2020年四川省成都七中高考数学一诊试卷(理科)
2020年四川省成都市高考数学一诊试卷(理科)(含解析)

2020年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z1与z2=−3−i(i为虚数单位)在复平面内对应的点关于实轴对称,则z1=()A.−3iB.−3+iC.3+iD.3−i2.已知集合A={−1, 0, m},B={1, 2},若A∪B={−1, 0, 1, 2},则实数m的值为()A.−1或0B.0或1C.−1或2D.1或23.若sinθ=√5cosθ,则tan2θ=()A.−√53B.√53C.−√52D.√524.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这l00名同学的得分都在[50, 100]内,按得分分成5组:[50, 60),[60, 70),[70, 80),[80, 90),[90, 100],得到如图所示的频率分布直方图则这100名同学的得分的中位数为()A.72.5B.75C.77.5D.805.设等差数列{a n}的前n项和为S n,且a n≠0,若a5=3a3,则S9S5=()A.95B.59C.53D.2756.已知α,β是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是()A.若m // α,n // β,且α // β,则m // nB.若m // α,n // β,且α⊥β,则m // nC.若m⊥α,n // β,且α // β,则m⊥nD.若m⊥α,n // β且α⊥β,则m⊥n7.(x2+2)(x−1x)6的展开式的常数项为()A.25B.−25C.5D.−58.将函数y=sin(4x−π6)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移π6个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为()A.f(x)=sin(2x+π6) B.f(x)=sin(2x−π3)C.f(x)=sin(8x+π6) D.f(x)=sin(8x−π3)9.已知抛物线y2=4x的焦点为F,M,N是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN的中点到y轴的距离为()A.3B.32C.5 D.5210.已知a=212,b=313,c=ln32,则()A.a>b>cB.a>c>bC.b>a>cD.b>c>a11.已知定义在R上的函数f(x)满足f(2−x)=f(2+x),当x≤2时,f(x)=(x−1)e x−1.若关于x的方程f(x)−kx+2k−e+1=0有三个不相等的实数根,则实数k的取值范围是()A.(−2, 0)∪(0, 2)B.(−2, 0)∪(2, +∞)C.(−e, 0)∪(0, +∞)D.(−e, 0)∪(0, e)12.如图,在边长为2的正方形AP1P2P3中,线段BC的端点B,C分别在边P1P2,P2P3上滑动,且P2B=P2C=x.现将△AP1B,△AP3C分别沿AB,AC折起使点P 1,P 3重合,重合后记为点P ,得到三棱锥P −ABC .现有以下结论: ①AP ⊥平面PBC ;②当B ,C 分别为P 1P 2,P 2P 3的中点时,三棱锥P −ABC 的外接球的表面积为6π;③x 的取值范围为(0, 4−2√2); ④三棱锥P −ABC 体积的最大值为13. 则正确的结论的个数为( )A.1B.2C.3D.4二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.已知实数x ,y 满足约束条件{x +y −4≤0x −2y +2≥0y ≥0 ,则z =x +2y 的最大值为________.设正项等比数列{a n }满足a 4=81,a 2+a 3=36,则a n =________.已知平面向量a →,b →满足|a →|=2,|b →|=√3,且b →⊥(a →−b →),则向量a →与b →的夹角的大小为________.已知直线y =kx 与双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)相交于不同的两点A ,B ,F 为双曲线C 的左焦点,且满足|AF|=3|BF|,|OA|=b (O 为坐标原点),则双曲线C 的离心率为________.三、解答题:本大题共5小题,共70分解答应写出文字说明、证明过程或演算步骤.bc.在△ABC中,角A,B,C的对边分别为a,b,c,且b2+c2−a2=4√23 (Ⅰ)求sinA的值;(Ⅱ)若△ABC的面积为√2,且√2sinB=3sinC,求△ABC的周长某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族”,计划在明年及明年以后才购买5G手机的员工称为“观望者”调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.(Ⅰ)完成下列2×2列联表,并判断是否有95%的把握认为该公司员工属于“追光族”与“性别”有关;(Ⅱ)已知被抽取的这l00名员工中有10名是人事部的员工,这10名中有3名属于“追光族”现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求X的分布列及数学期望.附:K2=n(ad−bc)2,其中n=a+b+c+d.(a+b)(c+d)(a+c)(b+d)如图,在四棱锥P−ABCD中,AP⊥平面PBC,底面ABCD为菱形,且∠ABC =60∘,E分别为BC的中点.(Ⅰ)证明:BC⊥平面PAE;(Ⅱ)若AB=2.PA=1,求平面ABP与平面CDP所成锐二面角的余弦值.已知函数f(x)=(a−1)lnx+x+ax,a∈R.(Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当a<−1时,证明∀x∈(1, +∞),f(x)>−a−a2.已知椭圆C:x 22+y2=1的右焦点为F,过点F的直线(不与x轴重合)与椭圆C相交于A,B两点,直线l:x=2与x轴相交于点H,过点A作AD⊥l,垂足为D.(Ⅰ)求四边形OAHB(O为坐标原点)面积的取值范围;(Ⅱ)证明直线BD过定点E.并求出点E的坐标请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,已知P是曲线C1:x2+(y−2)2=4上的动点,将OP绕点O顺时针旋转90∘得到OQ,设点Q的轨迹为曲线C2以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C1,C2的极坐标方程;(Ⅱ)在极坐标系中,点M(3, π2),射线θ=π6(ρ≥0)与曲线C1,C2分别相交于异于极点O的A,B两点,求△MAB的面积.[选修45:不等式选讲]已知函数f(x)=|x−3|.(Ⅰ)解不等式f(x)≥4−|2x+l|;(Ⅱ)若1m +4n=2(m>0, n>0),求证:m+n≥|x+32|−f(x).2020年四川省成都市高考数学一诊试卷(理科)一、选择题:本大题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.若复数z1与z2=−3−i(i为虚数单位)在复平面内对应的点关于实轴对称,则z1=()A.−3iB.−3+iC.3+iD.3−i【解答】∵复数z1与z2=−3−i(i为虚数单位)在复平面内对应的点关于实轴对称,∴复数z1与z2=−3−i(i为虚数单位)的实部相等,虚部互为相反数,则z1=−3+i.2.已知集合A={−1, 0, m},B={1, 2},若A∪B={−1, 0, 1, 2},则实数m的值为()A.−1或0B.0或1C.−1或2D.1或2【解答】集合A={−1, 0, m},B={1, 2},A∪B={−1, 0, 1, 2},因为A,B本身含有元素−1,0,1,2,所以根据元素的互异性,m≠−1,0即可,故m=1或2,3.若sinθ=√5cosθ,则tan2θ=()A.−√53B.√53C.−√52D.√52【解答】若sinθ=√5cosθ,则tanθ=√5,则tan2θ=2tanθ1−tan2θ=−√52,4.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这l00名同学的得分都在[50, 100]内,按得分分成5组:[50, 60),[60, 70),[70, 80),[80, 90),[90, 100],得到如图所示的频率分布直方图则这100名同学的得分的中位数为()A.72.5B.75C.77.5D.80【解答】由频率分布直方图得:[50, 70)的频率为:(0.010+0.030)×10=0.4,[70, 80)的频率为:0.040×10=0.4,∴这100名同学的得分的中位数为:70+0.5−0.40.4×10=72.(5)5.设等差数列{a n}的前n项和为S n,且a n≠0,若a5=3a3,则S9S5=()A.95B.59C.53D.275【解答】依题意,S9S5=a1+a92×9a1+a52×5=9a55a3,又a5a3=3,∴S9S5=95×3=275,6.已知α,β是空间中两个不同的平面,m,n是空间中两条不同的直线,则下列说法正确的是()A.若m // α,n // β,且α // β,则m // nB.若m // α,n // β,且α⊥β,则m // nC.若m⊥α,n // β,且α // β,则m⊥nD.若m⊥α,n // β且α⊥β,则m⊥n【解答】由m // α,n // β,且α // β,得m // n或m与n异面,故A错误;由m // α,n // β,且α⊥β,得m // n或m与n相交或m与n异面,故B错误;由m⊥α,α // β,得m⊥β,又n // β,则m⊥n,故C正确;由m⊥α,n // β且α⊥β,得m // n或m与n相交或m与n异面,故D错误.7.(x2+2)(x−1x)6的展开式的常数项为()A.25B.−25C.5D.−5【解答】(x−1x )6的通项公式为T r+1=∁6r x6−r(−1x)r=(−1)r∁6r x6−2r,r=0,1,2, (6)则(x 2+2)(x −1x )6的展开式的常数项须6−2r =0或者6−2r =−2⇒r =3或者r =4:∴常数项为(−1)4∁64+2×(−1)3∁63=15−40=−(25)8.将函数y =sin(4x −π6)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移π6个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为( ) A.f(x)=sin(2x +π6) B.f(x)=sin(2x −π3) C.f(x)=sin(8x +π6) D.f(x)=sin(8x −π3)【解答】函数y =sin(4x −π6)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到y =sin(2x −π6)的图象,再把所得图象向左平移π6个单位长度,得到函数f(x)=sin(2x +π6)的图象, 9.已知抛物线y 2=4x 的焦点为F ,M ,N 是抛物线上两个不同的点.若|MF|+|NF|=5,则线段MN 的中点到y 轴的距离为( ) A.3 B.32C.5D.52【解答】由抛物线方程得,准线方程为:x =−1, 设M(x, y),N(x ′, y ′),由抛物线的性质得,MF +NF =x +x ′+p =x +x ′+2=5, 中点的横坐标为32,线段MN 的中点到y 轴的距离为:32, 10.已知a =212,b =313,c =ln 32,则( ) A.a >b >c B.a >c >b C.b >a >c D.b >c >a【解答】∵a =√2=√86,b =√33=√96,∴1<a <b . c =ln 32<(1) ∴c <a <b .故选:C.11.已知定义在R上的函数f(x)满足f(2−x)=f(2+x),当x≤2时,f(x)=(x−1)e x−1.若关于x的方程f(x)−kx+2k−e+1=0有三个不相等的实数根,则实数k的取值范围是()A.(−2, 0)∪(0, 2)B.(−2, 0)∪(2, +∞)C.(−e, 0)∪(0, +∞)D.(−e, 0)∪(0, e)【解答】②令f′(x)<0,解得x<0(1)③令f′(x)>0,解得0<x≤(2)∴f(x)在(−∞, 0)上单调递减,在(0, 2]上单调递增,在x=0处取得极小值f(0)=−(2)且f(1)=−1;x→−∞,f(x)→(0)又∵函数f(x)在R上满足f(2−x)=f(2+x),∴函数f(x)的图象关于x=2对称.∴函数y=f(x)的大致图象如下:关于x的方程f(x)−kx+2k−e+1=0可转化为f(x)=k(x−2)+e−(1)而一次函数y=k(x−2)+e−1很明显是恒过定点(2, e−1).结合图象,当k=0时,有两个交点,不符合题意,当k=e时,有两个交点,其中一个是(1, −1).此时y=f(x)与y=k(x−2)+e−1正好相切.∴当0<k<e时,有三个交点.同理可得当−e<k<0时,也有三个交点.实数k的取值范围为:(−e, 0)∪(0, e).故选:D.12.如图,在边长为2的正方形AP1P2P3中,线段BC的端点B,C分别在边P1P2,P2P3上滑动,且P2B=P2C=x.现将△AP1B,△AP3C分别沿AB,AC折起使点P1,P3重合,重合后记为点P,得到三棱锥P−ABC.现有以下结论:①AP ⊥平面PBC ;②当B ,C 分别为P 1P 2,P 2P 3的中点时,三棱锥P −ABC 的外接球的表面积为6π;③x 的取值范围为(0, 4−2√2); ④三棱锥P −ABC 体积的最大值为13. 则正确的结论的个数为( )A.1B.2C.3D.4【解答】当B ,C 分别为P 1P 2,P 2P 3的中点时,PB =PC =1,BC =√2, 所以PB 2+PC 2=BC 2,又AP ⊥平面PBC ,所以PA ,PB ,PC 两两垂直,所以三棱锥P −ABC 的外接球与 以PA ,PB ,PC 为长宽高的长方体的外接球半径相等. 设半径为r ,所以(2r)2=22+12+12=6,S =4πr 2=6π.即三棱锥P −ABC 的外接球的表面积为6π,②正确(1)因为P 2B =P 2C =x ,所以PB =PC =2−x ,而BC =√2x ,故2(2−x)>√2x ,解得x <4−2√2,③正确(2)因为△PBC 的面积为S =12×√2x ×√(2−x)2−(√22x)2=12√x 4−8x 3+8x 2 设f(x)=x 4−8x 3+8x 2,f′(x)=4x 3−24x 2+16x =4x(x 2−6x +4)当0<x <3−√5时,f′(x)>0,当3−√5<x <4−2√2时,f′(x)<0 f m ax =f(3−√5)>f(1)=12,所以S >12. V P−ABC =V A−PBC =13S ×2=23S >13,④错误. 故选:C .二、填空题:本大题共4小题,每小题5分,共20分.把答案填在答题卡上.已知实数x ,y 满足约束条件{x +y −4≤0x −2y +2≥0y ≥0 ,则z =x +2y 的最大值为________. 【解答】作出实数x ,y 满足约束条件{x +y −4≤0x −2y +2≥0y ≥0 对应的平面区域如图:(阴影部分)由z =x +2y 得y =−12x +12z , 平移直线y =−12x +12z ,由图象可知当直线y =−12x +12z 经过点A 时,直线y =−12x +12z 的截距最大, 此时z 最大. 由{x +y −4=0x −2y +2=0,解得A(2, 2),代入目标函数z =x +2y 得z =2×2+2=6设正项等比数列{a n }满足a 4=81,a 2+a 3=36,则a n =________. 【解答】依题意{a 1q 3=81a 1q +a 1q 2=36 ,解得{a 1=3q =3 ,∴a n =a 1⋅q n−1=3⋅3n−1=3n ,已知平面向量a →,b →满足|a →|=2,|b →|=√3,且b →⊥(a →−b →),则向量a →与b →的夹角的大小为________. 【解答】∵平面向量a →,b →满足|a →|=2,b →=√3,且b →⊥(a →−b →), ∴b →⋅(a →−b →)=b ¯⋅a →−b →2=0,∴a →⋅b →=b →2. 设向量a →与b →的夹角的大小为θ,则2⋅√3⋅cosθ=3, 求得cosθ=√32,故θ=π6,已知直线y =kx 与双曲线C:x 2a 2−y 2b 2=1(a >0, b >0)相交于不同的两点A ,B ,F 为双曲线C 的左焦点,且满足|AF|=3|BF|,|OA|=b (O 为坐标原点),则双曲线C 的离心率为________. 【解答】设|BF|=m ,则|AF|=3|BF|=3m , 取双曲线的右焦点F ′,连接AF ′,BF ′, 可得四边形AF ′BF 为平行四边形,可得|AF ′|=|BF|=m ,设A 在第一象限,可得3m −m =2a ,即m =a , 由平行四边形的对角线的平方和等于四条边的平方和, 可得(2b)2+(2c)2=2(a 2+9a 2), 化为c 2=3a 2,则e =ca =√3.三、解答题:本大题共5小题,共70分解答应写出文字说明、证明过程或演算步骤.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,且b 2+c 2−a 2=4√23bc . (Ⅰ)求sinA 的值;(Ⅱ)若△ABC 的面积为√2,且√2sinB =3sinC ,求△ABC 的周长 【解答】(1)∵b 2+c 2−a 2=4√23bc , ∴由余弦定理可得2bccosA =4√23bc , ∴cosA =2√23, ∴在△ABC 中,sinA =√1−cos 2A =13.(2)∵△ABC 的面积为√2,即12bcsinA =16bc =√2, ∴bc =6√2,又∵√2sinB=3sinC,由正弦定理可得√2b=3c,∴b=3√2,c=2,则a2=b2+c2−2bccosA=6,∴a=√6,∴△ABC的周长为2+3√2+√6.某公司有l000名员工,其中男性员工400名,采用分层抽样的方法随机抽取100名员工进行5G手机购买意向的调查,将计划在今年购买5G手机的员工称为“追光族”,计划在明年及明年以后才购买5G手机的员工称为“观望者”调查结果发现抽取的这100名员工中属于“追光族”的女性员工和男性员工各有20人.(Ⅰ)完成下列2×2列联表,并判断是否有95%的把握认为该公司员工属于“追光族”与“性别”有关;(Ⅱ)已知被抽取的这l00名员工中有10名是人事部的员工,这10名中有3名属于“追光族”现从这10名中随机抽取3名,记被抽取的3名中属于“追光族”的人数为随机变量X,求X的分布列及数学期望.,其中n=a+b+c+d.附:K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)【解答】(1)由题,2×2列联表如下:∵K2=n(ad−bc)2(a+b)(c+d)(a+c)(b+d)=100×(20×20−40×20)240×60×60×40=259≈2.778<3.841,∴没有95%的把握认为该公司员工属于“追光族”与“性别”有关;(2)由题,随机变量X的所有可能的取值为0,1,2,3,P(X=0)=C30C73C03=724,P(X=1)=C31C72C103=2140,P(X=2)=C32C71C103=740,P(X=3)=C33C103=1120,∴X的分布列为:∴E(X)=1×2140+2×740+3×1120=910.如图,在四棱锥P−ABCD中,AP⊥平面PBC,底面ABCD为菱形,且∠ABC =60∘,E分别为BC的中点.(Ⅰ)证明:BC⊥平面PAE;(Ⅱ)若AB=2.PA=1,求平面ABP与平面CDP所成锐二面角的余弦值.【解答】(1)如图,连接AC,因为底面ABCD为菱形,且∠ABC=60∘,所以△ABC为正三角形,因为E为BC的中点,所以BC⊥AE,又因为AP⊥平面PBC,BC⊂平面PBC,所以BC⊥AP,因为AP∩AE=A,AP,AE⊂平面PAE,所以BC⊥平面PAE;(2)因为AP⊥平面PBC,PB⊂平面PBC,所以AP⊥PB,又因为AB=2,PA=1,所以PB=√3,由(Ⅰ)得BC⊥PE,又因为E为BC中点,所以PB=PC=√3,EC=1,所以PE =√2,如图,过点P 作BC 的平行线PQ ,则PQ ,PE ,PA 两两互相垂直,以P 为坐标原点,PE →,PQ →,PA →的方向分别为xyz 轴的正方形,建立如图所示的空间直角坐标系Pxyz ,则P(0, 0, 0),A(0, 0, 1),B(√2, −1, 0),C(√2, 1, 0),D(0, 2, 1), 设平面BAP 的一个法向量m →=(x, y, z),又PA →=(0, 0, 1),PB →=(√2, −1, 0),由{m →⋅PA →=0m →⋅PB →=0,得√2x −y =0,z =0,令x =1,则m →=(1, √2, 0), 设平面CDP 的一个法向量n →=(a, b, c),又PC →=(√2, 1, 0),PD →=(0, 2, 1),由{m →⋅PC →=0m →⋅PD →=0,得√2a +b =0,2y +z =0,令a =1,则n →=(1, −√2, 2√2), 所以cos <m →,n →>=√3⋅√11=−√3333, 即平面ABP 与平面CDP 所成锐二面角的余弦值为√3333.已知函数f(x)=(a −1)lnx +x +ax ,a ∈R . (Ⅰ)讨论函数f(x)的单调性;(Ⅱ)当a <−1时,证明∀x ∈(1, +∞),f(x)>−a −a 2. 【解答】 (1)f′(x)=a−1x+1−ax 2=x 2+(a−1)x−ax 2=(x−1)(x+a)x 2,因为x >0,a ∈R ,所以当a ≥0时,x +a >0,所以函数在(0, 1)上单调递减,在(1, +∞)上单调递增;当−1<a <0时,0<−a <1,函数f(x)在(0, −a)上单调递增,在(−a, 1)上单调递减,在(1, +∞)上单调递增;当a =−1时,f′(x)=(x−1)2x 2≥0,函数f(x)在(0, +∞)上单调递增;当a <−1时,−a >1,函数f(x)在(0, 1)上单调递增,在(1, −a)上单调递减,在(−a, +∞)上单调递增;(2)当a <−1时,由(Ⅰ)得,函数f(x)在(1, −a)上单调递减,在(−a, +∞)上单调递增;函数f(x)在(1, +∞)上的最小值为f(−a)=(a −1)ln(−a)−a −1, 欲证明不等式f(x)>−a −a 2成立,即证明−a −a 2<(a −1)ln(−a)−a −1,即证明a 2+(a −1)ln(−a)−1>0,因为a <−1,所以只需证明ln(−a)<−a −1, 令ℎ(x)=lnx −x +1(x ≥1),则ℎ′(x)=1x −1=−(x−1)x≤0,所以函数ℎ(x)在[1, +∞)上单调递减,则有ℎ(x)≤ℎ(1)=0, 因为a <−1,所以−a >1,所以ℎ(−a)=ln(−a)+a +1<0,即当a <−1时,ln(−a)<−a −1成立, 所以当a <−1时,任意x ∈(1, +∞),f(x)>−a −a 2. 已知椭圆C:x 22+y 2=1的右焦点为F ,过点F 的直线(不与x 轴重合)与椭圆C 相交于A ,B 两点,直线l:x =2与x 轴相交于点H ,过点A 作AD ⊥l ,垂足为D .(Ⅰ)求四边形OAHB (O 为坐标原点)面积的取值范围; (Ⅱ)证明直线BD 过定点E .并求出点E 的坐标 【解答】(1)由题意F(1, 0),设直线AB 的方程:x =my +1,A(x 1, y 1),B(x 2, y 2),与抛物线联立(m 2+2)y 2+2my −1=0,因为△=4m 2+4(m 2+2)>0,y 1+y 2=−2m2+m 2,y 1y 2=−12+m 2,所以|y 1−y 2|=√(y 1−y 2)2−41yy 2=2√2√1+m 22+m 2, 所以四边形OAHB 的面积S =12|OH|⋅|y 1−y 2|=|y 1−y 2|=2√2⋅√1+m 22+m 2,令t =√1+m 2≥1,S =2√2t1+t =2√2t+1t≤√2,当且仅当t =1时,即m =0时取等号,所以0<S ≤√2,所以四边形OAHB 的面积的取值范围为(0, √2,](2) B(x2, y2),D(2, y1),k BD=y1−y22−x2,所以直线BD的方程:y−y1=y1−y2 2−x2(x−2),令y=0,得x=x2y1−2y2y1−y2=my1y2+y1−2y2y1−y2由(Ⅰ)得,y1+y2=−2m2+m2,y1y2=−12+m2,所以y1+y2=2my1y2,化简得x=12(y1+y2)+y1−2y2y1−y2=32(y1−y2)y1−y2=32,所以直线BD过定点E(32, 0).请考生在第22,23题中任选择一题作答,如果多做,则按所做的第一题记分,作答时,用2B铅笔在答题卡上把所选题目对应的标号涂黑.[选修4-4:坐标系与参数方程]在平面直角坐标系xOy中,已知P是曲线C1:x2+(y−2)2=4上的动点,将OP绕点O顺时针旋转90∘得到OQ,设点Q的轨迹为曲线C2以坐标原点O为极点,x轴的正半轴为极轴建立极坐标系.(Ⅰ)求曲线C1,C2的极坐标方程;(Ⅱ)在极坐标系中,点M(3, π2),射线θ=π6(ρ≥0)与曲线C1,C2分别相交于异于极点O的A,B两点,求△MAB的面积.【解答】(1)由题意,点Q的轨迹是以(2, 0)为圆心,以2为半径的圆,则曲线C2:(x−2)2+y2=4,∵ρ2=x2+y2,x=ρcosθ,y=ρsinθ,∴曲线C1的极坐标方程为ρ=4sinθ,曲线C2的极坐标方程为ρ=4cosθ;(2)在极坐标系中,设A,B的极径分别为ρ1,ρ2,∴|AB|=|ρ1−ρ2|=4|sinπ6−cosπ6|=2(√3−1).又∵M(3, π2)到射线θ=π6(ρ≥0)的距离ℎ=3sinπ3=3√32.∴△MAB的面积S=12|AB|⋅ℎ=9−3√32.[选修45:不等式选讲]已知函数f(x)=|x−3|.(Ⅰ)解不等式f(x)≥4−|2x+l|;(Ⅱ)若1m +4n=2(m>0, n>0),求证:m+n≥|x+32|−f(x).【解答】(I )原不等式可化为:|x −3|≥4−|2x +1|,即|2x +1|+|x −3|≥4, 当x ≤−12时,不等式−2x −1−x +3≥4,解得x ≤−23,故x ≤−23; 当−12<x <3时,不等式2x +1−x +3≥4,解得x ≥0,故0≤x <3; 当x ≥3时,不等式2x +1+x −3≥4,解得x ≥0,故x ≥3; 综上,不等式的解集为(−∞, −23]∪[0, +∞); (II)因为f(x)=|x −3|,所以|x +32|−f(x)=||x +32|−|x −3|≤|x +32−x +3|=92,当且仅当(x +32)(x +3)≥0,且|x +32|≥|x −3|时,取等号, 又1m +4n =2(m >0, n >0),所以(m +n)(1m +4n )≥(1+2)2=9,当且仅当m =2n 时,取得等号, 故m +n ≥92,所以m +n ≥|x +32|−f(x)成立.。
四川省成都市2020届高考一诊试卷数学(理科)(含答案)

四川省成都市2020届高考一诊模拟试卷数学(理科)题号一二三总分得分一、选择题(本大题共12小题,共60.0分)1.已知集合A={x∈N|x>1},B={x|x<5},则A∩B=()A. {x|1<x<5}B. {x|x>1}C. {2,3,4}D. {1,2,3,4,5}2.已知复数z满足iz=1+i,则z的共轭复数=()A. 1+iB. 1-iC.D. -1-i3.若等边△ABC的边长为4,则•=()A. 8B. -8C.D. -84.在(2x-1)(x-y)6的展开式中x3y3的系数为()A. 50B. 20C. 15D. -205.若等比数列{a n}满足:a1=1,a5=4a3,a1+a2+a3=7,则该数列的公比为()A. -2B. 2C. ±2D.6.若实数a,b满足|a|>|b|,则()A. e a>e bB. sin a>sin bC.D.7.在正四棱柱ABCD-A1B1C1D1中,AA1=4,AB=2,点E,F分别为棱BB1,CC1上两点,且BE=BB1,CF=CC1,则()A. D1E≠AF,且直线D1E,AF异面B. D1E≠AF,且直线D1E,AF相交C. D1E=AF,且直线D1E,AF异面D. D1E=AF,且直线D1E,AF相交8.设函数,若f(x)在点(3,f(3))的切线与x轴平行,且在区间[m-1,m+1]上单调递减,则实数m的取值范围是()A. m≤2B. m≥4C. 1<m≤2D. 0<m≤39.国际羽毛球比赛规则从2006年5月开始,正式决定实行21分的比赛规则和每球得分制,并且每次得分者发球,所有单项的每局获胜分至少是21分,最高不超过30分,即先到21分的获胜一方赢得该局比赛,如果双方比分为20:20时,获胜的一方需超过对方2分才算取胜,直至双方比分打成29:29时,那么先到第30分的一方获胜.在一局比赛中,甲发球赢球的概率为,甲接发球赢球的概率为,则在比分为20:20,且甲发球的情况下,甲以23:21赢下比赛的概率为()A. B. C. D.10.函数f(x)=的图象大致为()A. B.C. D.11.设圆C:x2+y2-2x-3=0,若等边△PAB的一边AB为圆C的一条弦,则线段PC长度的最大值为()A. B. 2 C. 4 D.12.设函数f(x)=cos|2x|+|sin x|,下述四个结论:①f(x)是偶函数;②f(x)的最小正周期为π;③f(x)的最小值为0;④f(x)在[0,2π]上有3个零点.其中所有正确结论的编号是()A. ①②B. ①②③C. ①③④D. ②③④二、填空题(本大题共4小题,共20.0分)13.若等差数列{a n}满足:a1=1,a2+a3=5,则a n=______.14.今年由于猪肉涨价太多,更多市民选择购买鸡肉、鸭肉、鱼肉等其它肉类.某天在市场中随机抽出100名市民调查,其中不买猪肉的人有30位,买了肉的人有90位,买猪肉且买其它肉的人共30位,则这一天该市只买猪肉的人数与全市人数的比值的估计值为______.15.已知双曲线C:x2-=1的左,右焦点分别为F1,F2,过F1的直线l分别与两条渐进线交于A,B两点,若•=0,=λ,则λ=______.16.若函数f(x)=恰有2个零点,则实数a的取值范围是______.三、解答题(本大题共7小题,共82.0分)17.某汽车美容公司为吸引顾客,推出优惠活动:对首次消费的顾客,按200元/次收费,并注册成为会员,消费次第第1次第2次第3次第4次≥5次收费比例10.950.900.850.80该公司从注册的会员中,随机抽取了100位进行统计,得到统计数据如表:消费次第第1次第2次第3次第4次第5次频数60201055假设汽车美容一次,公司成本为150元,根据所给数据,解答下列问题:(1)估计该公司一位会员至少消费两次的概率;(2)某会员仅消费两次,求这两次消费中,公司获得的平均利润;(3)以事件发生的频率作为相应事件发生的概率,设该公司为一位会员服务的平均利润为X元,求X 的分布列和数学期望E(X).18.△ABC的内角A,B,C的对边分别为a,b,c,设.(Ⅰ)求sin B;(Ⅱ)若△ABC的周长为8,求△ABC的面积的取值范围.19.如图,在四棱柱ABCD-A1B1C1D1中,底面ABCD是边长为2的菱形,且∠ADC=60°,,.(Ⅰ)证明:平面CDD1⊥平面ABCD;(Ⅱ)求二面角D1-AD-C的余弦值.20.设椭圆,过点A(2,1)的直线AP,AQ分别交C于不同的两点P,Q,直线PQ恒过点B(4,0).(Ⅰ)证明:直线AP,AQ的斜率之和为定值;(Ⅱ)直线AP,AQ分别与x轴相交于M,N两点,在x轴上是否存在定点G,使得|GM|•|GN|为定值?若存在,求出点G的坐标,若不存在,请说明理由.21.设函数,,.(Ⅰ)证明:f(x)≤0;(Ⅱ)当时,不等式恒成立,求m的取值范围.22.在直角坐标系xOy中,直线l:(t为参数)与曲线C:(m为参数)相交于不同的两点A,B.(Ⅰ)当α=时,求直线l与曲线C的普通方程;(Ⅱ)若|MA||MB|=2||MA|-|MB||,其中M(,0),求直线l的倾斜角.23.已知函数f(x)=|x+1|+|ax-1|.(Ⅰ)当a=1时,求不等式f(x)≤4的解集;(Ⅱ)当x≥1时,不等式f(x)≤3x+b成立,证明:a+b≥0.答案和解析1.【答案】C2.【答案】A3.【答案】A4.【答案】B5.【答案】B6.【答案】C7.【答案】A8.【答案】C9.【答案】B10.【答案】D11.【答案】C12.【答案】B13.【答案】n14.【答案】0.415.【答案】116.【答案】[,1)∪{2}∪[e,+∞)17.【答案】解:(1)100位会员中,至少消费两次的会员有40人,∴估计一位会员至少消费两次的概率为.(2)该会员第一次消费时,公司获得利润为200-150=50(元),第2次消费时,公司获得利润为200×0.95-150=40(元),∴公司这两次服务的平均利润为(元).(3)由(2)知,一位会员消费次数可能为1次,2次,3次,4次,5次,当会员仅消费1次时,利润为50元,当会员仅消费2次时,平均利润为45元,当会员仅消费3次时,平均利润为40元,当会员仅消费4次时,平均利润为35元,当会员仅消费5次时,平均利润为30元,故X的所有可能取值为50,45,40,35,30,X的分布列为:X5045403530P0.60.20.10.050.05X数学期望为E(X)=50×0.6+45×0.2+40×0.1+35×0.05+30×0.05=46.25(元).【解析】(1)100位会员中,至少消费两次的会员有40人,即可得出估计一位会员至少消费两次的概率.(2)该会员第一次消费时,公司获得利润为200-150=50(元),第2次消费时,公司获得利润为200×0.95-150=40(元),即可得出公司这两次服务的平均利润.(3)由(2)知,一位会员消费次数可能为1次,2次,3次,4次,5次,当会员仅消费1次时,利润为50元,当会员仅消费2次时,平均利润为45元,当会员仅消费3次时,平均利润为40元,当会员仅消费4次时,平均利润为35元,当会员仅消费5次时,平均利润为30元,故X的所有可能取值为50,45,40,35,30,即可得出X的分布列.本题考查了频率与概率的关系、随机变量的分布列及其数学期望,考查了推理能力与计算能力,属于中档题.18.【答案】解:(1)∵且sin(A+C)=sin B∴,又∵∴,∴,∴,∴,∴.(2)由题意知:a+b+c=8,故b=8-(a+c)∴,∴∴,,∴∴,或(舍),即∴(当a=c时等号成立)综上,△ABC的面积的取值范围为.【解析】(1)直接利用三角函数关系式的变换的应用和倍角公式的应用求出结果.(2)利用余弦定理和不等式的应用和三角形的面积公式的应用求出结果.本题考查的知识要点:三角函数关系式的变换,正弦定理余弦定理和三角形面积公式的应用,主要考查学生的运算能力和转换能力及思维能力,属于基础题.19.【答案】(1)证明:令CD的中点为O,连接OA,OD1,AC,∵,∴D1O⊥DC且又∵底面ABCD为边长为2的菱形,且∠ADC=60°,∴AO=,又∵,∴,∴D1O⊥OA,又∵OA,DC⊆平面ABCD,OA∩DC=O,又∵D1O⊆平面CDD1,∴平面CDD1⊥平面ABCD.(2)过O作直线OH⊥AD于H,连接D1H,∵D1O⊥平面ABCD,∴D1O⊥AD,∴AD⊥平面OHD1,∴AD⊥HD1,∴∠D1HO为二面角D1-AD-C所成的平面角,又∵OD=1,∠ODA=60°,∴,∴,∴.【解析】(1)令CD的中点为O,连接OA,OD1,AC,证明D1O⊥DC,D1O⊥OA,然后证明平面CDD1⊥平面ABCD.(2)过O作直线OH⊥AD于H,连接D1H,说明∠D1HO为二面角D1-AD-C所成的平面角,通过求解三角形,求解即可.本题考查平面与平面垂直的判断定理的应用,二面角的平面角的求法,考查空间想象能力以及计算能力,是中档题.20.【答案】解:(Ⅰ)证明:设P(x1,y1),Q(x2,y2),直线PQ、AP、AQ的斜率分别为k,k1,k2,由得(1+4k2)x2-32k2x+64k2-8=0,△>0,可得:,,,==;(Ⅱ)设M(x3,0),N(x4,0),由y-1=k1(x-2),令y=0,得x3=2-,即M(2-,0),同理,即N(2-,0),设x轴上存在定点G(x0,0),=|(x0-2)2+(x0-2)()+|=,要使|GM|•|GN|为定值,即x0-2=1,x0=3,故x轴上存在定点G(3,0)使|GM|•|GN|为定值,该定值为1.【解析】(Ⅰ)设P(x1,y1),Q(x2,y2),联立直线y=k(x-4)和椭圆方程,运用韦达定理,直线PQ、AP、AQ的斜率分别为k,k1,k2,运用直线的斜率公式,化简整理即可得到得证;(Ⅱ)设M(x3,0),N(x4,0),由y-1=k1(x-2),令y=0,求得M的坐标,同理可得N的坐标,再由两点的距离公式,化简整理可得所求乘积.本题考查椭圆的方程和运用,注意联立直线方程和椭圆方程,运用韦达定理,考查直线的斜率公式,以及存在性问题的解法,考查化简运算能力,属于中档题.21.【答案】解:(Ⅰ)f′(x)=-cos x在x∈[0,]上单调递增,f′(x)∈[-1,],所以存在唯一x0∈(0,),f′(x0)=0.当x∈(0,x0),f′(x)<0,f(x)递减;当x∈(x0,),f′(x)>0,f(x)递增.所以f(x)max=max=0,∴f(x)≤0,0≤x≤;(Ⅱ)g′(x)=-sin x+m(x-),g″(x)=-cos x+m,当m≥0时,g′(x)≤0,则g(x)在[0,]上单调递减,所以g(x)min=g()=,满足题意.当-<m<0时,g″(x)在x上单调递增.g''(0)=+m>0,所以存在唯一x1∈(0,),g″(x1)=0.当x∈(0,x1),g″(x)<0,则g′(x)递减;当x∈(x1,),g″(x)>0,则g′(x)递增.而g′(0)=-m>0,g′()=0,所以存在唯一x2,g′(x2)=0,当x∈(0,x2),g′(x)>0,则g(x)递增;x,g′(x)<0,则g(x)递减.要使g(x)≥恒成立,即,解得m≥,所以≤m<0,当m≤-时,g″(x)≤0,当x∈[0,],g′(x)递减,又,g′(x)≥0,所以g(x)在递增.则g(x)≤g()=与题意矛盾.综上:m的取值范围为[,+∞).【解析】(Ⅰ)利用f(x)的导数可先判断出其单调区间,比较可求出函数的最大值,即可证;(Ⅱ)对g(x)二次求导判断出m≥0时,可求出g(x)min=g()=,当-<m<0时,与题意矛盾,综合可求出m的取值范围.本题考查利用导数求函数单调区间,求函数最值问题,还涉及函数恒成立问题,属于中档题.22.【答案】解:(Ⅰ)当α=时,直线l:(t为参数)化为,消去参数t,可得直线l的普通方程为y=x-;由曲线C:(m为参数),消去参数m,可得曲线C的普通方程为y2=2x;(Ⅱ)将直线l:(t为参数)代入y2=2x,得.,.由|MA||MB|=2||MA|-|MB||,得|t1t2|=2|t1+t2|,即,解得|cosα|=.∴直线l的倾斜角为或.【解析】(Ⅰ)当α=时,直线l:(t为参数)化为,消去参数t,可得直线l的普通方程;直接把曲线C的参数方程消去参数m,可得曲线C的普通方程;(Ⅱ)将直线l:(t为参数)代入y2=2x,化为关于t的一元二次方程,利用根与系数的关系结合已知等式列式求得|cosα|=,则直线l的倾斜角可求.本题考查参数方程化普通方程,关键是直线参数方程中参数t的几何意义的应用,是中档题.23.【答案】(Ⅰ)解:当a=1时,f(x)=|x+1|+|x-1|=.∵f(x)≤4,∴或-1≤x≤1或,∴1<x≤2或-1≤x≤1或-2≤x<-1,∴-2≤x≤2,∴不等式的解集为{x|-2≤x≤2}.(Ⅱ)证明:当x≥1时,不等式f(x)≤3x+b成立,则x+1+|ax-1|≤3x+b,∴|ax-1|≤2x+b-1,∴-2x-b+1≤ax-1≤2x+b-1,∴,∵x≥1,∴,∴,∴a+b≥0.【解析】(Ⅰ)将a=1代入f(x)中,然后将f(x)写出分段函数的形式,再根据f(x)≤4分别解不等式即可;(Ⅱ)根据当x≥1时,不等式f(x)≤3x+b成立,可得|ax-1|≤2x+b-1,然后解不等式,进一步得到a+b≥0.本题考查了绝对值不等式的解法和利用综合法证明不等式,考查了分类讨论思想和转化思想,属中档题.。
四川省成都市第七中学2020届高三数学上学期一诊模拟试题理含解析

四川省成都市第七中学2020届高三数学上学期一诊模拟试题 理(含解析)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(,)z a bi a b R =+∈的虚部记作Im()z b =,则3Im 1i i +⎛⎫= ⎪+⎝⎭( ) A. -1 B. 0C. 1D. 2【答案】A 【解析】 【分析】直接由复数代数形式的乘除运算化简31ii++,再根据题目中定义的复数的虚部,可得答案. 【详解】解:3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-, 又复数(,)z a bi a b R =+∈的虚部记作()Im z b =, 3()11iIm i+∴=-+. 故选:A .【点睛】本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题. 2.执行如图所示的程序框图,输出的s 值为( )A.3B. 6-C. 10D. 15-【答案】C 【解析】【分析】程序框图的作用是计算22221234-+-+,故可得正确结果. 【详解】根据程序框图可知2222123410S=-+-+=,故选C. 【点睛】本题考查算法中的选择结构和循环结构,属于容易题. 3.关于函数()tan f x x=的性质,下列叙述不正确的是()A. ()f x的最小正周期为2πB. ()f x是偶函数C. ()f x的图象关于直线()2k x k Zπ=∈对称D. ()f x在每一个区间(,)()2k k k Zπππ+∈内单调递增【答案】A 【解析】试题分析:因为1()tan()()22tan f x x f x xππ+=+=≠,所以A错;()tan()tan ()f x x x f x -=-==,所以函数()f x 是偶函数,B 正确;由()tan f x x =的图象可知,C 、D 均正确;故选A. 考点:正切函数的图象与性质.4.已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要条件【答案】A 【解析】试题分析:当01a <≤且01b <≤时,由不等式性质可得2a b +≤且1ab ≤;当31,22a b ==,满足2a b +≤且1ab ≤,但不满足1a ≤且1b ≤,所以“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的充分不必要条件,故选A.考点:1.不等式性质;2.充要条件.5.如果21nx ⎫-⎪⎭的展开式中含有常数项,则正整数n 的最小值是( )A. 3B. 4C. 5D. 6【答案】C 【解析】 【分析】利用二项展开式的通项公式中x 的指数为0,得到5n r =,由此可得正整数n 的最小值是5.【详解】因为21nx ⎫⎪⎭的展开式的通项公式为52121()(1)n rrn rr r rr nn T C C x x--+=-=-,(0,1,2,)r n =,令502n r-=,则5n r =,因为*n N ∈,所以1r =时,n 取最小值5. 故选:C【点睛】本题考查了二项展开式的通项公式,利用通项公式是解题关键,属于基础题.6.在约束条件:1210xyx y≤⎧⎪≤⎨⎪+-≥⎩下,目标函数(0,0)z ax by a b=+>>的最大值为1,则ab的最大值等于()A. 12B.38C.14D.18【答案】D【解析】【分析】作出不等式组对应的平面区域,利用目标函数取得最大值,确定a,b的关系,利用基本不等式求ab的最大值.【详解】解:作出不等式组对应的平面区域如图:(阴影部分),由(0,0)z ax by a b=+>>,则a zy xb b=-+,平移直线a zy xb b=-+,由图象可知当直线a zy xb b=-+经过点(1,2)A时直线的截距最大,此时z最大为1.代入目标函数z ax by=+得21a b+=.则1222a b ab=+,则18ab当且仅当122a b==时取等号,ab∴的最大值等于18,故选:D.【点睛】本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基本方法.7.设{a n }是有正数组成的等比数列,n S 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A.152B.314C.334D.172【答案】B 【解析】 【分析】由等比数列的性质易得a 3=1,进而由求和公式可得q 12=,再代入求和公式计算可得. 【详解】由题意可得a 2a 4=a 32=1,∴a 3=1, 设{a n }的公比为q ,则q >0, ∴S 3211q q =++1=7,解得q 12=或q 13=-(舍去), ∴a 121q ==4,∴S 551413121412⎛⎫⨯- ⎪⎝⎭==-故选B.【点睛】本题考查等比数列的通项公式和求和公式,属基础题.8. 用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( ) A. 288个 B. 306个 C. 324个 D. 342个【答案】C 【解析】试题分析:当个位、十位、百位全为偶数时,有3313434390C A C A -=;当个位、十位、百位为两个奇数、一个偶数时,有21312133434333234C C A A C C A -=,所以共有90234324+=种,故选C.考点:1.分类计数原理与分步计数原理;2.排列与组合.【名师点睛】本题主要考查两个基本原理与排列、组合知识的综合应用问题,属难题;计数原理应用的关键问题是合理的分类与分步,分类要按时同一个的标准进行,要做到不重不漏,分类运算中的每一类根据实际情况,要分步进行.9.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x '->,则当24a <<时,有( ) A. ()()22(2)log af f f a <<B. ()()2log (2)2af a f f <<C. ()()2log 2(2)af a f f <<D. ()()2(2)log 2af f a f <<【答案】D 【解析】 【分析】根据导函数()f x '满足当2x ≠时,(2)()0x f x '->,可得()f x 在(,2)-∞上递减,在(2,)+∞上递增,可得(2)f 为最小值,再根据对称轴和单调性可得2(log )(2)af a f <,从而可知选D【详解】因为函数()f x 对x R ∀∈都有()(4)f x f x =-, 所以()f x 的图象关于2x =对称,又当2x >时,'()0f x >,2x <时,'()0f x <, 所以()f x 在(,2)-∞上递减,在(2,)+∞上递增, 所以2x =时,函数取得最小值,因为24a <<,所以2221log 2log log 42a =<<=,2224a >=, 所以224log 3a <-<, 所以224log 2aa <-<,所以2(4log )(2)af a f -<, 所以2(log )(2)af a f <,所以()()2(2)log 2af f a f <<.故选:D【点睛】本题考查了利用导数判断函数的单调性,考查了利用单调性比较大小,考查了利用对数函数的单调性比较大小,属于中档题.10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+的取值与x ,y 无关,则实数a 的取值范围是( )A. [6,)+∞B. [4,6]-C. (4,6)-D.(,4]-∞-【答案】A 【解析】 【分析】首先将|349||34|x y x y a --+-+的取值与x ,y 无关,转化为圆上的点到直线1;3490l x y --=的距离与到直线2:340l x y a -+=的距离之和与,x y 无关,继续转化为直线2:340l x y a -+=必与圆相离或相切,且圆在1;3490l x y --=与2:340l x y a -+=之间,再根据圆心到直线的距离小于等于半径且(349)(34)0a ---+≤,解不等式组可得答案. 【详解】因为|349||34|x y x y a --+-+的取值与x ,y 无关,所以+的取值与x ,y 无关,取值与x ,y 无关,即圆上的点到直线1;3490l x y --=的距离与到直线2:340l x y a -+=的距离之和与,x y 无关,因为圆心(1,1)到直线1;3490l x y --=21=>,所以直线1;3490l x y --=与圆相离,所以直线2:340l x y a -+=必与圆相离或相切,且圆在1;3490l x y --=与2:340l x y a -+=之间,1≥,且(349)(34)0a ---+≤,所以6a ≥或4a ≤- 且1a ≥, 所以6a ≥. 故选:A【点睛】本题考查了点到直线的距离公式,利用点到直线的距离公式将问题转化为直线2:340l x y a -+=必与圆相离或相切,且圆在1;3490l x y --=与2:340l x y a -+=之间是解题关键,属于中档题.11.若a ,b ,c 满足,||||2||2a b c ===,则()()a b c b -⋅-的最大值为( )A. 10B. 12C.D. 【答案】B 【解析】 【分析】设OA a =,OB b =,OC c =,表示出a b -,-c b 利用向量的数量积的定义求出最值. 【详解】解:设OA a =,OB b =,OC c =,则a b BA -=,c b BC -=()()cos a bc b BA BC BA BC ABC ∴--==⋅∠||||2||2a b c ===4BA ∴≤,3BC ≤当且仅当BA ,BC 同向时()()a b c b --取最大值12故()()max12a bc b --=故选:B【点睛】本题考查向量的数量积的定义,属于中档题.12.已知棱长为3的正方体1111ABCD A B C D -,点E 是棱AB 的中点,12CF FC =,动点P 在正方形11AA DD (包括边界)内运动,且1PB 面DEF ,则PC 的长度范围为( )A.B. 5⎡⎢⎣C. 5⎡⎢⎣D.5⎡⎢⎣ 【答案】B 【解析】 分析】如图:先作出过1B P 且与平面DEF 平行的平面,可知点P 的轨迹为QN ,然后根据平面几何知识求出DP 的最小值和最大值,根据勾股定理可求出PC 的取值范围. 【详解】如图所示:在1AA 上取点Q ,使得112AQ QA =,连接1B Q ,因为12CF FC =,所以1//B Q DF ; 取11C D 的中点M ,连接1B M ,因为E 为AB 的中点,所以1//B M DE ; 因此平面1//B QM 平面DEF ,过M 作//MN DF 交1DD 于N ,则四点1,,,B Q N M 共面,且123DN DD =, 因为1//B P 平面DEF ,所以点P 在线段QN 上运动, 连接DP ,根据正方体的性质可知CD DP ⊥, 所以22PC CD DP +,在平面QADN 中,1=AQ ,3AD =,2DQ =,所以23110DN +21310DQ =+=所以点D 到QN 的距离为13231021102⨯⨯=, 所以DP 310,10, 所以PC 22310335()35+=22(10)319+=. 所以PC 的取值范围是33519⎣. 故选:B【点睛】本题考查了作几何体的截面,考查了平面与平面平行的判定,考查了立体几何中的轨迹问题,关键是作出点P 的运动轨迹,属于中档题.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上) 13.命题“2,1x N x ∀∈>”的否定为__________.” 【答案】2,1x N x ∃∈≤ 【解析】全称命题“,()x M p x ∀∈”的否定是存在性命题“,()x M p x ∃∈⌝”,所以“2,1x N x ∀∈>”的否定是“2,1x N x ∃∈≤”.14.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为 ▲ . 【答案】360 【解析】 【详解】根据题意9个小长方形面积依次为0.02,0.02,0.022,0.023,0.024,0.023,0.022,0.02,0.02d d d d d d d +++++++因为9个小长方形面积和为1,所以0.82160.1811600(0.024)36016d d d +=∴=∴⨯+= 15.设O 、F 分别是抛物线22y x =的顶点和焦点,M 是抛物线上的动点,则MOMF的最大值为__________.【解析】【详解】试题分析:设点M 的坐标为(,)M x y ,由抛物线的定义可知,12MF x =+,则22MOMFx x ==++ 令14t x =-,则14t >-,14x t =+,若t>021123111399333216162MO tMF t t t t =+=+≤+=++++,当且仅当3t 4=时等号成立, 所以MOMF的最大值为233. 考点:1.抛物线的定义及几何性质;2.基本不等式.【名师点睛】本题主要考查抛物线的定义及几何性质、基本不等式,属中档题;求圆锥曲线的最值问题,可利用定义和圆锥曲线的几何性质,利用其几何意义求之,也可根据已知条件把所求的问题用一个或两个未知数表示,即求出其目标函数,利用函数的性质、基本不等式或线性规划知识求之. 16.已知14ab =,,(0,1)a b ∈,则1211a b +--的最小值为 .【答案】424+ 【解析】试题分析:因为,所以,则(当且仅当,即时,取等号);故填4243+. 【方法点睛】本题考查利用基本不等式求函数的最值问题,属于难题;解决本题的关键是消元、裂项,难点是合理配凑、恒等变形,目的是出现基本不等式的使用条件(正值、定积),再利用基本不等式进行求解,但要注意验证等号成立的条件. 考点:基本不等式.三、解答题(本大题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.设ABC ∆的内角A 、B 、C 所对的边分别为a 、b 、c ,已知3c =,且1sin cos 64C C π⎛⎫-⋅= ⎪⎝⎭.(1)求角C 的大小;(2)若向量()1,sin m A =与()2,sin n B =共线, 求,a b 的值. 【答案】(1)3π;(2)a b ==. 【解析】试题分析:(1)根据三角恒等变换,sin 216C π⎛⎫-= ⎪⎝⎭,可解得3C π=;(2)由m 与n 共线, 得sin 2sin 0B A -=,再由正弦定理,得2b a =,在根据余弦定理列出方程,即可求解,a b 的值.试题解析:(1)2113sin cos cos ,2cos 2122C C C C C -=-=, 即sin 21,0,2662C C C ππππ⎛⎫-=<<∴-= ⎪⎝⎭,解得3C π=. (2)m 与n 共线,sin 2sin 0B A ∴-=, 由正弦定理sin sin a bA B=,得2b a =,① 3c =,由余弦定理,得2292cos 3a b ab π=+-, ② 联立①②,{a b ==考点:正弦定理;余弦定理.18.学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k ≥0.50 0.40 0.25 0.05 0.025 0.0100k0.455 0.708 1.321 3.841 5.024 6.635【答案】(I )没有的把握认为“古文迷”与性别有关;(II )“古文迷”的人数为3,“非古文迷”有2;(III )分布列见解析,期望为95. 【解析】【详解】(I )由列联表得所以没有的把握认为“古文迷”与性别有关.(II )调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为人,“非古文迷”有人.即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人(III )因为为所抽取3人中“古文迷”的人数,所以的所有取值为1,2,3.,,.所以随机变量ξ的分布列为123于是.19.如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证:CD ∥平面1A EB ; (Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)求直线1B E 与平面11AAC C 所成角的正弦值.【答案】(Ⅰ)见解析(Ⅱ)见解析(Ⅲ)直线1B E 与平面11AAC C 所成角的正弦值为155【解析】【详解】证明:(Ⅰ)设11AB A B 和的交点为O ,连接EO ,连接EO .因为O 为1AB 的中点,O 为EO 的中点,所以EO ∥1AB 且112OD BB =.又O 是1AB 中点, 所以AB ∥1AB 且112OD BB =,所以AB ∥EO 且EC OD =.所以,四边形ECOD 为平行四边形.所以EO ∥EC .又CD ⊄平面1A BE ,EO ⊂平面1A BE ,则EC ∥平面1A BE . (Ⅱ)因为三棱柱各侧面都是正方形,所以1BB AB ⊥,1BB AB ⊥. 所以1BB ⊥平面ABC .因为CD ⊂平面ABC ,所以1BB AB ⊥. 由已知得AB BC AC ==,所以CD AB ⊥, 所以ABC 平面11A ABB .由(Ⅰ)可知EO ∥EC ,所以CD ⊂平面11A ABB . 所以CD ⊂1AB .因为侧面是正方形,所以11AB A B ⊥.又1EO A B O ⋂=,EO ⊥平面1A EB ,1A B ⊂平面1A EB , 所以1A B ⊂平面1A BE .(Ⅲ)解: 取11A C 中点F ,连接1,?B F EF . 在三棱柱111ABC A B C -中,因1BB ⊥平面ABC ,所以侧面11ACC A ⊥底面1AB ⊥.因为底面1AB ⊥是正三角形,且F 是11A C 中点, 所以111B F AC ⊥,所以1BB ⊥侧面11ACC A . 所以EF 是11A C 在平面11ACC A 上的射影. 所以1FEB ∠是11A C 与平面11ACC A 所成角.111sin B F BE F B E ∠==20.已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为())12,F F ,以椭圆短轴为直径的圆经过点()1,0M . (1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于,A B 两点,设点()3,2N ,直线,AN BN 的斜率分别为12,k k ,问12k k +是否为定值?并证明你的结论.【答案】(1)2213x y +=;(2)定值为2.【解析】试题分析:(1)由题意得到c =1b OM ==,所以a =(2)联立直线方程与椭圆方程,得到韦达定理2122631k x x k +=+,21223331k x x k -=+,()()()()()21212121212212121212211222462223393621k x x k x x x x y y k k x x x x x x k +⎡⎤-++-++--⎣⎦+=+===---+++. 试题解析: (1)依题意,c =222a b -=.∵点()1,0M 与椭圆短轴的两个端点的连线相互垂直, ∴1b OM ==,∴a =∴椭圆C 的方程为2213x y +=.(2)①当直线l 的斜率不存在时,由22113x x y =⎧⎪⎨+=⎪⎩解得1x =,3y =±.设A ⎛ ⎝⎭,1,B ⎛ ⎝⎭,则122233222k k ++=+=为定值. ②当直线l 的斜率存在时,设直线l 的方程为:()1y k x =-.将()1y k x =-代入2213x y +=整理化简,得()2222316330k x k x k +-+-=.依题意,直线l 与椭圆C 必相交于两点,设()11,A x y ,()22,B x y ,则2122631k x x k +=+,21223331k x x k -=+. 又()111y k x =-,()221y k x =-, 所以1212122233y y k k x x --+=+-- ()()()()()()122112232333y x y x x x --+--=-- ()()()()()1221121221321393k x x k x x x x x x ⎡⎤⎡⎤---+---⎣⎦⎣⎦=-++ ()()()121212121212224693x x k x x x x x x x x ⎡⎤-++-++⎣⎦=-++()22122222223361222463131633933131k k x x k k k k k k k ⎡⎤--++⨯-⨯+⎢⎥++⎣⎦=--⨯+++ ()()2212212621k k +==+. 综上得12k k +为常数2.点睛:圆锥曲线大题熟悉解题套路,本题先求出椭圆方程,然后与直线方程联立方程组,求得韦达定理,则2122631k x x k +=+,21223331k x x k -=+,()()()()()21212121212212121212211222462223393621k x x k x x x x y y k k x x x x x x k +⎡⎤-++-++--⎣⎦+=+===---+++,为定值.21.已知函数()ln ()f x tx x t =+∈R . (1)当1t =-时,证明:()1f x ≤-;(2)若对于定义域内任意x ,()1xf x x e ≤⋅-恒成立,求t 的范围 【答案】(1)见解析 (2)(,1]-∞ 【解析】 【分析】(1)构造函数()ln 1g x x x =-+利用导数求出函数的单调性,得到函数的最大值,即可得证;(2)参变分离得到ln 1xx t e x +≤-在(0,)+∞恒成立,构造函数ln 1()xx x e xϕ+=-求出函数的最小值,即可得到参数t 的取值范围.【详解】(1)证明:即是证明ln 1x x -≤-,设()ln 1g x x x =-+,1()xg x x-'=当01x <<,()0g x '>,()g x 单调递增;当1x >,()0g x '<,()g x 单调递减;所以()g x 在1x =处取到最大值,即()(1)0g x g ≤=,所以ln 1x x -≤-得证 (2)原式子恒成立即ln 1xx t e x+≤-在(0,)+∞恒成立 设ln 1()xx x e xϕ+=-, 22ln ()x x e x x x ϕ+'=,设2()ln xQ x x e x =+, ()21()20x Q x x x e x '=++>,所以()Q x 单调递增,且102Q ⎛⎫< ⎪⎝⎭,(1)0Q > 所以()Q x 有唯一零点0x ,而且0200ln 0x x ex ⋅+=,所以0200ln x x e x ⋅=-两边同时取对数得()()0000ln ln ln ln x x x x +=-+- 易证明函数ln y x x =+是增函数,所以得00ln x x =-,所以01x e x =所以由()x ϕ在()00,x 上单调递减,在()0,x +∞上单调递增,所以()0000000ln 111()1xx x x x e x x x ϕϕ+-+≥=-=-= 于是t 的取值范围是(,1]-∞【点睛】本题考查利用导数证明不等式恒成立问题,属于中档题.请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.22.在极坐标系下,已知圆:cos sin O ρθθ=+和直线()2:sin 0,0242l πρθρθπ⎛⎫-=≥≤≤ ⎪⎝⎭(1)求圆O 和直线l 的直角坐标方程;(2)当()0,θπ∈时,求圆O 和直线l 的公共点的极坐标.【答案】(1) 圆O 的直角坐标方程为x 2+y 2-x-y=0,直线l 的直角坐标方程为x-y+1=0 (2)【解析】试题分析:(1)根据222cos ,sin ,x y x y ρθρθρ===+ 将圆O 和直线l 极坐标方程化为直角坐标方程(2)先联立方程组解出直线l 与圆O 的公共点的直角坐标,再根据222cos ,sin ,x y x y ρθρθρ===+化为极坐标试题解析:(1)圆O :ρ=cos θ+sin θ, 即ρ2=ρ cos θ+ρ sin θ,故圆O 的直角坐标方程为x 2+y 2-x -y =0. 直线l :ρsin=,即ρsin θ-ρcos θ=1,则直线l 的直角坐标方程为x -y +1=0.(2)由(1)知圆O 与直线l 的直角坐标方程,将两方程联立得,,解得即圆O 与直线l 在直角坐标系下的公共点为(0,1), 将(0,1)转化为极坐标为,即为所求.23.已知函数()2321f x x x =++-. (1)求不等式()5f x <的解集;(2)若关于x 的不等式()1f x m <-的解集非空,求实数m 的取值范围. 【答案】(1)73|44x x ⎧⎫-≤≤⎨⎬⎩⎭(2)6m >或2m <- 【解析】 【分析】(1)通过讨论x 的范围,求出不等式的解集即可;(2)求出f (x )的最小值,得到关于m 的不等式,解出即可. 【详解】(1)原不等式为:23215x x ++-≤,当32x ≤-时,原不等式可转化为425x --≤,即7342x -≤≤-; 当3122x -<<时,原不等式可转化为45≤恒成立,所以3122x -<<;当12x ≥时,原不等式可转化为425x +≤,即1324x ≤≤.所以原不等式的解集为73|44x x ⎧⎫-≤≤⎨⎬⎩⎭. (2)由已知函数()342,2314,22142,2x x f x x x x ⎧--≤-⎪⎪⎪=-<<⎨⎪⎪+≥⎪⎩,可得函数()y f x =的最小值为4,所以24m ->,解得6m >或2m <-.【点睛】含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.。
2020届四川省成都市第七中学高三上学期一诊模拟数学(理)试题(解析版)

2020届四川省成都市第七中学高三上学期一诊模拟数学(理)试题一、单选题1.复数(,)z a bi a b R =+∈的虚部记作Im()z b =,则3Im 1i i +⎛⎫= ⎪+⎝⎭( ) A .-1 B .0C .1D .2【答案】A2.执行如图所示的程序框图,输出的s 值为( )A .3B .6-C .10D .15-【答案】C3.关于函数()tan f x x =的性质,下列叙述不正确的是( ) A .()f x 的最小正周期为2π B .()f x 是偶函数C .()f x 的图象关于直线()2k x k Z π=∈对称 D .()f x 在每一个区间(,)()2k k k Z πππ+∈内单调递增【答案】A4.已知0,0a b >>,则“1a ≤且1b ≤”是“2a b +≤且1ab ≤”的( ) A .充分不必要条件 B .必要不充分条件C .充要条件D .既不充分也不必要条件 【答案】A5.如果21nx ⎫-⎪⎭的展开式中含有常数项,则正整数n 的最小值是( ) A .3 B .4C .5D .6【答案】C6.在约束条件:1210x y x y ≤⎧⎪≤⎨⎪+-≥⎩下,目标函数(0,0)z ax by a b =+>>的最大值为1,则ab 的最大值等于( ) A .12B .38C .14D .18【答案】D7.设{a n }是有正数组成的等比数列,n S 为其前n 项和.已知a 2a 4=1,S 3=7,则S 5=( ) A .152B .314C .334D .172【答案】B8.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( )A .288个B .306个C .324个D .342个 【答案】C9.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x '->,则当24a <<时,有( ) A .()()22(2)log af f f a <<B .()()2log (2)2af a f f <<C .()()2log 2(2)af a f f <<D .()()2(2)log 2af f a f <<【答案】D10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+的取值与x ,y 无关,则实数a 的取值范围是( ) A .[6,)+∞ B .[4,6]-C .(4,6)-D .(,4]-∞-【答案】A11.若a r ,b r ,c r 满足,||||2||2a b c ===r r r ,则()()a b c b -⋅-r rr r 的最大值为( )A .10B .12C .53D .62【答案】B12.已知棱长为3的正方体1111ABCD A B C D -,点E 是棱AB 的中点,12CF FC =u u u r u u u u r,动点P 在正方形11AA DD (包括边界)内运动,且1PB P 面DEF ,则PC 的长度范围为( ) A .[13,19] B .335,19⎡⎤⎢⎥⎣ C .335,13⎡⎤⎢⎥⎣ D .339,19⎡⎤⎢⎥⎣ 【答案】B【解析】如图:先作出过1B P 且与平面DEF 平行的平面,可知点P 的轨迹为QN ,然后根据平面几何知识求出DP 的最小值和最大值,根据勾股定理可求出PC 的取值范围. 【详解】 如图所示:在1AA 上取点Q ,使得112AQ QA =,连接1B Q ,因为12CF FC =u u u r u u u u r ,所以1//B Q DF ;取11C D 的中点M ,连接1B M ,因为E 为AB 的中点,所以1//B M DE ; 因此平面1//B QM 平面DEF ,过M 作//MN DF 交1DD 于N ,则四点1,,,B Q N M 共面,且123DN DD =, 因为1//B P 平面DEF ,所以点P 在线段QN 上运动, 连接DP ,根据正方体的性质可知CD DP ⊥, 所以22PC CD DP +,在平面QADN 中,1=AQ ,3AD =,2DQ =,所以23110DN =+=21310DQ =+=,所以点D 到QN 的距离为132310215102⨯⨯=⨯, 所以DP 的最小值为310,最大值为10, 所以PC 的最小值为22310335()355+=,最大值为22(10)319+=. 所以PC 的取值范围是335,195⎡⎤⎢⎥⎣. 故选:B 【点睛】本题考查了作几何体的截面,考查了平面与平面平行的判定,考查了立体几何中的轨迹问题,关键是作出点P 的运动轨迹,属于中档题.二、填空题13.命题“2,1x N x ∀∈>”的否定为__________.” 【答案】2,1x N x ∃∈≤【解析】全称命题“,()x M p x ∀∈”的否定是存在性命题“,()x M p x ∃∈⌝”,所以“2,1x N x ∀∈>”的否定是“2,1x N x ∃∈≤”. 14.在样本的频率分布直方图中, 共有9个小长方形, 若第一个长方形的面积为0.02, 前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600, 则中间一组(即第五组)的频数为 ▲ . 【答案】360 【解析】略15.设、分别是抛物线的顶点和焦点,是抛物线上的动点,则的最大值为__________. 【答案】【解析】试题分析:设点的坐标为,由抛物线的定义可知,,则,令,则,,所以,当且仅当时等号成立,所以的最大值为.【考点】1.抛物线的定义及几何性质;2.基本不等式.【名师点睛】本题主要考查抛物线的定义及几何性质、基本不等式,属中档题;求圆锥曲线的最值问题,可利用定义和圆锥曲线的几何性质,利用其几何意义求之,也可根据已知条件把所求的问题用一个或两个未知数表示,即求出其目标函数,利用函数的性质、基本不等式或线性规划知识求之.16.已知,,则的最小值为.【答案】【解析】试题分析:因为,所以,则(当且仅当,即时,取等号);故填.【方法点睛】本题考查利用基本不等式求函数的最值问题,属于难题;解决本题的关键是消元、裂项,难点是合理配凑、恒等变形,目的是出现基本不等式的使用条件(正值、定积),再利用基本不等式进行求解,但要注意验证等号成立的条件.【考点】基本不等式.三、解答题17.设的内角、、所对的边分别为、、,已知,且.(1)求角的大小;(2)若向量与共线, 求的值.【答案】(1);(2)。
【精准解析】四川省成都市第七中学2020届高三上学期一诊模拟数学(理)试题

0
,则 n
5r
,因为 n
N*
,所以
r
1 时,
n 取最小值 5 .
故选: C
【点睛】本题考查了二项展开式的通项公式,利用通项公式是解题关键,属于基础题.
x 1
6.在约束条件:
y
2
下,目标函数 z ax by(a 0, b 0) 的最大值为 1,则 ab 的
x y 1 0
最大值等于( )
)
1
.
故选: A .
【点睛】本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题.
2.执行如图所示的程序框图,输出的 s 值为( )
-1-
A. 3
【答案】C 【解析】 【分析】
B. 6
C. 10
D. 15
程序框图的作用是计算 12 22 32 42 ,故可得正确结果.
【详解】根据程序框图可知 S 12 22 32 42 10 ,故选 C.
分类运算中的每一类根据实际情况,要分步进行.
9.已知函数 f (x) 对 x R 都有 f (x) f (4 x) ,且其导函数 f (x) 满足当 x 2
【点睛】本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基 本方法.
7.设{an}是有正数组成的等比数列, Sn 为其前 n 项和.已知 a2a4=1,S3=7,则 S5=( )
15
A.
2
【答案】B
31
B.
4
33
C.
4
17
D.
2
【解析】
【分析】
由等比数列的性质易得
a3=1,进而由求和公式可得
【答案】A
【解析】
试 题 分 析 : 因 为 f (x ) tan(x ) 1 f (x) , 所 以 A 错 ;
四川省成都市2020届高三数学第一次诊断考试试题理

四川省成都市2020届高三数学第一次诊断考试试题 理本试卷分选择题和非选择题两部分。
第I 卷(选择题)1至2页,第II 卷(非选择题)3至4页,共4页,满分150分,考试时间120分钟。
注意事项1.答题前,务必将自己的姓名、考籍号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B 铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其它答案标号。
3.答非选择题时,必须使用0.5毫米黑色签字笔,将答案书写在答题卡规定的位置上。
4.所有题目必须在答题卡上作答,在试题卷上答题无效。
5.考试结束后,只将答题卡交回。
第I 卷(选择题,共60分)一、选择题:本大题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.若复数z 1与z 2=-3-i(i 为虚数单位)在复平面内对应的点关于实轴对称,则z 1= (A)-3-i (B)-3+i (C)3+i (D)3-i2.已知集合A ={-l ,0,m},B ={l ,2}。
若A ∪B ={-l ,0,1,2},则实数m 的值为 (A)-l 或0 (B)0或1 (C)-l 或2 (D)l 或23.若sin )θπθ=-,则tan2θ=(A)4.某校随机抽取100名同学进行“垃圾分类”的问卷测试,测试结果发现这l00名同学的得分都在[50,100]内,按得分分成5组:[50,60),[60,70),[70,80),[80,90),[90,100],得到如图所示的频率分布直方图。
则这100名同学的得分的中位数为(A)72.5 (B)75 (C)77.5 (D)805.设等差数列{a n }的前n 项和为S n ,且a n ≠0,若a 5=3a 3,则95S S = (A)95 (B)59 (C)53 (D)2756.已知α,β是空间中两个不同的平面,m ,n 是空间中两条不同的直线,则下列说法正确的是(A)若m ∥α,n ∥β,且α∥β,则m ∥n (B)若m ∥α,n ∥β,且α⊥β,则m ∥n (C)若m ⊥α,n ∥β,且α∥β,则m ⊥n (D)若m ⊥α,n ∥β且α⊥β,则m ⊥n 7.261(2)()x x x+-的展开式的常数项为 (A)25 (B)-25 (C)5 (D)-5 8.将函数y =sin(4x -6π)图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),再把所得图象向左平移6π个单位长度,得到函数f(x)的图象,则函数f(x)的解析式为 (A)f(x)=sin(2x +6π) (B)f(x)=sin(2x -3π)(C)f(x)=sin(8x +6π) (D)f(x)=sin(8x -3π)9.已知抛物线y 2=4x 的焦点为F ,M ,N 是抛物线上两个不同的点。
四川省成都七中(高新校区)2020届高三数学“一诊”模拟试题 理(无答案)新人教A版

成都七中(高新校区)高2020届一诊模拟数学试卷(理科)考试时间:120分钟 总分:150分一.选择题(每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合要求.)1. 设i 是虚数单位,则复数2(1)i i-⋅在复平面内对应的点位于 ( ) A. 第一象限 B. 第二象限 C. 第三象限 D. 第四象限2. 下列命题中真命题的是 ( )A. “关于x 的不等式()0f x >有解”的否定是“0x R ∃∈,使得0()0f x <成立”B. 0x R ∃∈,使得00x e ≤成立C. x R ∀∈, 33x x >D. “22x a b >+”是“2x ab >”的充分条件3. 已知α、β是两个不同的平面,下列四个命题是“面α∥面β”的充分条件的为 ( )A. 存在一条直线a ,a α⊂面且a ∥面βB. 存在一个平面γ,γα⊥,γβ⊥C. 存在两条平行直线a b 、,,a b αβ⊂⊂,a ∥β且b ∥αD. 存在两条异面直线a b 、,,a b αβ⊂⊂,a ∥β且b ∥α 4. 某班的全体学生参加英语测试,成绩的频率分布直方图如图,数据的分组依次为:[20,40),[40,60),[60,80),[80,100],则该次英语测试该班的平均成绩是( ).A. 63B. 65C. 68D. 705. 已知向量(1,2)a =r ,(2,4)b =--r ,c =r ,若5()2a b c +⋅=r r r ,则a r 与c r 的夹角为 ( )A. 30°B. 60°C. 120°D.150°6. 如图,是一正方体被过点A ,M ,N 的平面和点N ,D ,C 的平面截去两个角后所得的几何体,其中M ,N 分别为棱A 1B 1,A 1D 1的中点,则该几何体的正视图为 ( )7. 若1()nx x +的展开式中第3项与第7项的二项式系数相等,则该展开式中的常数项是 ( )A.第3项B. 第4项C.第5项D.第6项 8. 在平面直角坐标系xoy 中不等式组2525x y ≤≤⎧⎨≤≤⎩确定的平面区域为D ,在区域D 中任取一点(,)P a b ,则P 满足210a b +>的概率为 ( ) A.23 B.712 C.12 D.5129. 已知数列{}n a 的前n 项和为n S ,则下列命题正确的是 ( )A. 若数列{}n a 是等比数列,则数列n S ,2n n S S -,32n n S S -是等比数列B. 若数列{}n a 是等差数列,当n S m =,m S n =时,m n S m n +=+;C. 若1,a ,b ,c ,9成等比数列,则3b =±D. 若数列{}n a 满足11n n n n a a a a ++⋅=+,则数列2{}n n a a +-是等差数列10. 对于实数x ,定义[]x 表示不超过x 的最大整数,执行如右图的程序框图,如果输入的N=2020,则输出的[]S 是 ( )A. 0B. 1C. 2D. 3二、填空题(每小题5分,共25分,把答案填在题中的横线上。
【全国百强校】四川省成都市第七中学2020届高三上学期一诊模拟理科数学试题

成都七中高2020届一诊模拟数学(理工农医类)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共 15分,考试时间0 12分钟.0第Ⅰ卷(选择题,共 60 分)一、选择题(本大题共 125 小题,每小题 分,共 60 分.在每小题给出的四个选项中,只有一项是符合题目要求的)1、复数(,)z a bi a b R 的虚部记作 Im()z b ,则3 Im()1i i =()(A)-1(B)0(C)1(D)22、执行如图所示的程序框图,输出的S值为() (A)3(B)-6(C)10(D)-153、关于函数 ()tan f x x 的性质,下列叙述不.正确的是()(A) ()f x 的最小正周期为2(B) ()f x 是偶函数(C) ()f x 的图象关于直线 ()2kx k Z 对称(D) ()f x 在每一个区间 (,),2k k k Z 内单调递增4、已知0,0a b ,则“ 1a 且 1b ”是“ 2a b 且 1ab ”的 ()(A)充分不必要条件(B)必要不充分条件(C)充要条件(D)既不充分也不必要条件5、如果n x x21的展开式中含有常数项,则正整数n 的最小值是() (A)3(B)4(C)5(D)66、在约束条件01,2,1:y x y x 下,目标函数 z ax by ( 0,0a b )的最大值为1,则ab的最大值等于()(A)21(B)83(C)41(D)817、由正数组成的等比数列 n a ,n S 为其前n 项和。
若 24 1a a ,3 7S ,则5S 等于()(A)152(B)314(C)334(D)172三、解答题(本大题共小题,共70分.解答应写出文字说明、证明过程或演算步骤)6 17、设ABC 的内角 , ,A B C 的对边分别为 ,,a b c ,已知3 c ,且41cos )6 sin( C C .(1)求角C 的大小;(2)若向量 )sin ,1(A m 与 )sin ,2(B n 共线,求 ,a b 的值.18、学校为了解高二学生每天自主学习中国古典文学的时间,随机抽取了高二男生和女生 各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如下表:(1)根据上表数据判断能否有60%的把握认为“古文迷”与性别有关?(2)现从调查的女生中按分层抽样的方法抽出5人进行理科学习时间的调查,求所抽取 的5人中“古文迷”和“非古文迷”的人数;(3)现从(2)中所抽取的5人中再抽取3人进行体育锻炼时间的调查,记这3人中“古文迷”的人数为 ,求随机变量 的分布列与数学期望。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020年四川省成都七中高考数学一诊试卷(理科)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(,)z a bi a b R =+∈的虚部记作()Im z b =,则3()(1iIm i+=+ )A .2-B .1-C .1D .2 2.执行如图所示的程序框图,输出的S 值为( )A .3B .6-C .10D .15-3.关于函数()|tan |f x x =的性质,下列叙述不正确的是( )A .()f x 的最小正周期为2πB .()f x 是偶函数C .()f x 的图象关于直线()2k x k Z π=∈对称D .()f x 在每一个区间(k π,)()2k k Z ππ+∈内单调递增4.已知0a >,0b >,则“1a 且1b ”是“2a b +且1ab ”的( ) A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.如果21()n x x的展开式中含有常数项,则正整数n 的最小值是( )A .3B .4C .5D .66.在约束条件:1210x y x y ⎧⎪⎨⎪+-⎩下,目标函数(0,0)z ax by a b =+>>的最大值为1,则ab 的最大值等于( )A .12 B .38 C .14D .187.已知正项等比数列{}n a 中,n S 为其前n 项和,且241a a =,37S =,则5(S = )A .152B .314C .334D .1728.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( )个. A .324B .216C .180D .3849.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x -'>,则当24a <<时,有( )A .(2)a f f <(2)2(log )f a <B .f (2)2(2)(log )a f f a <<C .2(log )(2)a f a f f <<(2)D .f (2)2(log )(2)a f a f <<10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+都与x ,y 无关,则a 的取值区间为( ) A .[6,)+∞ B .[4-,6] C .(4,6)- D .(-∞,4]- 11.若a ,b ,c 满足,||||2||2a b c ===,则()()a b c b --的最大值为( )A .10B .12C .53D .6212.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA DD (包括边界)内运动,且1//PB 面DMN ,则PC 的长度范围为( ) A .[13,19]B .335[,19]5C .335[,19]5D .339[,19]5二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上) 13.命题“x N ∀∈,21x >”的否定为 .14.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为 .15.设O 、F 分别是抛物线22y x =的顶点和焦点,M 是抛物线上的动点,则||||MO MF 的最大值为 .16.若实数a ,(0,1)b ∈且14ab =,则1211a b +--的最小值为 . 三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤)17.(12分)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3c =,且1sin()cos 64C C π-=.(1)求角C 的大小;(2)若向量(1,sin )m A =与(2,sin )n B =共线,求a 、b 的值.18.(12分)学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时的学生称为“古文迷”,否则为“非古文迷”,调查结果如表:古文迷 非古文迷 合计 男生 26 24 50 女生 30 20 50 合计5644100(Ⅰ)根据表中数据能否判断有60%的把握认为“古文迷”与性别有关?(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.参考数据:20()P K k0.50 0.40 0.25 0.05 0.025 0.010 0k0.4550.7081.3213.8415.0246.63519.(12分)如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证://CD 平面1A EB ; (Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)求直线1B E 与平面11AA C C 所成角的正弦值.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(2F -0),2(2F 0),以椭圆短轴为直径的圆经过点(1,0)M .(1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于A 、B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,问:12k k +是否为定值?并证明你的结论. 21.(12分)已知函数()()f x tx lnx t R =+∈.(1)当1t =-时,证明:()1f x -;(2)若对于定义域内任意x ,2()1x f x x e -恒成立,求t 的范围?请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分). [选修4-4:坐标系与参数方程] 22.(10分)在极坐标系下,知圆:cos sin O ρθθ=+和直线:sin()0,02)4l πρθρθπ-=.(1)求圆O 与直线l 的直角坐标方程;(2)当(0,)θπ∈时,求圆O 和直线l 的公共点的极坐标. [选修4-5:不等式选讲](本小题满分0分) 23.已知函数()|23||21|f x x x =++-. (Ⅰ)求不等式()5f x 的解集;(Ⅱ)若关于x 的不等式()|1|f x m <-的解集非空,求实数m 的取值范围.2020年四川省成都七中高考数学一诊试卷(理科)参考答案与试题解析一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.复数(,)z a bi a b R =+∈的虚部记作()Im z b =,则3()(1iIm i+=+ ) A .2- B .1- C .1 D .2【思路分析】直接由复数代数形式的乘除运算化简31ii++,再根据题目中定义的复数的虚部,可得答案.【解析】:3(3)(1)4221(1)(1)2i i i ii i i i ++--===-++-,又复数(,)z a bi a b R =+∈的虚部记作()Im z b =,3()11iIm i+∴=-+.故选:B .【总结与归纳】本题考查了复数代数形式的乘除运算、虚部的定义,属于基础题.2.执行如图所示的程序框图,输出的S 值为( )A .3B .6-C .10D .15-【思路分析】根据程序框图判断,程序的运行功能是求22221234S =-+-+,计算可得答案. 【解析】:由程序框图知,程序的运行功能是求22221234S =-+-+-⋯可得:当5i =时,不满足条件5i <,程序运行终止,输出2222123410S ==-+-+=. 故选:C .【总结与归纳】本题考查了循环结构的程序框图,解答此类问题的关键是判断程序框图的功能.3.关于函数()|tan |f x x =的性质,下列叙述不正确的是( )A .()f x 的最小正周期为2πB .()f x 是偶函数C .()f x 的图象关于直线()2k x k Z π=∈对称D .()f x 在每一个区间(k π,)()2k k Z ππ+∈内单调递增【思路分析】根据正切函数的性质与性质,结合绝对值的意义,对选项中的命题分析、判断即可.【解析】:对于函数()|tan |f x x =的性质,根据该函数的图象知,其最小正周期为π,A 错误;又()|tan()||tan |()f x x x f x -=-==,所以()f x 是定义域上的偶函数,B 正确;根据函数()f x 的图象知,()f x 的图象关于直线()2k x k Z π=∈对称,C 正确;根据()f x 的图象知,()f x 在每一个区间(k π,)()2k k Z ππ+∈内单调递增,D 正确.故选:A .【总结与归纳】本题考查了正切函数的图象与性质的意义问题,是基础题目. 4.已知0a >,0b >,则“1a 且1b ”是“2a b +且1ab ”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件【思路分析】0a >,0b >,“1a 且1b ”可得:“2a b +且1ab ”,反之不成立:取32a =,12b =,即可判断出结论. 【解析】:0a >,0b >,“1a 且1b ”可得:“2a b +且1ab ”,反之不成立:取32a =,12b =,满足2a b +且1ab ,而1a 且1b 不成立.故“1a 且1b ”是“2a b +且1ab ”的充分不必要条件. 故选:A .【总结与归纳】本题考查了不等式的性质、简易逻辑的判定方法,考查了推理能力与计算能力,属于中档题.5.如果21)n x的展开式中含有常数项,则正整数n 的最小值是( )A .3B .4C .5D .6【思路分析】在二项展开式的通项公式中,令x 的幂指数等于0,求出n 与r 的关系,即可得到n 的最小值. 【解析】:21)n x的展开式的通项公式为521(1)n r rr r nT C x -+=-,令502n r-=,可得5n r =,0r =,1,2,3,⋯,n . 展开式中含有常数项,5n r ∴=能成立,则正整数n 的最小值为5, 故选:C .【总结与归纳】本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于基础题.6.在约束条件:1210x y x y ⎧⎪⎨⎪+-⎩下,目标函数(0,0)z ax by a b =+>>的最大值为1,则ab 的最大值等于( )A .12B .38C .14D .18【思路分析】作出不等式组对应的平面区域,利用目标函数取得最大值,确定a ,b 的关系,利用基本不等式求ab 的最大值.【解析】:作出不等式组对应的平面区域如图:(阴影部分),由(0,0)z ax by a b =+>>,则a z y x b b =-+,平移直线a zy x b b=-+,由图象可知当直线a zy x b b=-+经过点(1,2)A 时直线的截距最大,此时z 最大为1.代入目标函数z ax by =+得21a b +=.则1222a b ab =+,则18ab 当且仅当122a b ==时取等号,ab ∴的最大值等于18,故选:D .【总结与归纳】本题主要考查线性规划的应用,利用数形结合以及基本不等式是解决此类问题的基本方法.7.已知正项等比数列{}n a 中,n S 为其前n 项和,且241a a =,37S =,则5(S = )A .152B .314C .334D .172【思路分析】由已知条件利用等比数列的通项公式和前n 项和公式得311311(1)710a q a q a q q q ⎧=⎪-⎪=⎨-⎪⎪>⎩,由此能求出5S .【解析】:由已知得:311311(1)710a q a q a q qq ⎧=⎪-⎪=⎨-⎪⎪>⎩,解得14a =,12q =, ∴551514(1)(1)31211412a q S q --===--.故选:B .【总结与归纳】本题考查等比数列的前5项和的求法,是基础题,解题时要认真审题,注意等比数列的性质的合理运用.8.用数字0,1,2,3,4,5,6组成没有重复数字的四位数,其中个位、十位和百位上的数字之和为偶数的四位数共有( )个. A .324B .216C .180D .384【思路分析】由题意知本题需要分类来解,当个位、十位和百位上的数字为3个偶数,当个位、十位和百位上的数字为1个偶数2个奇数,根据分类计数原理得到结果. 【解析】:由题意知本题需要分类来解:当个位、十位和百位上的数字为3个偶数的有:231313343390C A C A C +=种; 当个位、十位和百位上的数字为1个偶数2个奇数的有:23212323343333234C A C C C A C +=种,根据分类计数原理得到共有90234324+=个.故选:A .【总结与归纳】本小题考查排列实际问题基础题.数字问题是计数中的一大类问题,条件变换多样,把计数问题包含在数字问题中,解题的关键是看清题目的实质,很多题目要分类讨论,要做到不重不漏.9.已知函数()f x 对x R ∀∈都有()(4)f x f x =-,且其导函数()f x '满足当2x ≠时,(2)()0x f x -'>,则当24a <<时,有( )A .(2)a f f <(2)2(log )f a <B .f (2)2(2)(log )a f f a <<C .2(log )(2)a f a f f <<(2)D .f (2)2(log )(2)a f a f <<【思路分析】由()(4)f x f x =-,可知函数()f x 关于直线2x =对称,由(2)()0x f x -'>,可知()f x 在(,2)-∞与(2,)+∞上的单调性,从而可得答案. 【解析】:函数()f x 对定义域R 内的任意x 都有()(4)f x f x =-, ()f x ∴关于直线2x =对称;又当2x ≠时其导函数()f x '满足()2()()(2)0xf x f x f x x '>'⇔'->,∴当2x >时,()0f x '>,()f x 在(2,)+∞上的单调递增;同理可得,当2x <时,()f x 在(,2)-∞单调递减; ()f x 的最小值为f (2) 24a <<,21log 2a ∴<<,224log 3a ∴<-<,又4216a <<,22(log )(4log )f a f a =-,()f x 在(2,)+∞上的单调递增;2(log )(2)a f a f ∴<,f ∴(2)2(log )(2)a f a f <<,故选:D .【总结与归纳】本题综合考查了导数的运用,函数的对称性,单调性的运用,综合运用对数解决问题的能力,属于中档题.10.对圆22(1)(1)1x y -+-=上任意一点(,)P x y ,|349||34|x y x y a --+-+都与x ,y 无关,则a 的取值区间为( ) A .[6,)+∞B .[4-,6]C .(4,6)-D .(-∞,4]-【思路分析】由题意可得|34||349|x y a x y -++--可以看作点P 到直线:340m x y a -+=与直线:3490l x y --=距离之和的5倍,进一步分析说明圆位于两直线内部,再由点到直线的距离公式求解直线340x y a -+=与圆相切时的a 值,则答案可求.【解析】:因为|349||34||349||34|5()55x y x y a x y x y a ---+--+-+=+,所以|34||349|x y a x y -++--可以看作点P 到直线:340m x y a -+=与直线:3490l x y --=距离之和的5倍,|34||349|x y a x y -++--的取值与x ,y 无关,∴这个距离之和与点P 在圆上的位置无关,如图所示:可知直线m 平移时,P 点与直线m ,l 的距离之和均为m ,l 的距离, 即此时圆在两直线内部,当直线m 与圆相切时,|34|15a -+=,解得6a =或4a =-(舍去), 故6a , 故选:A .【总结与归纳】本题考查了直线和圆的位置关系,以及点到直线的距离公式,考查数学转化思想方法,属于难题.11.若a ,b ,c 满足,||||2||2a b c ===,则()()a b c b --的最大值为( ) A .10B .12C .53D .62【思路分析】利用向量的数量积公式化简表达式,转化求解最大值即可. 【解析】:a ,b ,c 满足,||||2||2a b c ===,则2()()2cos ,4cos ,2cos ,412a b c b a c a b b c b a c a b b c --=--+=<>-<>-<>+, 当且仅当,a c 同向,,a b ,反向,,b c 反向时,取得最大值. 故选:B .【总结与归纳】本题考查了向量的数量积的运算,数量积的模的最值的求法,属于基础题. 12.点M 是棱长为3的正方体1111ABCD A B C D -中棱AB 的中点,12CN NC =,动点P 在正方形11AA DD (包括边界)内运动,且1//PB 面DMN ,则PC 的长度范围为( ) A .[13,19] B .335[19] C .335[19] D .339[19]【思路分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,面DMN 截正方体1111ABCD A B C D -的截面为梯形DMEN ,其中//ME DN ,1BE =,取11C D 中点F ,在1DD 上取点H ,使2DH =,在1AA 取点G ,使1AG =,则平面//DMEN 平面1B FHG ,推导出P 点的轨迹是线段GH ,利用向量法能求出PC 的长度范围.【解析】:以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系, 面DMN 截正方体1111ABCD A B C D -的截面为梯形DMEN ,其中//ME DN ,1BE =, 取11C D 中点F ,在1DD 上取点H ,使2DH =,在1AA 取点G ,使1AG =, 则平面//DMEN 平面1B FHG ,动点P 在正方形11AA DD (包括边界)内运动,且1//PB 面DMN ,P ∴点的轨迹是线段GH ,(3G ,0,1),(0H ,0,2),(0C ,3,0), (3GH =-,0,1),1(0GB =,3,2),∴点C 到线段GH 的距离228335||1[cos ,]191()51910d GC GC GH =-<>=-=, PC ∴的长度的最小值为3353, 19GC =,13HC =,PC ∴长度的最大值为19.PC ∴的长度范围为335[,19]5.故选:B .【总结与归纳】本题考查线段长的范围的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.二、填空题(本大题共4小题,每小题5分,共20分.把答案填在答题卡相应位置上)13.命题“x N ∀∈,21x >”的否定为 0x N ∃∈,21x . 【思路分析】直接利用全称命题的否定是特称命题,写出结果即可.【解析】:因为全称命题的否定是特称命题,所以,命题“x N ∀∈,21x >”的否定为0x N ∃∈,201x故答案为:0x N ∃∈,21x 【总结与归纳】本题考查命题的否定,全称命题与特称命题的否定关系,是基础题. 14.在样本的频率分布直方图中,共有9个小长方形,若第一个长方形的面积为0.02,前五个与后五个长方形的面积分别成等差数列且公差是互为相反数,若样本容量为1600,则中间一组(即第五组)的频数为 360 .【思路分析】设出公差,利用9个小长方形面积和为1,求出公差,然后求解中间一组的频数.【解析】:设公差为d ,那么9个小长方形的面积分别为0.02,0.02d +,0.022d +,0.023d +,0.024d +,0.023d +,0.022d +,0.02d +,0.02,而9个小长方形的面积和为 1,可得0.18161d += 解得0.8216d =, ∴中间一组的频数为:1600(0.024)360d ⨯+=. 故答案为:360.【总结与归纳】本题考查频率分布直方图的应用,考查计算能力.15.设O 、F 分别是抛物线22y x =的顶点和焦点,M 是抛物线上的动点,则||||MO MF 的最大值为23. . 【思路分析】设(,)M m n 到抛物线22y x =的准线12x =-的距离等于d ,由抛物线的定义可得2221||4111||24m MO m n MF m m m -+==++++14m t -=,利用基本不等式可求得最大值. 【解析】:焦点1(2F ,0),设(,)M m n ,则22n m =,0m >,设M 到准线12x =-的距离等于d ,则由抛物线的定义得2221||4111||24m MO m nMF m m m -+==++++令14m t -=,依题意知,0m >, 若0t >,则2211141399334216162m t m m t t t t -==++++++,13max t ∴=,此时||123()1||3max MO MF =+= 若104t -<<,93162y t t =++单调递减,故1y <-,1(1,0)y ∈-;综上所述,||()||max MO MF =【总结与归纳】本题考查抛物线的定义、简单性质,基本不等式的应用,体现了换元的思想,属于难题.16.若实数a ,(0,1)b ∈且14ab =,则1211a b +--的最小值为4+ . 【思路分析】由题意可得14b a=,代入121218*********a a b a a a a+=+=+------,124212()[(44)(41)]214144413a a a a a a =++=+-+-⨯+----,然后利用基本不等式即可求解【解析】:由题意可得14b a =,则121218*********a a b a a a a+=+=+------,124212()[(44)(41)]21414441a a a a a a =++=+-+-⨯+----, 14(41)2(44)1[6]22(64344413a a a a π--=+++++=--4+【总结与归纳】本题主要考查了利用基本不等式求解最值,解答的关键是应用 条件的配凑.三、解答题(本大题共5小题,共70分.解答应写出文字说明、证明过程或演算步骤) 17.(12分)设ABC ∆的内角A 、B 、C 的对边分别为a 、b 、c ,已知3c =,且1sin()cos 64C C π-=.(1)求角C 的大小;(2)若向量(1,sin )m A =与(2,sin )n B =共线,求a 、b 的值.【思路分析】(1)利用三角恒等变换化简1sin()cos 64C C π-=,即可求出C 的值;(2)根据向量m 、n 共线,得出sin 2sin B A =,即2b a =①; 由余弦定理得出229a b ab +-=②,①②联立解得a 、b 的值.【解析】:(1)sin()cos (sin cos cos sin )cos 666C C CC C πππ-=-21cos cos 2C C C =-1cos 224C C +=-111sin(2)2644C π=--=, sin(2)16C π∴-=;又0C π<<,112666C πππ∴-<-<,262C ππ∴-=,解得3C π=;(2)向量(1,sin )m A =与(2,sin )n B =共线,2sin sin 0A B ∴-=,sin 2sin B A ∴=,即2b a =①;又3c =,3C π=,222222cos 9c a b ab C a b ab ∴=+-=+-=②;由①②联立解得a b =【总结与归纳】本题考查了三角恒等变换以及向量共线定理和正弦、余弦定理的应用问题,是综合性题目.18.(12分)学校为了了解高三学生每天自主学习中国古典文学的时间,随机抽取了高三男生和女生各50名进行问卷调查,其中每天自主学习中国古典文学的时间超过3小时(Ⅱ)现从调查的女生中按分层抽样的方法抽出5人进行调查,求所抽取的5人中“古文迷”和“非古文迷”的人数;(Ⅲ)现从(Ⅱ)中所抽取的5人中再随机抽取3人进行调查,记这3人中“古文迷”的人数为ξ,求随机变量ξ的分布列与数学期望.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++,其中n a b c d =+++.0)k【思路分析】(Ⅰ)求出2K ,与临界值比较,即可得出结论;(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,即可得出结论;(Ⅲ)ξ的所有取值为1,2,3.求出相应的概率,即可求随机变量ξ的分布列与数学期望.【解析】:(Ⅰ)由列联表得22100(26203034)0.64940.70856445050K ⨯-⨯=≈<⨯⨯⨯,所以没有60%的把握认为“古文迷”与性别有关.⋯(3分)(Ⅱ)调查的50名女生中“古文迷”有30人,“非古文迷”有20人,按分层抽样的方法抽出5人,则“古文迷”的人数为305350⨯=人,“非古文迷”有205250⨯=人. 即抽取的5人中“古文迷”和“非古文迷”的人数分别为3人和2人⋯(6分) (Ⅲ)因为ξ为所抽取的3人中“古文迷”的人数,所以ξ的所有取值为1,2,3.1232353(1)10C C P C ξ===,2132353(2)5CC P C ξ===,33351(3)10C P C ξ===.⋯(9分) 于是123105105E ξ=⨯+⨯+⨯=.⋯(12分) 【总结与归纳】本题考查独立性检验知识的运用,考查随机变量ξ的分布列与数学期望,考查学生的计算能力,属于中档题.19.(12分)如图,在三棱柱111ABC A B C -中,每个侧面均为正方形,D 为底边AB 的中点,E 为侧棱1CC 的中点.(Ⅰ)求证://CD 平面1A EB ; (Ⅱ)求证:1AB ⊥平面1A EB ;(Ⅲ)求直线1B E 与平面11AA C C 所成角的正弦值.【思路分析】(Ⅰ)设1AB 和1A B 的交点为O ,连接EO ,连接OD ,根据三角形中位线定理可以证明四边形ECOD 为平行四边形,再利用直线与平面平行的判定定理进行证明,即可解决问题;(Ⅱ)因为三棱柱各侧面都是正方形,所以1BB AB ⊥,1BB BC ⊥.所以1BB ⊥平面ABC .因为CD ⊂平面ABC ,所以1BB CD ⊥,可证CD ⊥平面11A ABB ,再利用直线与平面垂直的判定定理进行证明;(Ⅲ)取11A C 中点F ,连接1B F ,EF ,易知侧面11ACC A ⊥底面111A B C ,1FEB ∠是1B E 与平面11AA C C 所成角,然后构造直角三角形,在直角三角形中求其正弦值,从而求解. 【解答】证明:(Ⅰ)设1AB 和1A B 的交点为O ,连接EO ,连接OD . 因为O 为1AB 的中点,D 为AB 的中点,所以1//OD BB 且112OD BB =.又E 是1CC 中点,所以1//EC BB 且112EC BB =,所以//EC OD 且EC OD =.所以,四边形ECOD 为平行四边形.所以//EO CD . 又CD ⊂/平面1A BE ,EO ⊂平面1A BE ,则//CD 平面1A BE .(Ⅱ)因为三棱柱各侧面都是正方形,所以1BB AB ⊥,1BB BC ⊥.所以1BB ⊥平面ABC . 因为CD ⊂平面ABC ,所以1BB CD ⊥. 由已知得AB BC AC ==,所以CD AB ⊥, 所以CD ⊥平面11A ABB .由(Ⅰ)可知//EO CD ,所以EO ⊥平面11A ABB . 所以1EO AB ⊥.因为侧面是正方形,所以11AB A B ⊥. 又1EOA B O =,EO ⊂平面1A EB ,1A B ⊂平面1A EB ,所以1AB ⊥平面1A BE .(10分)(Ⅲ)解:取11A C 中点F ,连接1B F ,EF .在三棱柱111ABC A B C -中,因为1BB ⊥平面ABC ,所以侧面11ACC A ⊥底面111A B C .因为底面111A B C 是正三角形,且F 是11A C 中点,所以111B F AC ⊥,所以1B F ⊥侧面11ACC A . 所以EF 是1B E 在平面11ACC A 上的射影.所以1FEB ∠是1B E 与平面11AA C C 所成角11115.sin 5B F BE F B E ∠==.(14分) 解法二:如图所示,建立空间直角坐标系.设边长为2,可求得(0A ,0,0),(0C ,2,0),1(0C ,2,2),1(0A ,0,2),(3,1,0)B ,1(3,1,2)B ,(0E ,2,1),31(,,0)22D ,31(,,1)22O . (Ⅰ)易得,33(,,0)22CD =-,33(,,0)22EO =-.所以CD EO =,所以//EO CD .又CD ⊂/平面1A BE ,EO ⊂平面1A BE ,则//CD 平面1A BE .(Ⅱ)易得,1(3,1,2)AB =,1(3,1,2)A B =-,1(0,2,1)A E =- 所以11110,0AB A B AB A E ==. 所以11AB A B ⊥,11AB A E ⊥. 又因为111A BA E A =,1AB ,1A E ⊂平面1A BE ,所以1AB ⊥平面1A BE .(10分)(Ⅲ)设侧面11AA C C 的法向量为(n x =,y ,)z ,因为(0A ,0,0),(0C ,2,0),1(0C ,2,2),1(0A ,0,2), 所以1(0,2,0),(0,2,2)AC AC ==,1(3,1,1)B E =--. 由100n AC n AC ⎧=⎪⎨=⎪⎩得00y y z =⎧⎨+=⎩解得00.y z =⎧⎨=⎩不妨令(1n =,0,0),设直线1B E 与平面11AA C C 所成角为α. 所以111||315sin |cos ,|5||||5n B E n B E n B E α=<>===. 所以直线1B E 与平面11AA C C 所成角的正弦值为155.(14分)【总结与归纳】此题考查直线与平面平行的判断及直线与平面垂直的判断,第一问此类问题一般先证明两个面平行,再证直线和面平行,这种做题思想要记住,此类立体几何题是每年高考必考的一道大题,难度比较大,计算要仔细.20.(12分)已知椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(2F -0),2(2F 0),以椭圆短轴为直径的圆经过点(1,0)M .(1)求椭圆C 的方程;(2)过点M 的直线l 与椭圆C 相交于A 、B 两点,设点(3,2)N ,记直线AN ,BN 的斜率分别为1k ,2k ,问:12k k +是否为定值?并证明你的结论.【思路分析】(1)由椭圆的两个焦点分别为1(2F -0),2(2F ,0),以椭圆短轴为直径的圆经过点(1,0)M ,列出方程组,能求出椭圆C 的方程.(2)设过M 的直线:(1)y k x kx k =-=-或者1x =,1x =时,代入椭圆,能求出122k k +=;把y kx k =-代入椭圆,得2222(31)6(33)0k x k x k +-+-=,由此利用韦达定理能求出122k k +=.【解析】:(1)椭圆2222:1(0)x y C a b a b+=>>的两个焦点分别为1(2F 0),2(2F 0),以椭圆短轴为直径的圆经过点(1,0)M ,∴22221c b a b c ⎧=⎪=⎨⎪=+⎩,解得3a =1b =,∴椭圆C 的方程为2213x y +=.(2)12k k +是定值.证明如下:设过M 的直线:(1)y k x kx k =-=-或者1x = ①1x =时,代入椭圆,6y =∴令6)A ,6(1,)B , 162331k -=-,262331k =-,122k k ∴+=.②y kx k =-代入椭圆,2222(31)6(33)0k x k x k +-+-=设1(A x ,1)y ,2(B x ,2)y .则2122631k x x k +=+,21223331k x x k -=+,312336223131k k y y k k k -+=-=++,222212121222()31k y y k x x k x x k k =-++=-+, 11123y k x -=-,22223y k x -=-,1221211212126326322(3)(3)y x x y y x x y k k x x --++--+∴+==--. 【总结与归纳】本题考查椭圆方程的求法,考查两直线斜率之和是否为定值的判断与证明,是中档题,解题时要认真审题,注意椭圆性质的合理运用. 21.(12分)已知函数()()f x tx lnx t R =+∈. (1)当1t =-时,证明:()1f x -;(2)若对于定义域内任意x ,2()1x f x x e -恒成立,求t 的范围?【思路分析】(1)当1t =-时,证明:()1f x -,即是证明1lnx x --,设()1g x lnx x =-+,只要证明()g x 的最大值0即可得证.(2)原式子恒成立即21x lnx t e x +-在(0,)+∞恒成立;只要求出函数21x lnx y e x+=-,(0,)x ∈+∞的最小值即可.【解答】(1)证明:即是证明1lnx x --,设()1g x lnx x =-+,1()xg x x-'=;当01x <<,()0g x '>,()g x 单调递增;当1x >,()0g x '<,()g x 单调递减;所以()g x 在1x =处取到最大值,即()g x g (1)0=,所以1lnx x --得证.(2)解法一:原式子恒成立即21x lnx t e x+-在(0,)+∞恒成立;由(1)可以得到1x lnx +,所以22()121x x x e ln x e lnx x +=++;所以22112x lnx x lnx e x x +++=+所以212x lnx e x+-,当且仅当21x x e =时取=,于是t 的取值范围是(-∞,2].解法二:设2()(0)x h x xe tx lnx x =-->,原题即()1h x 恒成立;因为21()(21)x h x x e t x '=+--,而221()4(1)0x h x x e x''=++>.所以()h x '单调递增,又因为0x →时,()h x '→-∞,当x →+∞时,()h x '→+∞,所以()h x '在(0,)+∞存在唯一零点,设为0x .所以020001()(21)0x h x x e t x '=+--=.所以02001(21)x t x e x =+-,且()h x 在0(0,)x 上单调递减,在0(x ,)+∞上单调递增, 于是()h x 的最小值为00222000000()21x x h x x e tx lnx x e lnx =--=--+, 原题即0220211x x e lnx --+. 即0220020x x e lnx +,由此式子必001x <<,022002x x e lnx -,把后面的不等式两边同时取对数整理后得00002(2)()()x ln x ln lnx lnx +-+-.易证明函数y x lnx =+是增函数,所以得002x lnx -,所以0201x e x . 故由02001(21)x t x e x =+-,得到00011(21)2t x x x +-=.于是t 的取值范围是(-∞,2].解法三:原式子恒成立即21x lnx t e x+-在(0,)+∞恒成立; 设21()xlnx x e xϕ+=-,2222()x x e lnx x x ϕ+'=,设22()2x Q x x e lnx =+,221()4()0x Q x x x e x '=++>,所以()Q x 单调递增,且1()04Q <,Q (1)0>;所以()Q x 有唯一零点0x ,而且0220020x x e lnx +=,所以022002x x e lnx =-. 两边同时取对数得00002(2)()()x ln x ln lnx lnx +=-+-.易证明函数y x lnx =+是增函数,所以得002x lnx =-,所以0201x e x =. 所以由()x ϕ在0(0,)x 上单调递减,在0(x ,)+∞上单调递增,所以020000001211()()2x lnx x x x e x x x ϕϕ+-+=-=-=,于是t 的取值范围是(-∞,2].【总结与归纳】本题考查了函数的单调性和最值问题,利用导数求函数的最值,属于难题. 请考生在第22、23两题中任选一题作答.注意:只能做选定的题目.如果多做,则按所做的第一个题目计分.(本小题满分10分).[选修4-4:坐标系与参数方程] 22.(10分)在极坐标系下,知圆:cos sin O ρθθ=+和直线:sin()0,02)4l πρθρθπ-=.(1)求圆O 与直线l 的直角坐标方程;(2)当(0,)θπ∈时,求圆O 和直线l 的公共点的极坐标.【思路分析】(1)圆O 的极坐标方程化为2cos sin ρρθρθ=+,由此能求出圆O 的直角坐标方程;直线l 的极坐标方程化为sin cos 1ρθρθ-=,由此能求出直线l 的直角坐标方程. (2)圆O 与直线l 的直角坐标方程联立,求出圆O 与直线l 的在直角坐标系下的公共点,由此能求出圆O 和直线l 的公共点的极坐标.【解析】:(1)圆:cos sin O ρθθ=+,即2cos sin ρρθρθ=+, 故圆O 的直角坐标方程为:220x y x y +--=,直线:sin()42l πρθ-=sin cos 1ρθρθ-=,则直线的直角坐标方程为:10x y -+=.(2)由(1)知圆O 与直线l 的直角坐标方程, 将两方程联立得22010x y x y x y ⎧+--=⎨-+=⎩,解得01x y =⎧⎨=⎩.即圆O 与直线l 的在直角坐标系下的公共点为(0,1),转化为极坐标为(1,)2π.【总结与归纳】本题考查直线与圆的直角坐标方程的求法,考查圆与直线的公共点的极坐标的求法,涉及到参数方程、普通方程、极坐标方程的互化等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题. [选修4-5:不等式选讲](本小题满分0分)23.已知函数()|23||21|f x x x =++-. (Ⅰ)求不等式()5f x 的解集;(Ⅱ)若关于x 的不等式()|1|f x m <-的解集非空,求实数m 的取值范围. 【思路分析】(Ⅰ)零点分段求解不等式即可;(Ⅱ)由题意得到关于实数m 的不等式,求解不等式即可求得最终结果. 【解析】:(Ⅰ)原不等式为:|23||21|5x x ++-,能正确分成以下三类:当32x -时,原不等式可转化为425x --,即7342x --;当3122x -<<时,原不等式可转化为45恒成立,所以3122x -<<;当12x 时,原不等式可转化为425x +,即1324x. 所以原不等式的解集为73{|}44x x -.(Ⅱ)由已知函数342,231()4,22142,2x x f x x x x ⎧---⎪⎪⎪=-<<⎨⎪⎪+⎪⎩,可得函数()y f x =的最小值为4,由()|1|f x m <-的解集非空得:|1|4m ->.解得5m >或3m <-.【总结与归纳】本题考查了绝对值不等式的解法,分类讨论的数学思想等,重点考查学生对基础概念的理解和计算能力,属于中等题.。