边形是__ 边形,它的内角和是____°. 15.三角形两边长分别为2和8,若该三角形第三边长为奇数,则该三角形的第三边为________.16. 如图,直线a ,b 所成的角跑到画板外面去了,你有什么办法量出这两条直线所成的角的度数?小明的做法是:如图,画PC ∥a ,量出直线b 与PC 的夹角度数,即直线a ,b 所成角的度数,请写出这种做法的理由______________________.17.设m2+m −1=0,则m 3+2m 2+2014=________.18.如图a 是长方形纸带,∠DEF=22°,将纸带沿EF 折叠成图b,再沿BF 折叠成图c ,则图c 中的∠CFE 的度数是________°.三、解答题(本大题共60分.解答时应写出文字说明、证明过程或演算步骤).19.计算(每小题4分,共12分) (1)()()1331721-⎪⎭⎫ ⎝⎛--+-+-π(2)234232)3()2(x x x x --⋅+-(3) −x (2x +1)−(2x +3)(1−x ) (4)(x+1)2﹣(x+2)(x-2)20. (本题5分)先化简,再求值:2(32)(32)5(1)(1)x x x x x +--+--, 其中220120x x --=AEBCG D H F O 题9图a bD BAC P(图2)第16题第18题图A DC BE F C BG 图a图c21.(本题10分)如下图,在每个小正方形边长为1的方格纸中, △ABC 的顶点都在方格纸格点上.(1)将△ABC 经过平移后得到△A′B′C′,图中标出了点B的对应点B',补全△A′B′C′;(2)若连接AA ',BB ',则这两条线段之间的关系是; (3)画出AC 边上的高线BD ;(4)画出△ABC 中AC 边上的中线BE ;(5)△BCE的面积为 .22.(本题5分)如图,AD ∥BE ,AE 平分∠BAD ,CD 与AE 相交于F ,∠CFE=∠E .求证:AB ∥CD .23.(本题6分)如图,DE ⊥AB ,EF ∥AC ,∠A=32°,①求∠DEF 的度数.②若∠F 比∠ACF大60°,求∠B 的度数..B′G FED CBA...11618141219×23...13×2323S 4=S 3×13S 3=S 2×13S 2=S 1×13S 1=13...24.(本题6分)某同学在一次课外活动中,用硬纸片做了两个直角三角形,见图①、②.图①中,∠B =90°,∠A=30°;图②中,∠D = 90°,∠F =45°.图③是该同学所做的一个实验:他将△DEF 的直角边DE 与△ABC 的斜边AC 重合在一起,并将△DEF 沿AC 方向移动.在移动过程中,D 、E 两点始终在AC 边上(移动开始时点D 与点A 重合).(1)在△DEF 沿AC 方向移动的过程中,该同学发现:F 、C 两点间的距离______________;连接FC ,∠FCE 的度数_______________.(填“不变”、“逐渐变大”或“逐渐变小”)(2)△DEF 在移动的过程中,∠FCE 与∠CFE 度数之和是否为定值,请加以说明; (3)能否将△DEF 移动至某位置,使F 、C 的连线与AB 平行?请求出∠CFE 的度数.25.(本题6分)利用图形来表示数量或数量关系,也可以利用数量或数量关系来描述图形特征或图形之间的关系,这种思想方法称为数形结合.你能利用数形结合的思想解决下列问题吗? (1)如图①,边长为1的正方形,依次取正方形面积的21、41、81、…、n 21,根据图示我们可以知道:21+41+81+161+…+n21=__________.(用含有n 的式子表示)(2)如图②,边长为1的正方形,依次取剩余部分的32,根据图示: 计算:+++2729232…+n 32=__________.(用含有n 的式子表示)(3)如图③是一个边长为1的正方形,根据图示:计算:++++8182749231…+n n 321-=__________.(用含有n 的式子表示)图①图②图③26.(本题10分)如图,已知点A、B分别在∠MON的边ON、OM上(不与点O重合),AD平分∠BAN,BC平分∠ABM,直线AD,BC相交于点C.(1)如图1,若∠MON = 90°,试猜想∠ACB=________°;(2)如图2,在(1)的基础上,若∠MON每秒钟变小10°,经过了t秒(0 <t < 9),①试用含t的代数式表示∠ACB的度数;②并求出当t取何值时,∠MON与∠ACB的度数相等;(3)如图3,在(2)的条件下,若BC平分∠ABO,其它条件不改变,请直接写出∠BCD 与∠MON的关系.参考答案1. B2. C3. D4. A5. B6. C7. C8. D9. B 10. C 11. 3.8×107- 12.329 13. 5, -7 14. 十二 1800 15. 7, 9 16. 两直线平行,同位角相等 17. 2015 18. 114° 19. (1) -9 ( 2) -16x 6 (3) -3 (4) 2x+520. 化简结果是 3x 2-3x-5 (3分) 求值结果是 6031 (2分) 21. (每小题2分)(1)略 (2)平行且相等 (3)略 (4)略 (5)4 22.23. (每小题3分)① 122° ② 28° 24. (每小题2分)(1)逐渐变小,逐渐变大(2)和为定值,是45° (3)15°25.(每小题2分)(1)n 211- (2)n 311- (3)n n 321-26.(1)∠ACB = 45° .…. ….….2分 (2)∠ACB =(45+5t )°.…..…..5分 由 90-10t = 45 + 5t , 得t =3. .…..8分∴ 当t = 3时,∠MON 与∠ACB 的度数相等;(没写答不扣分)…. …. …..8分 (3)∠BCD = 21∠MON . …. …. …. …. …. …. …. ….…. ….. …. ….. …. …..10分。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2015-2016学年江西省宜春市高安市七年级(下)期中数学试卷一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)在0,,0.101001…,,,这6个数中,无理数有()A.1个 B.2个 C.3个 D.4个2.(3分)若x轴上的点P到y轴的距离为3,则点P为()A.(3,0) B.(3,0)或(﹣3,0)C.(0,3) D.(0,3)或(0,﹣3)3.(3分)下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠BAD+∠ADC=180°C.∠1=∠2 D.∠BAD=∠54.(3分)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C (4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2) B.(2,9) C.(5,3) D.(﹣9,﹣4)5.(3分)下列命题中:①立方根等于它本身的数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.正确的有()A.1个 B.2个 C.3个 D.4个6.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3) B.(5,0) C.(1,4) D.(8,3)二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)的立方根是.8.(3分)把命题“同位角相等”改写成“如果…那么…”的形式为.9.(3分)若≈44.90,≈14.20,则≈.10.(3分)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=.11.(3分)如图,将一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=35°,则∠2=.12.(3分)平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(﹣1,0),点C在y轴上,如果三角形ABC的面积等于6,则点C的坐标为.三、(本大题共5小题,每小题6分,共30分)13.(6分)计算:|1﹣|+×﹣.14.(6分)根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;(3)写出图中与∠O相等的角.15.(6分)求下列各式中x的值:(1)25x2+25=41;(2)(2x﹣3)3=﹣64.16.(6分)如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG.∴∠1=∠2.=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3.∴AD平分∠BAC.17.(6分)将直角三角形ABC沿CB方向平移CF的长度后,得到直角三角形DEF.已知DG=4,CF=6,AC=10,求阴影部分的面积.四、(本大题共4小题,每小题8分,共32分)18.(8分)如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为,∠BOE的邻补角为;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.19.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(2)在(2)的条件下,写出A1、O1、B1的坐标;(3)求五边形AA 1O1OB的面积.20.(8分)已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.21.(8分)如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.五、(本大题共1小题,共10分)22.(10分)如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.(1)求∠2的度数;(2)FC与AD平行吗?为什么?(3)根据以上结论,你能确定∠ADB与∠FCB的大小关系吗?请说明理由.六、(本大题共1小题,共12分)23.(12分)如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.2015-2016学年江西省宜春市高安市七年级(下)期中数学试卷参考答案与试题解析一、选择题(本大题共6小题,每小题3分,共18分)1.(3分)在0,,0.101001…,,,这6个数中,无理数有()A.1个 B.2个 C.3个 D.4个【解答】解:无理数有:0.101001…,,共3个.故选:C.2.(3分)若x轴上的点P到y轴的距离为3,则点P为()A.(3,0) B.(3,0)或(﹣3,0)C.(0,3) D.(0,3)或(0,﹣3)【解答】解:∵x轴上的点P到y轴的距离为3,∴点P的横坐标为±3,∵x轴上点的纵坐标为0,∴点P的坐标为(3,0)或(﹣3,0),故选:B.3.(3分)下列条件不能判定AB∥CD的是()A.∠3=∠4 B.∠BAD+∠ADC=180°C.∠1=∠2 D.∠BAD=∠5【解答】解:A、∵∠3=∠4,∴AB∥CD(内错角相等,两直线平行),故本选项错误;B、∵∠A+∠ADC=180°,∴AB∥CD(同旁内角互补,两直线平行),故本选项错误.C、∵∠1=∠2,∴AD∥BC(内错角相等,两直线平行),判定的不是AB∥CD,故本选项正确;D、∵∠B=∠5,∴AB∥CD(同位角相等,两直线平行),故本选项错误;故选:C.4.(3分)已知线段CD是由线段AB平移得到的,点A(﹣1,4)的对应点为C (4,7),则点B(﹣4,﹣1)的对应点D的坐标为()A.(1,2) B.(2,9) C.(5,3) D.(﹣9,﹣4)【解答】解:∵点A(﹣1,4)的对应点为C(4,7),∴平移规律为向右5个单位,向上3个单位,∵点B(﹣4,﹣1),∴点D的坐标为(1,2).故选:A.5.(3分)下列命题中:①立方根等于它本身的数有﹣1,0,1;②负数没有立方根;③=2;④任何正数都有两个立方根,且它们互为相反数;⑤平方根等于它本身的数有0和1.正确的有()A.1个 B.2个 C.3个 D.4个【解答】解:①立方根等于它本身的数有﹣1,0,1,正确;②负数没有立方根,错误;③=2,错误;④任何正数都有两个立方根,且它们互为相反数,错误;⑤平方根等于它本身的数有0,故错误,故选:A.6.(3分)如图,动点P从(0,3)出发,沿所示方向运动,每当碰到矩形的边时反弹,反弹时反射角等于入射角,当点P第2016次碰到矩形的边时,点P的坐标为()A.(0,3) B.(5,0) C.(1,4) D.(8,3)【解答】解:当点P第1次碰到矩形的边时,点P的坐标为(3,0),当点P第2次碰到矩形的边时,点P的坐标为(7,4),当点P第3次碰到矩形的边时,点P的坐标为(8,3),当点P第4次碰到矩形的边时,点P的坐标为(5,0),当点P第5次碰到矩形的边时,点P的坐标为(1,4),当点P第6次碰到矩形的边时,点P的坐标为(0,3),当点P第7次碰到矩形的边时,点P的坐标为(3,0),2016÷6=336,故当点P第2016次碰到矩形的边时,点P的坐标为:(0,3).故选:A.二、填空题(本大题共6小题,每小题3分,共18分)7.(3分)的立方根是2.【解答】解:∵=8,∴的立方根是2;故答案为:2.8.(3分)把命题“同位角相等”改写成“如果…那么…”的形式为如果两个角是同位角,那么这两个角相等.【解答】解:命题“同位角相等”改写成“如果…那么…”的形式为:如果两个角是同位角,那么这两个角相等.故答案为如果两个角是同位角,那么这两个角相等.9.(3分)若≈44.90,≈14.20,则≈ 4.490.【解答】解:∵≈44.90∴≈44.90即×≈44.90∴×10≈44.90即≈4.490故答案为:4.49010.(3分)规定用符号[x]表示一个实数的整数部分,例如[3.69]=3.[]=1,按此规定,[﹣1]=2.【解答】解:∵9<13<16,∴3<<4,∴2<﹣1<3,∴[﹣1]=2.故答案是:2.11.(3分)如图,将一个含有30°角的直角三角形的两个顶点放在一个矩形的对边上,若∠1=35°,则∠2=125°.【解答】解:在图形中标出∠3,如图所示.∵∠1+∠3+90°=180°,∠1=35°,∴∠3=90°﹣35°=55°.∵矩形对边平行,∴∠2+∠3=180°,∴∠2=180°﹣∠3=125°.故答案为:125°.12.(3分)平面直角坐标系中,点A的坐标为(2,0),点B的坐标为(﹣1,0),点C在y轴上,如果三角形ABC的面积等于6,则点C的坐标为(0,4)或(0,﹣4).【解答】解:∵点A的坐标为(2,0),点B的坐标为(﹣1,0),∴A、B都在x轴上,且AB=2﹣(﹣1)=3,设点C的纵坐标为y,∵△ABC的面积等于6,∴×3×|y|=6,解得y=±4,∵点C在y轴上,∴点C的坐标为(0,4)或(0,﹣4).故答案为:(0,4)或(0,﹣4).三、(本大题共5小题,每小题6分,共30分)13.(6分)计算:|1﹣|+×﹣.【解答】解:原式=﹣1﹣×﹣=﹣1﹣=﹣.14.(6分)根据下列语句画图:如图,∠AOB内有一点P:(1)过点P作OB的垂线段,垂足为Q;(2)过点P作线段PC∥OB交OA于点C,作线段PD∥OA交OB于点D;(3)写出图中与∠O相等的角.【解答】解:(1)如图所示:(2)如图所示:(3)与∠O相等的角有:∠ACP,∠PDB,∠P.15.(6分)求下列各式中x的值:(1)25x2+25=41;(2)(2x﹣3)3=﹣64.【解答】解:(1)方程整理得:x2=,开方得:x=±;(2)开立方得:2x﹣3=﹣4,解得:x=﹣.16.(6分)如图,已知:AD⊥BC于D,EG⊥BC于G,∠E=∠1.求证:AD平分∠BAC.下面是部分推理过程,请你将其补充完整:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG同位角相等,两直线平行.∴∠1=∠2两直线平行,内错角相等.∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3等量代换.∴AD平分∠BAC角平分线的定义.【解答】解:∵AD⊥BC于D,EG⊥BC于G (已知)∴∠ADC=∠EGC=90°∴AD∥EG,(同位角相等,两直线平行).∴∠1=∠2,(两直线平行,内错角相等).∠E=∠3(两直线平行,同位角相等)又∵∠E=∠1(已知)∴∠2=∠3,(等量代换).∴AD平分∠BAC.(角平分线的定义)故答案为:同位角相等,两直线平行;两直线平行,内错角相等;∠E;等量代换;角平分线的定义.17.(6分)将直角三角形ABC沿CB方向平移CF的长度后,得到直角三角形DEF.已知DG=4,CF=6,AC=10,求阴影部分的面积.【解答】解:∵将△ABC沿CB向右平移得到△DEF,CF=6,∴AD∥BE,AD=BE=6,∴四边形ABED是平行四边形,∴四边形ABED的面积=BE×AC=6×10=60.四、(本大题共4小题,每小题8分,共32分)18.(8分)如图,直线AB、CD相交于点O,OE把∠BOD分成两部分;(1)直接写出图中∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;(2)若∠AOC=70°,且∠BOE:∠EOD=2:3,求∠AOE的度数.【解答】解:(1)∠AOC的对顶角为∠BOD,∠BOE的邻补角为∠AOE;(2)∵∠DOE=∠AOC=70°,∠DOE=∠BOE+∠EOD及∠BOE:∠EOD=2:3,∴得,∴,∴∠BOE=28°,∴∠AOE=180°﹣∠BOE=152°.19.(8分)在边长为1的小正方形网格中,△AOB的顶点均在格点上,(1)将△AOB向左平移3个单位长度得到△A1O1B1,请画出△A1O1B1;(2)在(2)的条件下,写出A1、O1、B1的坐标;(3)求五边形AA 1O1OB的面积.【解答】解:(1)如图所示:△A1O1B1,即为所求;(2)A1(﹣2,3)、B1(﹣3,0)、C1(0,2);(3)五边形AA 1O1OB的面积为:3×6﹣×1×3﹣×1×2﹣×2×3=18﹣5.5=12.5.20.(8分)已知2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,求4a﹣5b+8的立方根.【解答】解:∵2a+1的平方根是±3,3a+2b﹣4的立方根是﹣2,∴2a+1=9,3a+2b﹣4=﹣8,解得a=4,b=﹣8,∴4a﹣5b+8=4×4﹣5×(﹣8)+8=64,∴4a﹣5b+8的立方根是4.21.(8分)如图所示,数轴上表示1和对应点分别为A、B,点B到点A的距离等于点C到点O的距离相等,设点C表示的数为x.(1)请你写出数x的值;(2)求(x﹣)2的立方根.【解答】解:(1)∵点A、B分别表示1,,∴AB=﹣1,即x=﹣1;(2)∵x=﹣1,∴(x﹣)2=(﹣1﹣)2=(﹣1)2=1,故(x﹣)2的立方根为1.五、(本大题共1小题,共10分)22.(10分)如图,已知∠1=∠2,∠BAC=20°,∠ACF=80°.(1)求∠2的度数;(2)FC与AD平行吗?为什么?(3)根据以上结论,你能确定∠ADB与∠FCB的大小关系吗?请说明理由.【解答】解:(1)∵∠1=∠2,∠BAC=20°,∠1+∠2+∠BAC=180°,∴∠2=80°;(2)∵∠2=∠ACF=80°,∴FC∥AD;(3)∠ADB=∠FCB,理由为:证明:∵FC∥AD,∴∠ADB=∠FCB.六、(本大题共1小题,共12分)23.(12分)如图1,在平面直角坐标系中,A(a,0),C(b,2),且满足,过C作CB⊥x轴于B.(1)求△ABC的面积.(2)若过B作BD∥AC交y轴于D,且AE,DE分别平分∠CAB,∠ODB,如图2,求∠AED的度数.(3)在y轴上是否存在点P,使得△ABC和△ACP的面积相等?若存在,求出P 点坐标;若不存在,请说明理由.【解答】解:(1)∵(a+2)2+=0,∴a=2=0,b﹣2=0,∴a=﹣2,b=2,∵CB⊥AB∴A(﹣2,0),B(2,0),C(2,2),∴△ABC的面积=×2×4=4;(2)解:∵CB∥y轴,BD∥AC,∴∠CAB=∠5,∠ODB=∠6,∠CAB+∠ODB=∠5+∠6=90°,过E作EF∥AC,如图①,∵BD∥AC,∴BD∥AC∥EF,∵AE,DE分别平分∠CAB,∠ODB,∴∠3=∠CAB=∠1,∠4=∠ODB=∠2,∴∠AED=∠1+∠2=(∠CAB+∠ODB)=45°;(3)解:①当P在y轴正半轴上时,如图②,设P(0,t),过P作MN∥x轴,AN∥y轴,BM∥y轴,∵S=S梯形MNAC﹣S△ANP﹣S△CMP=4,△APC∴﹣t﹣(t﹣2)=4,解得t=3,②当P在y轴负半轴上时,如图③=S梯形MNAC﹣S△ANP﹣S△CMP=4∵S△APC∴+t﹣(2﹣t)=4,解得t=﹣1,∴P(0,﹣1)或(0,3).。

相关文档
最新文档