四川省成都市第七中学2017-2018学年高一下学期期末考试数学试题
高中数学压轴题题型名校模考题汇总

专题10压轴题题型汇总压轴题型一、保值函数型“保值函数”,又称为“k 倍值函数”,“和谐函数”,“美好区间”等等。
1、现阶段主要是一元二次函数为主的。
核心思路是转化为“根的分布”。
2、函数单调性是解决问题的入口之一。
3、方程和函数思想。
特别是通过两个端点值构造对应的方程,再提炼出对应的方程的根的关系。
如第1题1.(江苏省连云港市市区三星普通高中2020-2021学年高一上学期期中联考)对于区间[,]a b 和函数()y f x =,若同时满足:①()f x 在[,]a b 上是单调函数;②函数(),[,]y f x x a b =∈的值域还是[,]a b ,则称区间[,]a b 为函数()f x 的“不变”区间.(1)求函数2(0)y x x =≥的所有“不变”区间;(2)函数2(0)y x m x =+≥是否存在“不变”区间?若存在,求出实数m 的取值范围;若不存在,请说明理由.2.(北京市昌平区2020-2021学年高一上学期期中质量抽测)已知函数2()f x x k =-.若存在实数,m n ,使得函数()f x 在区间上的值域为,则实数k 的取值范围为()A .(1,0]-B .(1,)-+∞C .2,0]D .(2,)-+∞3.(广东省广州市第一中学2020-2021学年高一上学期11月考试)已知函数221()x f x x-=.(1)判断函数()f x 的奇偶性并证明;(2)若不等式23()1x f x kx x +-≥在1,14x ⎡⎤∈⎢⎥⎣⎦上恒成立,求实数k 的取值范围;(3)当11,(0,0)x m n m n ⎡⎤∈>>⎢⎥⎣⎦时,函数()()1(0)g x tf x t =+>的值域为[23,23]m n --,求实数t 的取值范围.4.(江苏省盐城市实验高级中学2020-2021学年高一上学期期中)一般地,若()f x 的定义域为[],a b ,值域为[],ka kb ,则称[],a b 为()f x 的“k 倍跟随区间”;特别地,若()f x 的定义域为[],a b ,值域也为[],a b ,则称[],a b 为()f x 的“跟随区间”,(1)若[]1,b 为2()22f x x x =-+的跟随区间,则b =______;(2)若函数()f x m =m的取值范围是______.压轴题型二、方程根的个数1.一元二次型“根的分布”是期中考试的一个难点和热点。
四川省成都市第七中学2023-2024学年高一下学期期末考试数学试卷(解析版)

成都七中高2026届高一下期期末考试数学试题一.单项选择题:本大题共8小题,每小题5分,共计40分.每小题给出的四个选项中,只有一项是符合题目要求的.1.若2i z =-,则z z -=()A.B.2iC.2D.4【答案】C 【解析】【分析】根据共轭复数写出z ,即可求出模长.【详解】2i z =- ,2i z ∴=+,即(2i)(2i)2i 2z z -=+--==.故选:C.2.若2,a a = 与b 夹角为60,且()b a b ⊥- ,则b = ().A.32B.1C.D.2【答案】B 【解析】【分析】根据向量垂直,结合数量积的定义即可列方程求解.【详解】由()b a b ⊥- ,得20b a b ⋅-= ,故22cos600b b ⋅-=,故1b = 或0b = ,若0b = ,则,a b共线,不满足题意,故1b = ,故选:B3.已知tan 2α=,α为锐角,则πsin()4α+=(). A.1010B.1010 C.31010-D.31010【答案】D 【解析】【分析】利用两角和的正弦公式把πsin()4α+展开,然后利用同角三角函数基本关系即可求解.【详解】πππ2sin(sin coscos sin (sin cos )4442ααααα+=+=+ ,,,α为锐角,sin 0,cos 0αα∴>>,sin tan 2cos ααα== ,sin 2cos αα∴=,又22sin cos 1αα+= sin ,cos 55αα∴==,即35sin cos 5αα+=,得0π2sin()31n cos 4201ααα+=+=.故选:D.4.将函数()sin f x x =的图象先向左平移π3个单位长度,再将得到的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得到函数()g x 的图象,则()g x 的一条对称轴可能为().A.5π12B.π12C.5π3D.π3【答案】D 【解析】【分析】根据平移伸缩得到三角函数解析式再求对称轴即可.【详解】将函数()sin f x x =的图象先向左平移π3个单位长度,再将得到的图象上所有点的横坐标扩大到原来的2倍,纵坐标不变,得到函数()1πsin 23g x x ⎛⎫=+ ⎪⎝⎭,则对称轴为πππ,Z 232x k k +=+∈,所以对称轴为π2π,Z 3x k k =+∈,当0k =时对称轴为π3x =.故选:D.5.已知,,αβγ是三个不同的平面,,m n 是两条不同的直线,且m αβ⋂=,给出下列四个命题:①若//m n ,则//n α或//n β②若m n ⊥,则n α⊥或n β⊥③若,αβγβ⊥⊥,则//αγ④若,//n m n γβ⋂=,则//γα则上述命题中正确的个数为().A.0B.1C.2D.3【答案】B 【解析】【分析】利用直线、平面间的位置关系判断即可.【详解】对于①,若,//m m n αβ⋂=,则如图所示,第一种情况,n 在,αβ外,可得//n α或//n β;第二种情况,n 在β内,可得//n α;第三种情况,n 在α内,可得//n β,综上所述,//n α或//n β,故①正确;对于②,若,m m n αβ⋂=⊥,则n 与α相交或在α内,n 与β相交或在β内,故②错误;对于③,若m αβαβγβ⊥⋂=⊥,,,则,αγ相交或//αγ,故③错误;对于④,若,,//m n m n αβγβ⋂=⋂=,则//γα或γ与α相交,故④错误.故选:B.6.同时抛掷两枚质地均匀的六面骰子,则所得点数之差绝对值小于2的概率为().A.23B.59C.49D.13【答案】C 【解析】【分析】|根据古典概型计算即可.【详解】同时抛掷两枚质地均匀的六面骰子,则所得点数分别为,x y ,共有36种情况,点数之差绝对值小于2的情况有()()()()()()()()()()()()()()()()1,1,2,2,3,3,4,4,5,5,6,6,1,2,2,3,3,4,4,5,5,6,2,1,3,2,4,3,5,4,6,5共16种点数之差绝对值小于2的概率为()1642369P x y -<==.故选:C.7.羌族是中国西部地区的一个古老民族,被称为“云朵上的民族”,其建筑颇具特色.碉楼是羌族人用来御敌、储存粮食柴草的建筑,一般多建于村寨住房旁.现有一碉楼,其主体部分可以抽象成正四棱台1111ABCD A B C D -,如图,已知该棱台的体积为311224m 8m 4m AB A B ==,,,则二面角1A AB C--的正切值为().A.3B.2C.D.32【答案】A 【解析】【分析】先求出正四棱台的高,再取正四棱台上下底面的中心为1,O O ,取11,AB A B 的中点,E M ,作1//MN OO 交OE 于点N ,则MEN ∠为二面角1A AB C --的平面角,即可求解.【详解】解:设正四棱台的高为h ,则(221843V h =++,得()12246416323h =++,得6h =,取正四棱台上下底面的中心为1,O O ,如图所示:取11,AB A B 的中点,E M ,作1//MN OO 交OE 于点N ,则MEN ∠为二面角1A AB C --的平面角,则184=6,22MN OO h EN -====,得6tan 32MN MEN EN∠===,故选:A8.在ABC 中,角A B C ,,所对的边分别为a b c ,,,已知160a A == ,,设O G ,分别是ABC 的外心和重心,则AO AG ⋅的最大值是()A.12B.13 C.14D.16【答案】B 【解析】【分析】设D 为BC 边中点,连接OD ,作OH AC ⊥于H ,即H 为AC 中点,求得212AO AC AC ⋅= ,212AO AB AB ⋅= ,化解得221166AO AG AB AC +=⋅ ,再通过余弦定理及均值不等式即可求解.【详解】设D 为BC 边中点,连接OD ,作OH AC ⊥于H ,即H 为AC 中点,因为21|||cos |||||2AO AC AO AC OAC AH AC AC ⋅=⋅∠=⋅= ,同理21|||cos 2|AO AB AO AB OAB AB ⋅=⋅∠= ,则()221332AO AG AO AD AO AB AC ⎛⎫⋅=⋅=⋅+ ⎪⎝⎭()()222211113666AO AB AC AB b c =⋅+=+=+,在ABC 中,1,60a A ==︒,由余弦定理得2222cos60a b c bc ︒=+-,即221b c bc +=+,由均值不等式,2212bc b c bc +=+≥,所以1bc ≤(当且仅当1b c ==等号成立),所以()()()2211111116663AO AG c b bc ⋅=+=+≤+= .故选:B.二.多项选择题:本大题共3小题,每小题6分,共计18分.每小题给出的四个选项中,有多项符合题目要求.全部选对得6分,选对但不全的得部分分,有选错的得0分.9.已知()()1,,2,3a b ==+λλr r,则().A.“1λ=”是“a ∥b”的必要条件B.“3λ=-”是“a ∥b”的充分条件C.“12λ=-”是“a b ⊥ ”的必要条件D.“12λ=”是“a b ⊥ ”的充分条件【答案】BC 【解析】【分析】对于AB :根据向量平行的坐标表示结合充分必要条件分析判断;对于CD :根据向量垂直的坐标表示结合充分必要条件分析判断.【详解】因为()()1,,2,3a b ==+λλr r,对于选项AB :若a ∥b,则()23+=λλ,解得1λ=或3λ=-,可知a ∥b,等价于1λ=或3λ=-,若a ∥b ,不能推出1λ=,所以“1λ=”不是“a ∥b”的必要条件,故A 错误;若3λ=-,可以推出a ∥b ,所以“3λ=-”是“a ∥b”的充分条件,故B 正确;对于选项CD :若a b ⊥,则230++=λλ,解得12λ=-,可知a b ⊥ ,等价于12λ=-,若a b ⊥ ,可以推出12λ=-,所以“12λ=-”是“a b ⊥ ”的必要条件,故C 正确;若12λ=,不能推出a b ⊥ ,“12λ=”不是“a b ⊥ ”的充分条件,故D 错误;故选:BC.10.已知一组样本数据()12201220,,,,x x x x x x ≤≤≤ 下列说法正确的是().A.该样本数据的第60百分位数为12x B.若样本数据的频率分布直方图为单峰不对称,且在右边“拖尾”,则其平均数大于中位数C.若样本数据的方差2022112520i i s x ==-∑,则这组样本数据的总和为100D.若由()21,2,,20i i y x i == 生成一组新的数据1220,,,y y y ,则这组新数据的平均值是原数据平均值的2倍【答案】BCD 【解析】【分析】根据题意,结合百分位数、数据方差,以及平均数与方差的性质,逐项判定,即可求解.【详解】对于A ,由200.612⨯=,可得第60百分位数为12132x x +,错误;对于B ,数据的频率分布直方图为单峰不对称,向右边“拖尾”,大致如图所示,由于“右拖”时最高峰偏左,中位数靠近高峰处,平均数靠近中点处,此时平均数大于中位数,正确;对于C ,由()11222202011252020i i i i s x x x ===∑-=∑-,则20202221150020i i i i x x x ==-=-∑∑,所以5x =,故这组样本数据的总和等于20100x =,正确;对于D ,若由()21,2,,20i i y x i == 生成一组新的数据1220,,,y y y ,则这组新数据的平均值是原数据平均值的2倍,正确.故选:BCD .11.如图,在长方体ABCD A B C D -''''中,2,4,AB BC AA '===N 为棱C D ''中点,1,2D M P '=为线段A B '上一动点,下列结论正确的是().A.线段DP 长度的最小值为655B.存在点P ,使AP PC +=C.存在点P ,使A C '⊥平面MNP D.以B 为球心,176为半径的球体被平面AB C '所截的截面面积为6π【答案】AC 【解析】【分析】对于A ,在三角形中,由垂线段最短即可计算得到;对于B ,通过平面翻折,化空间到平面,利用两点之间线段最短计算出AP PC +的最小值,再与C ,依题意作出经过三点,,M N P 的平面,再证明A C '与平面垂直即得;对于D ,利用球的截面圆的性质,先通过等体积求得球心到平面的距离,再由垂径定理求出截面圆半径即得.【详解】对于A ,如图1,因A B A D ''===,BD =,故当DP A B ⊥'时,线段DP 长度最小,此时由等面积,1122DP ⨯⨯,解得655DP ==,故A 正确;对于B ,如图2,将平面A D CB ''旋转至平面11BC D A ',使之与平面A AB '共面,连接1AC 与A B '交于点1P ,此时1111AP PC AC +=为最小值.sinA BA '∠==,190A BC '∠=,故1cos cos(90)sinABC A BA A BA ''∠=∠+=-∠=-由余弦定理,2221122222cos 88(8AC ABC =+-⨯⨯∠=-⨯-=+,故1AC =>因此不存在这样的点P ,使AP PC +=B 错误;对于C ,如图3,取131,,22B E B F A G =='='',连接FG 交A B '于P ,下证AC MN '⊥.连接D C ',由2D N D DD M DC''=='可得ND M D DC '' ,则得D C MN '⊥,因D A ''⊥平面DCC D '',因MN ⊂平面DCC D '',则D A MN ''⊥,因D C D A D ''''⋂=,,D C D A '''⊂平面A D C '',故MN ⊥平面A D C '',又A C '⊂平面A D C '',故A C MN '⊥.同理,A C EN '⊥,因MN EN N ⋂=,,MN EN ⊂平面MEN ,故A C '⊥平面MEN .下证//EF GM .取线段A G '的三等分点,J K ,取A D ''的中点H ,连接,,,EH HJ JF D K ',易证////,EH A B FJ EH A B FJ ''''==,则得EFJH ,得//EF JH ,易得//JH D K ',因//,D M GK D M GK ''=,得D MJK ' ,得//D K GM ',故得//EF GM .同理可得//MN FG ,因此,,,,M N E F G 五点共面.由A C '⊥平面MEN 可得A C '⊥面MNEFG .所以存在这样的点P 使A C '⊥面MNP ,故C正确;对于D ,如图4,以点B 为球心,176为半径的球面被面AB C '所截的截面为圆形,记其半径为r,则r =(*),其中d 为点B 到平面AB C '的距离.由B ABC B AB C V V --''=可得,1133ABC AB C S BB S d ''⨯⨯=⨯⨯ ,则122442132d ⨯⨯⨯==⨯,代入(*),得52r =,所以截面面积225ππ4S r ==,故D 错误.故选:AC.【点睛】关键点点睛:本题主要考查多面体中与动点有关的距离最值,截面性质问题,属于难题.解题关键在于处理距离和的最小值常常需要平面翻折,截面问题,一般应先作出截面,再根据条件分析截面性质,对于球的截面圆,常通过垂径定理求解.三.填空题:本大题共3小题,每小题5分,共计15分.12.习主席曾提出“绿水青山就是金山银山”的科学论断,为响应国家号召,农学专业毕业的小李回乡创业,在自家的田地上种植了,A B 两种有机生态番茄共5000株,为控制成本,其中A 品种番茄占40%.为估计今年这两种番茄的总产量,小李采摘了10株A 品种番茄与10株B 品种番茄,其中A 品种番茄总重17kg ,B 品种番茄总重23kg ,则小李今年共可收获番茄约_______kg .【答案】10300【解析】【分析】求解两种番茄的种植株数,利用比例即可求解.【详解】由题意,知A 品种番茄共40%5000=2000⨯株,B 品种番茄3000株,故共可收获番茄约172320003000103001010⨯+⨯=kg ,故答案为:1030013.已知三棱锥A BCD,ABC - 是边长为2的等边三角形,BCD △是面积为2的等腰直角三角形,且平面ABC ⊥平面BCD ,则三棱锥A BCD -的外接球表面积为_______.【答案】28π3##28π3【解析】【分析】判断出等腰直角三角形BCD △的直角,根据面面垂直的性质说明四边形1O EGO 为矩形,求出相关线段长,即可求得三棱锥外接圆半径,即可求得答案.【详解】由于ABC 是边长为2的等边三角形,故2BC =,BCD △是面积为2的等腰直角三角形,假设BDC ∠为直角,则BD DC ==112BCD S ==△不合题意;故DBC ∠或DCB ∠为直角,不妨设DBC ∠为直角,则2BD BC ==;设ABC 的中心为G ,E 为BC 的中点,则,,A G E 共线,且AE BC ⊥,由于平面ABC⊥平面BCD ,平面ABC ⋂平面BCD BC =,AE ⊂平面ABC ,故⊥AE 平面BCD ,设O 为三棱锥A BCD -的外接球球心,1O 为DC 中点,即为BCD △的外接圆圆心,连接1OO ,则1OO ⊥平面BCD ,则1OO AE ∥,连接1OG,O E ,则OG ⊥平面ABC ,AE ⊂平面ABC ,则OG AE ⊥,又⊥AE 平面BCD ,1O E ⊂平面BCD ,则1AE O E ⊥,则四边形1O EGO 为矩形,则112122323OG O E DB ,AG ====⨯=,故22273OA OG AG =+=,故三棱锥A BCD -的外接球表面积为228π4π3OA ⨯=,故答案为:28π314.在ABC 中,43AB AC AB AC P ⊥==,,,为斜边BC 上一动点,点Q 满足2PQ =,且AQ mAB nAC =+,则2m n +的最大值为______________.【答案】1323+【解析】【分析】取AB 中点D ,连接CD 交AQ 于点E ,由平面向量的线性运算得2AQ m n AE+=,过Q 作QF CD ∥交直线AB 于点,AQ AF F AEAD=,如图,当P 与B 重合,FQ 与P 相切时,AF AD取得最大值,即可求解.【详解】AB 中点D ,由题可知点Q 点在以P 为圆心,以2为半径的圆上,则2AQ mAB n AC mAD n AC =+=+;连接CD 交AQ 于点E ,()1AE AD AC λλ=+-,则()()1AQ AQ AQ AE AD AC AE AEλλ=⋅=⋅+- ,故2AQ m n AE+=.过Q 作QF CD ∥交直线AB 于点,AQ AF F AEAD=.如图,当P 与B 重合,FQ 与P 相切时,AF AD取得最大值.则3tan tan 2∠=∠=BFQ ADC,得sin ∠=BFQ ,得2,223sin 33BQ AB BF BF m n BFQAD +===+==∠.故答案为:1323+四.解答题:本大题共5小题,共计77分.解答应写出文字说明、证明过程或演算步骤.15.如图,棱长为6的正方体1111ABCD A B C D -中,O 是AC 的中点,E 是1AA 的中点,点F 在AB上.(1)当F 是AB 的中点时,证明:平面//EFO 平面11A D C ;(2)当F 是靠近B 的三等分点时,求异面直线FO 与1AC 所成角的余弦值.【答案】(1)证明见解析(2)3015.【解析】【分析】(1)利用OF OE ,分别为11,BC A C A D 的中位线,得到//OF 平面11A D C ,//OE 平面11A D C ,借助面面平行的判定定理证明即可;(2)由1//OE A C 可知EOF ∠或其补角为异面直线FO 与1AC 所成角,借助余弦定理求出即可.【小问1详解】由正方体1111ABCD A B C D -可知,,O E 是1,AC AA 中点,所以1//,OE A C 因为11A D ⊂平面11,A D C OE ⊄平面11A D C ,所以//OE 平面11A D C .因为F 是AB 中点,O 是AC 中点,所以OF 为ABC 的中位线,故11////OF BC A D .又由于1AC ⊂平面11,A D C OF ⊄平面11A D C ,所以//OF 平面11A D C .又,,OE OF O OE OF =⊂ 平面EFO ,故平面//EFO 平面11A D C .【小问2详解】由1//OE A C 知,异面直线FO 与1AC 所成角即为EOF ∠或其补角.由于1AA ⊥平面,,ABCD AB AO ⊂平面ABCD ,则1AA 与,AB AO 都垂直,所以90EAF EAO ∠=∠=︒,由题意得4AF =,在Rt EAF △中,由勾股定理可得5EF =.易得3AO AE ==,在Rt EAO △中,由勾股定理可得EO =在OAF △中,45CAB ∠=︒,由余弦定理得FO ==,在EOF 中,由余弦定理可得2222cos EF EO FO EO FO EOF =+-⋅⋅∠,代入解得cos 015EOF ∠==>.所以异面直线FO 与1AC 所成角的余弦值为3015.16.2024年4月26日,主题为“公园城市、美好人居”的世界园艺博览会在四川成都正式开幕,共建成113个室外展园,涵盖了英式、法式、日式、意式、中东、东南亚等全球主要园林风格,吸引了全球各地游客前来参观游玩.现从展园之一的天府人居馆中随机抽取了50名游客,统计他们的参观时间(从进入至离开该展园的时长,单位:分钟,取整数),将时间分成[)[)[]455555658595 ,,,,,,五组,并绘制成如图所示的频率分布直方图.(1)求图中a 的值;(2)由频率分布直方图,试估计该展园游客参观时间的第75百分位数(保留一位小数);(3)由频率分布直方图,估计样本的平均数¯(每组数据以区间的中点值为代表).【答案】(1)0.015a =;(2)78.3(3)69x =.【解析】【分析】(1)应用频率和为1求参数;(2)应用频率分布直方图求百分位数步骤求解;(3)应用频率分布直方图求平均数步骤求解.【小问1详解】由样本频率分布直方图可知()0.0120.0250.035101a +++⨯=,解得0.015a =;【小问2详解】样本频率直方图前三组频率之和为()0.0100.0250.035100.70.75++⨯=<,前四组频率之和为()0.0100.0250.0350.015100.850.75+++⨯=>,所以样本数据的第七十五百分位数在第四组内,设其为x ,则()750.0150.700.75x -⨯+=,解得78.3=x ,所以样本数据的第七十五百分位数为78.3.由样本估计总体,估计该展园游客参观时间的第七十五百分位数也为78.3;【小问3详解】0.0110500.03510600.02510700.01510800.0151090x =⨯⨯+⨯⨯+⨯⨯+⨯⨯+⨯⨯,计算可得,样本的平均数69x =.17.甲、乙两位同学进行羽毛球比赛,并约定规则如下:在每个回合中,若发球方赢球,则得1分,并且下一回合继续由其发球;若发球方输球,则双方均不得分,且下一回合交换发球权;比赛持续三回合后结束,若最终甲乙得分相同,则为平局.已知在每回合中,甲获胜的概率均为23,各回合比赛结果相互独立,第一回合由甲发球.(1)求甲至少赢1个回合的概率;(2)求第二回合中有选手得分的概率;(3)求甲乙两人在比赛中平局的概率.【答案】(1)2627(2)59(3)427.【解析】【分析】(1)根据对立事件概率求法及乘法公式结合条件即得;(2)结合对立事件和独立事件,应用和事件求概率;(3【小问1详解】设事件=i A “第i 回合甲胜”,事件M =“甲至少赢一回合”,故M =“甲每回合都输”.i A 为i A 对立事件,()23i P A =,故()13i P A =.()()()()()()31231231261111327P M P M P A A A P A P A P A ⎛⎫=-=-=-=-=⎪⎝⎭,故甲至少赢1个回合的概率为2627.【小问2详解】设事件N =“第二回合有人得分”,由题可知1212N A A A A =⋃,且12A A 和12A A 互斥,则()()()()()()()1212121259P N P A A P A A P A P A P A P A =+=⋅+⋅=,故第二回合有人得分的概率为59.【小问3详解】设事件Q =“甲乙两人平局”,由题可知,只有0:0与1:1两种情况,因此123123Q A A A A A A =⋃,故()()()()()()()()()123123123123427P Q P A A A P A A A P A P A P A P A P A P A =+=+=,故甲乙两人平局的概率为427.18.记ABC 的内角A B C ,,的对边分别为a b c ,,,已知4,2,sin sin 2sin a c a A c C b B ==+=,D 是线段AC 上的一点,满足13AD AC =,过D 作一条直线分别交射线BA 、射线BC 于M N 、两点.(1)求b ,并判断ABC 的形状;(2)求BD 的长;(3)求BM BN ⋅的最小值.【答案】(1)b =,钝角三角形(2)2133(3)409【解析】【分析】(1)由正弦定理得b =cos 0A <,得到π2A >,ABC 是钝角三角形;(2),BA BC 可作为一组基底,求出5cos ,cos 8BA BC B 〈〉== ,根据题目条件得到2133BD BA BC =+ ,平方后2BD,从而求出答案;(3)设,BM xBA BN yBC ==,根据向量共线得到()()1,0,1BD t BM tBN t =-+∈ ,由向量基本定理得到()21,313x y t t ==-,表达出()291BM BN BA BC t t⋅=⋅-⋅ ,其中50BA BC ⋅=>,由基本不等式求出最小值.【小问1详解】由正弦定理得,222sin sin 2s n 2i a a c A c C b B b ⇒+=+=,又4,2a c ==,解得b =.又因为22220b c a +-=-<,故222cos 02+-=<b c a A bc,因为0πA <<,故π2A >,所以ABC 是钝角三角形.【小问2详解】由平面向量基本定理,,BA BC可作为一组基底向量,且有2,4BA BC == ,2225cos ,cos 28a cb BA BC B ac+-〈〉===.由于13AD AC = ,所以()13BD BA BC BA -=- ,故2133BD BA BC =+ .BD ==3===;【小问3详解】由题意可设,BM xBA BN yBC == .由于,,M D N 三点共线,设MD tMN =,01t <<,故()BD BM t BN BM -=- ,故()()1,0,1BD t BM tBN t =-+∈.所以()21133BD t x BA ty BC BA BC =-⋅+⋅=+ ,由平面向量基本定理,解得()21,313x y t t ==-,所以()21,313BM BA BN BC t t ==-.因此()()21231391BM BN BA BC BA BC t t t t ⎛⎫⎛⎫⋅=⋅=⋅ ⎪ ⎪ ⎪--⋅⎝⎭⎝⎭,而||||cos 50BA BC BA BC B ⋅=⋅⋅=>,其中()11122t t t t -+-≤=,当且仅当1t t -=,即12t =时,等号成立,因此当12t =时,409BM BN ⋅= 为最小值.【点睛】平面向量解决几何最值问题,通常有两种思路:①形化,即用平面向量的几何意义将问题转化为平面几何中的最值或取值范围问题,然后根据平面图形的特征直接进行求解;②数化,即利用平面向量的坐标运算,把问题转化为代数中的函数最值与值域,不等式的解集,方程有解等问题,然后利用函数,不等式,方程的有关知识进行求解.19.如图,斜三棱柱111A B C ABC -中,90ABC ∠= ,四边形11ABB A 是菱形,D 为AB 中点,1A D ⊥平面ABC ,点1A 到平面11BCC B 1AA 与1CC 的距离为2.(1)求证:CB ⊥平面11ABB A ;(2)求1AC 与平面11BCC B 所成角的正弦值;(3)若E F ,分别为1AA AC ,的中点,求此斜三棱柱被平面1B EF 所截的截面面积.【答案】(1)证明见解析(2)155(3)53412.【解析】【分析】(1)根据线面垂直判定定理证明即可;(2)先根据线面垂直判定定理证明线面垂直,几何法得出线面角,再计算得出正弦值;(3)先找到截面,再计算截面即可.【小问1详解】因为1A D ⊥平面,ABC BC ⊂平面ABC ,故1A D BC ⊥.又由90ABC ∠=︒,即1,,AB BC AB A D D AB ⊥⋂=⊂平面11ABB A ,1A D ⊂平面11ABB A ,因此BC ⊥平面11ABB A .【小问2详解】由于菱形11ABB A ,且1A D 为AB 的垂直平分线,因此可知1A AB △和11B A B 均为等边三角形.由BC ⊥平面11,ABB A BB ⊂平面1ABB A ,可得1BC BB ⊥,斜三棱柱进一步可得11B BCC 是矩形.此时作1111,A P BB AQ CC ⊥⊥,连接1,,PQ PC AC .由题知,112,AQ A P =⊂平面11ABB A ,可得111,BC A P BC BB B BB ⊥⋂=⊂,平面11,BCC B BC ⊂平面11BCC B ,因此1AP ⊥平面11BCC B ,因此由题知,1,A P PQ PC =⊂平面11BCC B ,所以也有11,A P PQ A P PC ⊥⊥.因此,1ACP ∠为1AC 与平面11BB C C 所成角.在1Rt A PQ △中,1PQ ==,由矩形可知1BC PQ ==.由于1A P =1B AB △中,可以解得12,BB P =为1BB 中点,1BP =.所以,在Rt BCP △中,PC =1Rt ACP △中,1AC =.因此,111115sin ,5A P ACP AC AC ∠===与平面11BB C C所成角的正弦值为5.【小问3详解】延长1,EF C C 交于点M ,连接1MB ,交BC 于N ,连接FN ,如图,故四边形1B EFN 即为所得截面.上一问可知,菱形11ABB A 的边长为2,矩形11B BCC 中1BC =,平行四边形11ACC A中111112,AA CC AC AC AC =====.要计算截面1B EFN 的面积,首先研究1B EM △.在11A B E △中,由于11120EA B ∠=︒,由余弦定理可得1B E =,E F 为中点,因此12EM EF AC ===,此时有1MC AE ==,在直角11MB C中1MB N =为BC 的三等分点.因此1B EM △中,由余弦定理可得2221111cos 25EM MB EB EMB EM MB +-∠==⋅⋅,第21页/共21页所以可以计算得117sin 5EMB ∠=.设截面面积为S ,由于111,23MF ME MN MB ==,有11111115534sin sin 22612B EM NFM B EM S S S ME MB EMB MF MN EMB S =-=⋅⋅∠-⋅⋅∠==△△△因此,此斜三棱柱被平面1B EF 所截的截面面积为53412.。
2024四川省成都市第七中学高一下学期6月月考化学试题及答案

成都七中2023-2024学年度下期6月考试化学试卷(考试时间:75分钟;试卷满分:100分)可能用到的相对原子质量:H-1 C-12 N-14 O-16 Mg-24 Al-27一、单项选择题(本题共14小题,每题3分,共42分)1. 我国科技自立自强。
近年来,取得了重大进展。
下列有关科技成果说法正确的是A .“异域深海,宝藏无穷”——自主开采的可燃冰燃烧时,环境温度升高,体系温度降低B .“科技冬奥,温暖护航”——发热服饰材料中的石墨烯与C 60互为同分异构体C .“高产水稻,喜获丰收”——高产水稻中的淀粉属于天然有机高分子D .“浩渺太空,无限征途”——飞船返回舱“外衣”中的合成树脂属于新型无机非金属材料A .某灶具使用煤气做燃料,改用天然气后其进风口应改大B .乙烯、乙醇都能使酸性KMnO 4褪色,但反应类型不同C .聚乙烯分子的单体为—CH 2—CH 2—D .动物油脂经氢化后可生产人造奶油4. 化学离不开实验。
下列实验操作正确的是A B C DA .制备并收集乙酸乙酯B .测定一定质量镁铝合金中金属铝的含量C .配制0.10 mol ·L -1 NaOH 溶液D .制备NH 35. 宏观辨识与微观探析是化学学科核心素养之一。
下列反应方程式书写错误的是A .Cu 与浓硝酸反应:Cu +2NO -3+4H +=Cu 2++2NO 2↑+2H 2OB .以石英砂为原料制粗硅:SiO 2+C =====高温Si +CO 2↑C .用足量Na 2CO 3溶液吸收NO 2尾气:2NO 2+2CO 2-3+H 2O =NO -3+NO -2+2HCO -3D .汽车发动机中产生NO 尾气:N 2+O 2=====高温2NO10. 一定温度下,向恒容密闭容器中投入E 和M 发生如下反应:E(g)+M(g)====① F(g)⇌③②G(g)。
已知反应初始c 0(E)=c 0(M)=0.10 mol ·L -1,部分物质的浓度(c )随时间(t )的变化关系如图所示,t 2后反应体系达到平衡状态。
(成都七中)四川省成都市七中2022-2023学年高一下学期期末生物试题(原卷版)

B.细胞②处于减数第二次分裂中期
C.细胞④和⑤中均有染色体数目20条,一个染色体组
D.若细胞①中有一对同源染色体未分离,则形成的四个花粉粒中一半异常
13.某生物兴趣小组观察了几种二倍体(染色体数为2N)生物处于不同分裂时期的细胞,并根据观察结果绘制出如下图形。下列说法中正确的是( )
B.减数分裂前的间期会发生过程①②③
C.除了③过程外,其他4个过程所需原料相同
D.过程①④所发生的碱基互补配对方式相同
22.20世纪60年代,科学家应用有机化学和酶学技术制备了有规律的双核苷酸或多核苷酸重复序列,进行了一系列的实验,下表显示了部分实验结果。下列相关叙述不正确的是()
模板
产生的多肽序列
A.可判断该致病基因位于X染色体上
B.可选择极体1或极体2用于基因分析
C.自然生育患该病子女的概率是25%
D.极体1可能含有0或1或2个致病基因
17.枯草芽孢杆菌有能合成组氨酸(His+)和不能合成组氨酸(His-)两种类型。将His+菌株的细胞提取液去除掉绝大部分蛋白质、糖类后用酶处理,再将处理后的提取液加入His-菌株的培养液中,一段时间后获得了His+菌株。上述酶不可能是()
A.甲图所示细胞处于有丝分裂后期,在此时期之前细胞中央出现细胞板
B.乙图所示细胞可能处于减数第一次分裂后期,发生同源染色体的分离
C.乙图所示细胞可能处于有丝分裂中期,此阶段染色体的着丝粒发生分裂
D.如果丙图表示睾丸内的几种细胞,则C组细胞可发生联会并形成四分体
14.摩尔根通过果蝇眼色的杂交实验,证明了萨顿的假说。如图为果蝇眼色杂交图解,下列相关叙述错误的是( )
四川省成都市第七中学2019-2020学年高一生物下学期半期考试试题【含答案】

四川省成都市第七中学2019-2020学年高一生物下学期半期考试试题考试时间:80 分钟满分:90 分一、单项选择题(共40分,每题1分)1. 下列有关细胞不能无限长大的原因,叙述不正确的是()A.与细胞表面积和体积的比例有关B.细胞内各种细胞器数目和种类的限制C.细胞核所控制的范围有一定限度D.细胞体积过大不利于细胞的物质运输2.某同学观察植物细胞有丝分裂的过程中,若看到的细胞近无色,体积较大,呈长方形,排列整齐,但不够紧密,找不到发生分裂的细胞。
下列有关分析合理的是()A.漂洗时可以洗去染液防止染色过深B.低倍镜看不到分裂细胞换用高倍镜观察C.不是分生区的细胞,细胞已经分化D.解离时未用盐酸去除细胞壁以分散细胞3.下图表示洋葱根尖细胞有丝分裂各阶段细胞核中DNA 和细胞质中 mRNA 含量变化。
下列有关说法正确的是()A.该细胞最可能是根尖成熟区细胞B.在分裂间期1个中心体复制形成4个中心粒C.在有丝分裂过程中,蛋白质合成主要发生在a和cD.细胞中一条染色体(质)上有2个DNA分子的时期是d和e4.下图表示动物细胞有丝分裂中染色体(a)、染色单体(b)和DNA分子(c)的数量关系。
下列解释错误的是 ( )A.①可以表示细胞分裂的中期,此时是观察染色体的最佳时期B.②表示整个间期不恰当,因为DNA复制之后其数量要加倍且要出现染色单体C.③可以表示细胞分裂的后期,此时的主要特征是着丝点分裂,染色体数目加倍D.④可以表示细胞分裂的前期,此时期在显微镜下能够观察到染色单体5.下列关于细胞的分化、衰老、凋亡和癌变叙述,正确的是()A.细胞分化的原因是不同细胞的DNA执行情况不同B.衰老细胞的色素积累是由于细胞膜的透过性增强C.人体癌细胞存在原癌基因,正常细胞才具有抑癌基因D.正常细胞没有自动结束生命的基因,所以不发生凋亡6.对于细胞全能性的理解正确的是()A.脱离了植株的芽,一定能表现出全能性B.未脱离植株的幼叶,才能表现出全能性C.个体发育中,由于细胞内的基因发生变化,细胞不能表现出全能性D.己分化的蛙的成熟红细胞,仍然具有发育成完整个体的潜能7. TGF一131一Smads是一条抑制肿瘤的信号传递途径。
四川省成都市第七中学2023-2024学年高一下学期6月月考英语试题(含答案)

成都七中2023—2024学年度高一(下)6月阶段性考试英语注意事项:1.答题前,务必将自己的姓名、考号填写在答题卡规定的位置上。
2.答选择题时,必须使用2B铅笔将答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。
答非选择题时,必须使用0.5毫米黑色笔迹的签字笔,将答案书写在答题卡规定的位置上。
所有题目必须在答题卡上作答,在试题卷上答题无效。
3.考试结束后,只将答题卡交回。
第一部分听力(共两节,满分30分)做题时,先将答案标在试卷上。
录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。
第一节(共5小题;每小题1.5分,满分7.5分)听下面5段对话。
每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。
听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。
每段对话仅读一遍。
1.What is the man busy with?A.A visit.B.A project.C.A video.2.What do the speakers plan to do tomorrow?A.Go camping.B.Do some shopping.C.Find a blanket.3.Where are the speakers going to?A.A station.B.Another country.C.Their hometown.4.What does the woman think of Jimmy?A.Silent.B.Caring.C.Hard—working.5.What are the speakers talking about?A.The new laws.B.A healthy lifestyle.C.Profitable industries.第二节(共15小题;每小题1.5分,满分22.5分)听下面5段对话或独白。
四川省成都七中2013-2014学年高一下学期期末考试数学试题 Word版含解析

当 ,即 ,解为 ;8分
当 ,即 ,无解;11分
综上,不等式的解集为当 ,解为 ;当 ,解为 ;
当 ,无解12分
【思路点拨】对参数进行分类争辩即可.
19.已知向量 ,向量 .
(1)求 在 方向上的投影;
(2)求 的最大值;
(3)若 , , , ,求 .
【学问点】向量的数量积公式;向量的坐标表示;分类争辩的思想方法;等比数列求和.
【思路点拨】将 = 绕原点 逆时针方向旋转 得到 后可得 两点关于 轴对称,据此可得结果.
9.设 , ,则有()
A. B. C. D. 的大小关系不确定
【学问点】两角差的正弦公式;万能公式;正弦函数的单调性.
【答案解析】A解析:解:由于 ,
由正弦函数的单调性可知 ,故选A.
【思路点拨】先把两个三角式化简,再利用正弦函数的单调性即可.
【学问点】组合几何体的面积、体积问题.
【答案解析】2解析:解:设球半径为r,则由 可得 ,解得 .故答案为:2.
【思路点拨】设出球的半径,三个球的体积和水的体积之和,等于柱体的体积,求解即可.
14.在等比数列 中, ,则该数列的前9项的和等于ቤተ መጻሕፍቲ ባይዱ____.
【学问点】等比数列的性质.
【答案解析】13解析:解:由于 , 所以 ,而 ,所以该数列的前9项的和
10.如图,在直角梯形 中, 点 在阴影区域(含边界)中运动,则有 的取值范围是()
A. B. C. D.
【学问点】向量的坐标表示;简洁的线性规划.
【答案解析】C解析:解:以BC所在的直线为 轴,以BA所在的直线为 轴建立坐标系,如下图:
可得 , , , ,设 ,所以 ,令
备战2018年高考数学一轮复习(热点难点)专题1.2 求同存异解决集合的交、并、补运算问题

专题1.2 求同存异解决集合的交、并、补运算问题考纲要求:1、理解两个集合的并集与交集的含义,会求两个简单集合的并集与交集.2、理解在给定集合中一个子集的补集的含义,会求给定子集的补集.3、能使用韦恩(Venn)图表达集合的关系及运算.基础知识回顾:1、集合的基本运算2、集合的运算性质①A∪B=A⇔B⊆A,A∩B=A⇔A⊆B;②A∩A=A,A∩∅=∅;③A∪A=A,A∪∅=A;④A∩∁U A=∅,A∪∁U A=U,∁U(∁U A)=A,∁U(A∪B)=∁U A∩∁U B,∁U(A∩B)=∁U A∪∁U B应用举例:类型一:已知集合中的元素,求其交集、并集或补集例1.【四川省成都市第七中学2018届高三下学期三诊】已知集合,,则为()A. B. C. D.【答案】C2例2.【延安市2018届高三高考模拟】全集{}2,1,0,1,2U =--, {}2,2A =-, 2{|10}B x x =-=,则图中阴影部分所表示的集合为( )A. {}1,0,1-B. {}1,0-C. {}1,1-D. {}0 【答案】D【解析】试题分析:根据韦恩图得到表示的是()U C A B ⋃,根据题意求得集合B ,再求集合A 并B ,再求补集即可.详解: {}{}2|1011B x x =-==-,,阴影部分表示的集合为()U C A B ⋃, {}2,1,1,2A B ⋃=--,(){}0U C A B ⋃=故答案为:D.点睛:这个题目考查了韦恩图的应用,一般先读懂韦恩图所代表的集合的含义,再将区域用集合的交并补形式表示出来,最终求解即可.例3.【郑州外国语学校2018届高三第十五次调研】已知全集,集合,,则中元素的个数是( )A. 0B. 1C. 2D. 3 【答案】D【解析】分析:先解分式不等式得集合U ,解绝对值不等式得集合A ,解二次不等式得集合B ,最后根据并集以及补集定义得结果.3详解:因为,所以, 因为,所以,因为,所以,因此,元素的个数是3,选D,点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提. (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决. (3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn 图. 类型二:已知集合交集、并集或补集中的元素,求其集合中的元素 例4.【山东省威海市2018届高三下学期第二次模拟考试】设全集,,,则集合( ) A.B.C.D.【答案】B【例5】【2017浙江省温州市高三月考试题】设全集{}()1,2,3,4,5,U U C A B =={}(){}1,A 3U C B =,则集合B =( )A .{}1,2,4,5B .{}2,4,5C .{}2,3,4D .{}3,4,5【答案】B【解析】如图,{2,4,5}B =.故选B .413U :1,2,3,4,5BA类型三:已知集合关系求参数的值或范围例6.【北京市中国人民大学附属中学2018届高三5月考前热身】已知集合,,若,则实数的取值范围是( ) A. B.C.D.【答案】B例7.【内蒙古呼和浩特市2018届高三年级质量普查调研考试】已知集合,集合,集合,若A B C ⋃⊆,则实数m 的取值范围是______________.【答案】1,12⎡⎤-⎢⎥⎣⎦【解析】由题意, {|12}A B x x ⋃=-<< , ∵集合{|10}C x mx A B C =+⋃⊆>, , ①111102022m x m m m m -∴-≥∴≥-∴-≤<,<,,,<;②m 0= 时,成立;③1101101m x m m m m -∴-≤-∴≤∴≤>,>,,,<,综上所述, 112m -≤≤,故答案为112m -≤≤.5例8.【河北省衡水中学2018届高三上学期一轮复习周测】已知函数()41log ,,416f x x x ⎡⎤=∈⎢⎥⎣⎦的值域是集合A ,关于x 的不等式()3122x ax a R +⎛⎫>∈ ⎪⎝⎭的解集为B ,集合5|01x C x x -⎧⎫=≥⎨⎬+⎩⎭,集合{}()|1210D x m x m m =+≤<->.(1)若A B B ⋃=,求实数a 的取值范围; (2)若D C ⊆,求实数m 的取值范围. 【答案】(1)(),4-∞-;(2)(]0,3.解:(1)因为41>,所以()f x 在区间1416⎡⎤⎢⎥⎣⎦,上单调递增,所以()()44min max 1log 2,log 4116f x f x ==-==,所以[]2,1A =-.由()3122x ax a R +⎛⎫>∈ ⎪⎝⎭,可得()322x a x -+>,即3x a x -->,所以4a x <-,所以,4a B ⎛⎫=-∞- ⎪⎝⎭.又因为A B B ⋃=,所以A B ⊆. 所以14a->,解得4a <-, 所以实数a 的取值范围为(),4-∞-.6方法、规律归纳:1、一个性质:要注意应用A ⊆B 、A ∩B =A 、A ∪B =B 、∁U A ⊇∁U B 、A ∩(∁U B )=∅这五个关系式的等价性. 两种方法2、两种方法:韦恩图示法和数轴图示法是进行集合交、并、补运算的常用方法,其中运用数轴图示法要特别注意端点是实心还是空心. 实战演练:1.【河北省武邑中学2018届高三上学期第五次调研】已知集合{21,M xN y y x ⎧⎫=<==⎨⎬⎩⎭,则()R C M N ⋂=A. (]0,2B. []0,2C. ∅D. []1,2 【答案】B7【解析】因为(){[)212,,0,M xN y y x ∞⎧⎫=<+===+∞⎨⎬⎩⎭=,则(]R ,2C M =-∞, ()[]0,2R C M N ⋂=.故选B.2.【安徽省江南十校2018届高三冲刺联考(二模)】已知全集为,集合,,则( ) A.B.C.D.【答案】C3.【湖南省岳阳市第一中学2018届高三第一次模拟考试】已知集合,,则( )A. B. C. D.【答案】C【解析】分析:集合为函数的值域,集合为函数的定义域,分别求出它们后可求出交集及其补集. 详解:,,故,所以,故选C.点睛:本题为集合和函数性质的综合题,一般地,表示函数的值域,表示函数的定义域,解题中注意集合中代表元的含义.4.【河南省郑州外国语学校2018届高三第十五次调研考试】设集合,,则的真子集的个数为( )8A. 3B. 4C. 7D. 8 【答案】C5.【江西省抚州市临川区第一中学2018届高三上学期期中考试】设集合1|,36k M x x k Z ⎧⎫==+∈⎨⎬⎩⎭, 2|,63k N x x k Z ⎧⎫==+∈⎨⎬⎩⎭,则( )A. M N =B. M N ⊂≠C. NM ⊂≠D. M N ⋂=∅【答案】B 【解析】 因为()()112121,2,366636k k x k x k k Z =+=+=+=+∈,所以M N ⊂≠,故选B.6.【浙江省教育绿色评价联盟2018届高三5月适应性考试】已知集合,,若,则A. B. C. D.【答案】B 【解析】分析:由可得是方程的两根,再根据韦达定理列方程求解即可.详解:,由,可得是方程得两根,9由韦达定理可得,即,故选B.点睛:集合的基本运算的关注点:(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提; (2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决; (3)注意划归思想的应用,常常转化为方程问题以及不等式问题求解. 7.【河南省八市学评2018届高三下学期第一次测评】集合,,若只有一个元素,则实数的值为( )A. 1B. -1C. 2D. -2 【答案】B 【解析】因为只有一个元素,而, 所以或 ,选B.8.【天津市河东区2018届高三高考二模】集合,,,则的取值范围是_______. 【答案】9.【河北省邯郸市2018届高三第一次模拟考试】已知集合1{|}2M x x =≥-, 32{|310}A x M x x a =∈-+-=,{|20}B x M x a =∈--=,若集合A B ⋃的子集的个数为8,则a 的取值范围为__________.【答案】51,11,28⎡⎫⎛⎫--⋃-⎪ ⎪⎢⎣⎭⎝⎭【解析】作函数()()321131,,2,22h x x x x g x x x ⎛⎫⎛⎫=-+≥-=-≥- ⎪ ⎪⎝⎭⎝⎭图像,因为集合A B ⋃的子集的个数为108,所以集合A B ⋃的子集的元素为3,因此()5111112228g a h a f ⎛⎫⎛⎫-=-≤<-=≠=- ⎪ ⎪⎝⎭⎝⎭且,即a 的取值范围为51,11,28⎡⎫⎛⎫--⋃-⎪ ⎪⎢⎣⎭⎝⎭.点睛:对于方程解的个数(或函数零点个数)问题,可利用函数的值域或最值,结合函数的单调性、草图确定其中参数范围.从图象的最高点、最低点,分析函数的最值、极值;从图象的对称性,分析函数的奇偶性;从图象的走向趋势,分析函数的单调性、周期性等.10.【福建省2016届高三毕业班总复习单元过关形成性测试卷】函数()()2lg f x x ax b =++的定义域为集合A ,函数()g x =B ,若(∁R A )∩B =B , (∁R A )∪B ={x |-2≤x ≤3}.求实数,a b 的值及实数k 的取值范围.【答案】1,6a b =-=-, 24,3k ⎡⎤∈--⎢⎥⎣⎦.11。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
成都七中 2017~2018 学年度下期高 2020 届数学期末考
试
考试时间:120 分钟
满分:150
分
一、选择题(本大题共 12 小题,每小题 5 分,共 60 分.在每个小题给出的四个选项中,只有一项是符合题
目要求的)
1.数列 -1, 1 , - 1 , 1 , - 1 ……的一个通项公式为(
)
2 3 4 5
(-1)n
A.
n B. -
1 C.
n
(-1)n -1 1D.
n
n
2.已知 a = (cos 75︒, sin15︒) ,b = (cos15︒, s in 75︒) ,则 a ⋅ b 的值为()
A. 0B .
1
C.
2
3 D. 1
2
3.在∆ABC 中, AB = 4 , BC = 3, CA = 2 ,则∆ABC 为()
A. 直角三角形
B. 锐角三角形
C. 钝角三角形
D. 等腰三角形
4.以下不等式正.确.的是()
A. (x - 3)2 < (x - 2)(x - 4)
B. x 2 + y 2 > 2(x + y - 1)
C. 2 + 3 7 > 4
D. 7 +10 > 3 + 14
5.两平行直线 3x + 4 y -1 = 0 与 6x + ay + 18 = 0 的距离为()
A. 19
B. 2
C.
5
8 D. 1
5
6.若关于 x 的不等式 - 1 x 2 + 2x > mx 的解集为 (0, 4) ,则实数 m 的值为()
2
A.
-1
B. 0
C. 1
D. 2
7.过点 P (2,3),并且在两坐标轴上的截距互为相.反.数.的直线方程为()
A. x - y + 1 = 0或3x - 2 y = 0
B. x + y - 5 = 0
C.x - y + 1 = 0
D. x + y - 5 = 0或3x - 2 y = 0
8.一个棱长为 5cm 的表面涂为红色的立方体,将其适当分割成棱长为 1cm 的小正方体,则两.面.涂.色.的小正
方体的个数为(
)
A. 12
B. 24
C. 36
D. 48 9.如图是某正方体的平面展开图,则在这个正方体中:
①AF与BM成60︒角.
③BN ⊥DE.②AF与CE是异面直线.
④平面ACN // 平面BEM .
以上四个命题中,正.确.命题的个数是()
A. 4
B. 3
C. 2
D. 1
10.已知数列{a n}的前n 项,前2n 项,前3n项的和分别为a ,b,c,则下列说法错.误.的是()A.若{a n}是等差数列,则3b -3a =
c
B.若{a n}是等差数列,则a,b-a, c -b 也为等差数列
C.若{a n }是等比数列,则
a
2 +b2=ab +ac D.若{a n }是等比数列,则a,b-a, c -b 也为等比数列11.已知直线l 过点P(1, 3) ,交x 轴,y 轴的正半轴分别为A,B 两点,则PA⋅PB 的最大值为()
A. 6
B. 3
C.
-3
D. -6
12.在锐.角.三角形ABC 中,sin A =k cos B c os C
(k为常数),则tan B tan C 的取值范围是()
⎛k 2 ⎤ ⎛k 2 ⎤
A. (0,k ]
B. (0,1)
C. 1,⎥
D. k,⎥
⎝ 4 ⎦⎝ 4 ⎦
二、填空题(本大题共4 小题,每小题5 分,共20 分.把答案填在答卷横线上)
13.已知∆ABC 中,A( -5,0),B(3,-3),C(0,2),则BC 边上的高所在直线的方程为;14.数列{a n}的前n 项和为S n,且S n + 2 = 2a n ,则a n = ;
15 .某几何体为长方体的一部分,其三视图如图,则此几何体的体
积为;
16.在平.面.四边形ABCD 中,CD=6,对角线BD= 83 ,∠BDC =90︒,sin A = 3 ,则对角线AC 的最大值
2
为.
三、解答题(17 题10 分,18~22 每小题12 分,共70 分.解答应写出文字说明,证明过程或演算步骤)17.已知数列{a n}是等.差.数列,a1 =3,前三项和为15.数列{b n}是等.比.数列,公比为2,前五项和为62.
(1)求数列{a n},{b n}的通项公式;
(2)求数列{a n+b n }的前n 项和.
18.在∆ABC 中,角A、B、C 的对边分别为a,b, c ,且A,B,C 成等.差.数列,a c os A =b cos B .(1)求cosA 的值;
(2)若a =5,求∆ABC 的面积.
19.如图,一辆汽车在一条水平的公路上向西行,到A 处时测得公路北侧远处一山顶D 在西偏北30°的方向上,行驶10km 后到达B 处,测得此山顶在西偏北60°的方向上,仰角为30°.(注:山高CD ⊥平面ABC ).
(1)求直线DA 与平面ABC 所成角的正切值;
(2)求二面角D -AB -C的正切值.
2333
20.如图,已知直线 l 1 ∥ l 2 ,A 为 l 1,l 2 之间的定点,并且 A 到的l 1,l 2 距离分别为 2,3,点 B ,C 分别是直
线 l 1,l 2 上的动点,使得 ∠BAC = α.过点 A 做直线 DE ⊥ l 1 ,交 l 1 于点 D ,交 l 2 于点 E ,设 ∠ACE = θ.(1)当 α = 90︒ 时,求∆ABC 面积的最小值;(2)当 α = 60︒ 时,求∆ABC 面积的最小值.
21.如图,在矩形 ABCD 中,AB=3,AD=6,点 E ,F 分别在 AD ,BC 上,且 AE=1,BF=4,沿 EF 将四边
形 AEFB 折成四边形 A 'EFB ' ,使点 B ' 在平面 CDEF 上的射影 H 在直线 DE 上.(1)求证:平面 B 'CD ⊥ 平面 B 'HD ;(2)求证: A 'D // 平面B 'FC ;
(3)求直线 HC 与平面 A 'ED 所成角的正弦值.
22.已知数列 {a n } 是正项数列,满足 (a 1 + a 2 + + a n )
= a 1+ a 2+ a n .
(1)求数列 {a n } 的通项公式;
⎧1(2)求证:数列 ⎨⎫ 3⎬ 的前 n 项和 T n < ;
⎩ a n ⋅ a n + 2 ⎭
4⎛
a n +1 ⎫2
⎪
(3)若 0 < λ < 1, b n =
⎝ 2 ⎭ λ (1 - λ ),求证: 1b 1+ 1 b 2+ 1b 3+ + 1 b n
<
1 .4。