2011年高二期末复习电磁感应

合集下载

高二期末质检复习—电磁感应和自感剖析

高二期末质检复习—电磁感应和自感剖析

高二期末质检复习—电磁感应和自感【例】许多科学家在物理学发展过程中做出了重要贡献,下列表述正确的是( ) A 洛伦兹发现了电流的磁效应 B 安培发现了电流的磁效应C 法拉第通过实验研究,发现了电磁感应现象D 楞次通过实验研究,发现了电磁感应现象【例】如图所示,光滑绝缘水平面上有一矩形线圈冲入一匀强磁场,线圈全部进入磁场区域时,其动能恰好等于它在磁场外面时的一半,设磁场宽度大于线圈宽度,那么( ) A 线圈恰好在刚离开磁场的地方停下 B 线圈在磁场中某位置停下 C 线圈在未完全离开磁场时即已停下D 线圈完全离开磁场以后仍能继续运动,不会停下来【例】如图所示,两根水平放置的相互平行的金属导轨ab 、cd ,表面光滑,处在竖直向上的匀强磁场中,金属棒PQ 垂直于导轨放在上面,以速度v 向右匀速运动,欲使棒PQ 停下来,下面的措施可行的是(导轨足够长,棒PQ 有电阻) ( )A 在棒PQ 右侧垂直于导轨再放上一根同样的金属棒B 在棒PQ 棒右侧垂直于导轨再放上一根质量和电阻均比棒PQ 大的金属棒C 增大磁场的磁感应强度D 将导轨的a 、c 两端用导线连接起来知识点一:电磁感应1.法拉第电磁感应实验的结论:只要穿过闭合电路的磁通量发生变化,闭合电路中就会产生电流。

因磁通量变化而产生电流的现象叫做电磁感应,所产生的电流叫做感应电流。

2.公式:tE ∆∆=φn(所有情况)。

E=BLv (切割磁感线)。

旋转切割时。

3.导体的有效长度:找出导体的有效长度L ,再代入E=BLv 计算。

4.结合电路问题:注意切割的部分为电源;结合能量问题:运用动能定理求焦耳热。

5.电磁感应图像问题:注意是φ-t 图像还是I -t 图像。

【例】如图所示,固定的水平长直导线中通有电流,矩形线框与导线在同一竖直平面内,且一边与导线平行。

线框由图中位置静止释放,在下落过程中()A 线框做自由落体运动B 穿过线框的磁通量保持不变C 线框的机械能守恒D 线框中感应电流方向保持不变【例】如图所示,一个硬导体ab以速度v,在宽度为L的水平U型导体框架上匀速滑动,匀强磁场的磁感应强度为B,回路电阻为R0,导体AB的电阻为r,其余电阻不计,则导体AB切割磁感线产生感应电动势的大小为__________,AB之间的电势差为__________。

有关高二物理期末电磁感应现象必背知识点

有关高二物理期末电磁感应现象必背知识点

有关高二物理期末电磁感应现象必背知识点高二物理期末电磁感应现象必背知识点电磁感应现象的产生条件;感应电流的大小及方向的确定;电磁感应现象的应用第一部分:12节第一节划时代的发现历史背景:1、奥斯特发现电流磁效应:电流磁效应的发现揭示了电现象和磁现象之间存在的联系。

2.法拉第发现电磁感应现象:(1)磁生电是一种在变化、运动的过程中才能出现的效应。

(2)五类情况:变化的电流,变化的磁场,运动的恒定电流,运动的磁铁,在磁场中运动的导体。

第二节探究感应电流的产生条件产生感应电流的条件:1.闭合回路2.穿过回路的磁通量发生变化第二部分:第3节第三节楞次定律1.内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化,这就是楞次定律2.应用楞次定律判断感应电流方向的基本步骤:(1)明确原磁场的方向。

(2)判断穿过闭合电路的磁通量是增加还是减少。

(3)根据楞次定律确定感应电流的磁场方向。

(4)利用安培定则确定感应电流的方向。

3.右手定则:导体切割磁感线引起感应电流的方向可以由右手定则来判断。

伸开右手让拇指跟其余四指垂直,并且都跟手掌在一个平面内,让磁感线垂直从手心进入,拇指指向导体运动的方向,其余四指指的就是感应电流的方向。

第三部分:第4---5节第四节法拉第电磁感应定律1、感应电动势:在电磁感应现象中产生的电动势叫感应电动势2、电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路磁通量的变化率成正比,即e。

这就是法拉第电磁感应定律(2)表达式:e=n3、导线切割磁感线时的感应电动势e=blv该式通常用于导体垂直切割磁感线,且导线与磁感线互相垂直(l^b)。

一般用于导体各部分切割磁感线的速度相同当导体的运动方向跟磁感线方向有一个夹角时,e=blv1=blvsin 第五节:电磁感应规律的应用1.电磁感应现象中的感生电场(感生电动势)磁场的变化而激发的电场叫感生电场。

感生电场对自由电荷的作用力充当了非静电力。

高二物理 第四章《电磁感应 》期末复习提纲

高二物理 第四章《电磁感应 》期末复习提纲

高二物理第四章《电磁感应》期末复习提纲一、感应电流的产生和方向1、磁通量(1)概念:(2)公式:(3)磁感应强度:(4)磁通量的变化:(5)磁通量的变化率2、什么是电磁感应现象?3、感应电流方向的判断有几种方法?4、楞次定律的内容是什么?注意:右手定则与左手定则应用区别的关键是“因果关系”,“因动而电”用右手,“因电而动”用左手二、感应电动势,自感1、法拉第电磁感应定律(1)内容:(2)公式:(3)一种特殊情形:当导体在匀强磁场中平行切割磁感线时,E=BLVsin,其中B与L垂直,V与L垂直,V与B成2、自感现象(1)什么是自感现象:(2)产生原因:(3)什么是自感电动势:(4)自感电动势的作用:(5)自感系数由什么因素决定?3、什么是互感现象?哪一种仪器是利用互感原理制成的?4、什么是涡流?涡流的应用有哪些?课堂练习:1、关于磁通量,下列叙述正确的是[ ]A.穿过某一平面的磁通量可认为等于穿过该面积的磁感线条数B.穿过某一平面的磁通量可认为等于穿过该平面单位面积的磁感线条数C.磁场中某处的磁感应强度等于穿过该处单位面积的磁通量D.磁场中某处的磁感应强度等于垂直穿过该处单位面积的磁通量2、于磁通量,下列叙述正确的是( )A.在匀强磁场中,穿过一个面的磁通量等于磁感应强度与该面面积的乘积B.在匀强磁场中,a线圈的面积比b线圈的大,则穿过a线圈的磁通量一定比穿过b线圈的磁通量大C.把一个线圈放在M、N两处,若放在M处时穿过线圈的磁通量比放在N处时大,则M处的磁感应强度一定比N处大D.同一线圈放在磁感应强度大处,穿过线圈的磁通量不一定大3.在电磁感应现象中,下列说法中正确的是( )A.感应电流的磁场总是跟原来的磁场方向相反B.闭合线框放在变化的磁场中一定能产生感应电流C.闭合线框放在匀强磁场中做切割磁感线运动,一定能产生感应电流D.感应电流的磁场总是阻碍原来磁场磁通量的变化E、感应电流的磁场方向取决于磁通量是增加还是减少4、如图所示,当磁铁运动时,流过电阻的电流是由A经R到B,则磁铁可能是( )A.向下运动 B.向上运动C.向左平移 D.以上都不可能5、如图9-1-8所示,当磁铁突然向铜环运动时,铜环的运动情况是( )A.向右摆动B.向左摆动C.静止D.不能判定6、关于自感现象,正确的说法是:()A、感应电流一定和原电流方向相反;B、线圈中产生的自感电动势较大的其自感系数一定较大;C、对于同一线圈,当电流变化越大时,线圈中产生的自感电动势也越大;D、自感电动总是阻碍原来电流变化的。

(完整版)高二物理电磁感应知识点

(完整版)高二物理电磁感应知识点

一、电磁感应现象1、产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

2、感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

3、关于磁通量变化在匀强磁场中,磁通量Φ=B∙S∙sinα(α是B与S的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S、α不变,B改变,这时ΔΦ=ΔB S sinα②B、α不变,S改变,这时ΔΦ=ΔS B sinα③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1)二、楞次定律1、内容:感应电流具有这样的方向,就是感应电流的磁场总要阻碍引起感应电流的磁通量的变化.在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。

A、从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。

B、从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。

磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。

C、从“阻碍自身电流变化”的角度来看,就是自感现象。

自感现象中产生的自感电动势总是阻碍自身电流的变化。

2、实质:能量的转化与守恒.3、应用:对阻碍的理解:(1)顺口溜“你增我反,你减我同”(2)顺口溜“你退我进,你进我退”即阻碍相对运动的意思。

“你增我反”的意思是如果磁通量增加,则感应电流的磁场方向与原来的磁场方向相反。

高二物理第十章知识点总结

高二物理第十章知识点总结

高二物理第十章知识点总结高二物理第十章主要讲述了电磁感应与电磁场的相关知识。

本章的内容包括电磁感应现象、法拉第电磁感应定律、楞次定律、自感与互感、电磁场的概念及特性等。

以下是对这些知识点的详细总结。

1. 电磁感应现象电磁感应是指导体中的磁通量发生变化时,在导体两端产生感应电动势。

磁通量的变化可以通过改变磁场强度、磁场方向、导体面积或者改变磁场与导体之间的相对运动来实现。

2. 法拉第电磁感应定律法拉第电磁感应定律描述了感应电动势的大小与变化率之间的关系。

根据定律,感应电动势的大小等于磁通量的变化率。

即E = -dΦ/dt,其中E表示感应电动势,Φ表示磁通量,t表示时间。

3. 楞次定律楞次定律是电磁感应的基本规律之一,它描述了感应电流的方向。

根据楞次定律,当导体中的磁通量发生变化时,感应电流的方向会使得产生的磁场阻碍磁通量的变化。

这个定律也可以用右手规则来判断感应电流的方向。

4. 自感与互感自感是指电流通过一个线圈时,该线圈本身所产生的感应电动势。

互感是指两个或多个线圈之间的相互感应现象。

自感与互感是电磁感应中的重要概念,它们在电路中起到了重要的作用。

5. 电磁场的概念及特性电磁场是指由电荷和电流所产生的空间中的力场和磁场。

电磁场具有电场强度、磁感应强度和能量密度等特性。

电场强度描述了电场对电荷施加力的强度,磁感应强度描述了磁场对带电粒子施加力的强度。

本章的知识点涉及了电磁感应与电磁场的基础概念和原理,这些知识在物理学与工程学中有着广泛的应用。

理解并掌握这些知识点,不仅有助于我们对电和磁的相互作用有更深入的理解,还能帮助我们解决实际问题,如电磁感应发电原理和变压器的工作原理等。

总结起来,本章内容涉及了电磁感应现象、法拉第电磁感应定律、楞次定律、自感与互感以及电磁场的概念与特性。

这些知识点是理解电磁现象和解决相关问题的基础,通过深入学习与实践探索,我们能够更好地理解和应用这些知识,为今后的学习和工作打下坚实的基础。

高二电磁感应知识梳理

高二电磁感应知识梳理
然后,让我们来看一下电磁感应的进阶内容,即涡流和涡流的应用。在电磁感应中,当磁场发生变化时,导体中将产生感应电流,这种电流被称为涡流。涡流现象在电磁学中具有重要意义,它不仅可以产生磁场,还可以产生阻碍原磁场变化的作用。利用涡流的原理可以制作感应制动器、感应加热设备等各种电磁器件。
最后,让我们简要回顾一下电磁感应的重要性。电磁感应不仅是电磁学的重要组成部分,还是现代技术和工程中不可或缺的基础知识。通过对电磁感应的学习和掌握,可以更好地理解电磁学的其他内容,为将来的学习和科研工作打下坚实的基础。
接着,让我们探讨一下电磁感应在电路中的应用。在电磁感应中,感应电动势会驱动电流产生,这一原理被广泛应用于各种电路中。例如,感应电动势是产生自感现象的原因,利用这一原理可以制作电感器件。另外,变压器也是利用电磁感应原理来调节电压大小的重要元件。电磁感应的应用丰富多样,为电路设计和工程技术提供了重要支持。
高二电磁感应知识梳理
电磁感应是高中物理中的重要内容,也是学生学习电磁学的基础。在高二阶段,学生将进一步学习有关电磁感应的知识,并进行深入的探讨和实践。下面将对高二电磁感应知识进行梳理,帮助学生更好地理解和掌握这一部分内容。
首先,我们来了解电磁感应的基本原理。电磁感应是指当导体在磁场中运动或磁场变化时,在导体中将产生感应电动势。这一现象是由物理学家法拉第在19世纪发现的,其基本原理是通过磁通量的变化来产生ቤተ መጻሕፍቲ ባይዱ应电动势。磁通量是描述磁场穿过一定面积的量,当磁场发生变化时,磁通量也会发生变化,从而在导体中产生感应电动势。
通过以上的梳理,我们对高二学生需要学习的电磁感应知识有了更清晰的认识。希望同学们能够认真对待这一部分内容,扎实掌握基本原理和重要应用,为将来的学习和发展打下坚实基础。
其次,让我们来了解一些与电磁感应相关的重要现象和定律。其中最重要的就是法拉第电磁感应定律,它表明感应电动势的大小与磁通量的变化率成正比。另外,洛伦兹力也是与电磁感应密切相关的概念,它描述了当导体在磁场中运动时,由于感应电流产生的力。这些现象和定律是理解和运用电磁感应的基础,学生需要牢固掌握。

高二物理电磁感应复习

高二物理电磁感应复习

高二物理期末复习专题:电磁感应一、自主学习1、电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中产生,这种利用产生电流的现象叫做电磁感应。

2、感应电流的方向(1)楞次定律:感应电流具有这样的方向,即感应电流的磁场总要。

(2)从不同的角度来看楞次定律的内容,从磁通量变化的角度来看,感应电流总要。

从导体和磁体相对运动的角度来看,感应电流总要。

因此,产生感应电流的过程实质上是能的转化和转移的过程。

(3)用楞次定律判断感应电流方向的步骤:①明确所研究的闭合回路中原磁场的方向;穿过回路的磁通量如何变化②由楞次定律判定出;③根据感应电流的磁场方向,由判定出感应电流方向。

(4)右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个面内,让磁感线垂直,拇指指向,则其余四指指的就是。

3.感应电动势:无论电路是否闭合,只要穿过电路的发生变化,电路中就一定有,若电路是闭合的就有.产生感应电动势的那部分导体就相当于一个.4. 法拉第电磁感应定律文字表述:。

表达式∆φ表示____________ 。

为。

式中n表示_______,ΔΦ表示________,Δt表示_______,t∆5.闭合电路的一部分导体做切割磁感线运动,若B、L、V两两互相垂直,则导体中的感应电动势为____________6.一段长为L的导体,在匀强磁场B中,以角速度ω垂直于磁场的方向绕导体的一端做切割磁感线运动,则导体中的感应电动势为_________________。

7.自感现象:线圈中电流发生变化而在它本身激发出感应电动势的现象叫_________。

这种电动势叫________。

自感电动势的大小与____________________________成正比,比例系数叫做__________,与________________________________________等因素有关。

二、基础练习1、于电磁感应现象,下列说法中正确的是()A.只要有磁通量穿过电路,电路中就有感应电流B.只要闭合电路在做切割磁感线运动,电路中就有感应电流C.只要穿过闭合电路的磁通量足够大,电路中就有感应电流D.只要穿过闭合电路的磁通量发生变化,电路中就有感应电流2、某实验小组用如图所示的实验装置来验证楞次定律,当条形磁铁自上而下穿过固定的线圈时,通过电流计的感生电流方向是()B.C. D.3、物理学的基本原理在生产生活中有着广泛应用.下面列举的四种器件中,在工作时利用了电磁感应现象的是()A.回旋加速器B.电磁炉C.质谱仪D.速度选择器4、如图所示,在条形磁铁的中央位置的正上方水平固定一铜质圆环.以下判断中正确的是( )A.释放圆环,环下落时产生感应电流B.释放圆环,环下落时无感应电流C.释放圆环,环下落时环的机械能减小D.释放圆环,环下落时环的机械能增大5.如图所示,通过水平绝缘传送带输送完全相同的铜线圈,线圈均与传送带以相同的速度匀速运动。

高二物理期末复习资料电磁感应

高二物理期末复习资料电磁感应

读书之法,在循序而渐进,熟读而精思《电磁感应》单元复习电磁感应感应电流(电动势)方向右手定则楞次定律及应用感应电动势的大小法拉第电磁感应定律tnE∆∆=φ、θsinBlvE=(推感生电动势和动生电动自感和涡综合应用牛顿运动定律、动量、能量、闭合电路欧姆定律产生感应电流的条件法拉第实验【知识网络】【考点透视】1、电磁感应现象当穿过闭合电路的磁通量发生变化时,电路中产生,这种利用产生电流的现象叫做电磁感应。

例题1. 如图所示,一个矩形线圈与通有相同大小电流的平行直导线在同一平面内,且处于两直导线的中央,则线框中有感应电流的是;(A)两电流同向且不断增大(B)两电流同向且不断减小(C)两电流反向且不断增大(D)两电流反向且不断减小2、感应电流的方向(1)楞次定律:感应电流具有这样的方向,即感应电流的磁场总要。

(2)从不同的角度来看楞次定律的内容,从磁通量变化的角度来看,感应电流总要。

从导体和磁体相对运动的角度来看,感应电流总要。

因此,产生感应电流的过程实质上是能的转化和转移的过程。

(3)用楞次定律判断感应电流方向的步骤:①明确所研究的闭合回路中原磁场的方向;②穿过回路的磁通量如何变化(是增加还是减小);③由楞次定律判定出;④根据感应电流的磁场方向,由判定出感应电流方向。

(4)右手定则:伸开右手,让拇指跟其余四指垂直,并且都跟手掌在一个面内,让磁感线垂直,拇指指向,则其余四指指的就是。

例题2.如图所示,两同心金属圆环共面,其中大闭合圆环与导轨绝缘,小圆环的开口端点与导轨相连,平行导轨处在水平面内,磁场方向竖直向下,金属棒ab与导轨接触良好,为使大圆环中产生图示电流,则ab应当:(A)向右加速运动 (B)向右减速运动(C)向左加速运动 (D)向左减速运动3.感应电动势:无论电路是否闭合,只要穿过电路的 发生变化,电路中就一定有 ,若电路是闭合的就有 .产生感应电动势的那部分导体就相当于一个 .4. 法拉第电磁感应定律文字表述: 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《电磁感应》复习内容一、电磁感应现象和楞次定律1、利用磁场产生电流的现象叫做电磁感应,产生的电流叫做感应电流.(1)产生感应电流的条件:穿过闭合电路的磁通量发生变化,即ΔΦ≠0.(2)产生感应电动势的条件:无论回路是否闭合,只要穿过线圈平面的磁通量发生变化,线路中就有感应电动势.★磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.①磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS②磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S③磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S12、楞次定律(1)楞次定律:感应电流的磁场,总是阻碍引起感应电流的磁通量的变化.楞次定律适用于一般情况的感应电流方向的判定,而右手定则只适用于导线切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定简便.(2)右手定则①适用范围:导线切割磁感线产生感应电动势.②判定方法:伸开右手,让大拇指与四指垂直,并与手掌在同一平面内,让磁感线垂直穿过掌心,大拇指指向导线运动的方向,其余四指所指方向即为感应电流的方向.(3)楞次定律的另一种表述感应电流总是阻碍产生它的那个原因,表现形式有三种:①阻碍原磁通量的变化;②阻碍物体间的相对运动;③阻碍原电流的变化(自感).★如何理解楞次定律中“阻碍”一词1.谁阻碍谁——感应电流的磁通量阻碍产生感应电流的磁通量.2.阻碍什么——阻碍的是穿过回路的磁通量的变化,而不是磁通量本身.3.如何阻碍——原磁通量增加时,感应电流的磁场方向与原磁场方向相反;原磁通量减少时,感应电流的磁场方向与原磁场方向相同,即“增反减同”.4.阻碍的结果——阻碍并不是阻止,结果是增加的最终还得增加,减少的最终还得减少.【典型例题】【例1】如图甲所示,光滑固定导轨MN、PQ水平放置,两根导体棒a、b平行放于导轨上,形成一个闭合回路.当条形磁铁从高处下落接近回路时()A.导体棒a、b将互相靠拢B.导体棒a、b将互相远离C.磁铁的加速度仍为gD.磁铁的加速度小于g【例2】如图所示,一水平放置的圆形通电线圈1固定,从上向下看电流方向为逆时针方向,另一较小的圆形线圈2从线圈1的正上方下落.在下落过程中两线圈平面始终保持平行且共轴,则线圈2从线圈1的正上方下落至线圈1的正下方过程中,从上往下看线圈2( BD )A.有顺时针方向的感应电流B.先是顺时针方向,后是逆时针方向的感应电流C.先是逆时针方向,后是顺时针方向的感应电流D.在线圈1的上、下两边的加速度都小于g【例3】如图所示,一水平放置的矩形闭合线圈abcd,在细长磁铁的N极附近竖直下落,保持bc边在纸外,ad边在纸内,从图中位置Ⅰ经过位置Ⅱ到位置Ⅲ,位置Ⅰ和Ⅲ都很靠近Ⅱ,在这个过程中,线圈中感应电流()A.沿abcd方向B.沿dcba方向C.由Ⅰ到Ⅱ是沿abcd方向,由Ⅱ到Ⅲ是沿dcba方向D.由Ⅰ到Ⅱ是沿dcba方向,由Ⅱ到Ⅲ是沿abcd方向【例4】如图所示,两条互相平行的导线M、N中通过大小相等、方向相同的电流,导线框abcd和两导线在同一平面内,线框沿着与两导线垂直的方向,自右向左在两导线间匀速移动,则在移动过程中线框中的感应电流的方向为( C )A.先顺时针后逆时针B.先逆时针后顺时针C.一直是逆时针D.一直是顺时针【例5】如图所示,单匝矩形线圈的一半放在具有理想边界的匀强磁场中,线圈轴线OO′与磁场边界重合,线圈按图示方向匀速转动(ab向纸外,cd向纸内).若从图示位置开始计时,并规定电流方向沿a→b→c→d→a为正方向,则线圈内感应电流随时间变化的图象是()【例6】如图所示,水平放置的两条光滑轨道上有可自由移动的金属棒PQ、MN,当PQ在外力的作用下运动时,MN在磁场的作用下向右运动,则PQ所做的运动可能是( BC )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动二、法拉第电磁感应定律1.法拉第电磁感应定律(1)内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.(2)表达式:E=NΔΦ/Δt.2.对法拉第电磁感应定律的理解(1)E=NΔΦ/Δt中,N为线圈匝数,本式是确定感应电动势的普遍规律,回路可以不闭合.(2)E=NΔΦ/Δt中,ΔΦ总是取绝对值,E的大小是由线圈匝数及磁通量的变化率决定的,与Φ或ΔΦ的大小无必然联系.(3)E=NΔΦ/Δt一般用以求Δt时间内感应电动势的平均值,依I=E/R及q=IΔt可进一步求平均电流及Δt时间内通过回路某横截面积的电荷量,但一般不能依平均电流计算电路中电流所做的功以及电路中产生的电热.(4)ΔΦ/Δt 的常见几种计算式:ΔΦ/Δt =B ΔS /Δt =S ΔB /Δt . 3.导体切割磁感线运动时产生感应电动势 (1)E =BLv (2)E =BLv sin θ 4.对E =BLv 的理解(1)上式只适用于导体各点以相同速度在匀强磁场中切割磁感线的情况,且L 、v 与B 两两垂直.(2)当L 垂直B 、L 垂直v ,而v 与B 成θ角时,导体切割磁感线产生的感应电动势大小为E =BLv sin θ.(3)若导线是曲折的,或L 与v 不垂直时,则L 应为导线的有效切割长度,即导线两端点v 、B 所决定平面的垂线上的投影长度,如右图所示,三种情况下感应电动势大小相同.(4)公式E =BLv 中,若v 为一段时间内的平均速度,则E 为平均感应电动势,若v 为某时刻的切割速度,则E 为瞬时感应电动势.(5)导体转动切割磁感线产生感应电动势,当导体在垂直于磁场的平面内,绕一端以角速度ω匀速转动切割磁感线产生感应电动势时,E =BLv 平=12BL 2ω.★怎样求解导体棒转动切割磁感线的电动势方法一:利用公式E =N ΔΦ/Δt设导体棒长为L ,绕O 点转动角速度为ω,则在t 时间内,其扫过一扇形面积S =12ωtL 2则由公式得E =tS B =21BωL 2方法二:利用公式E =BLv上图中O 点速度v 0=0,A 点速度v A =ωL 则由公式E =BLv ,其中v 取平均速度,得E =BL ·12ωL =12BωL 2【典型例题】【例1】如图甲所示,在周期性变化的匀强磁场区域内有一垂直于磁场、半径为r =1 m 、电阻为R =3.14 Ω的金属单匝圆型线圈,若规定逆时针方向的电流为正方向,B 垂直于纸面向里为正,当磁场按图乙所示的规律变化时,线圈中产生的感应电流图象正确的是( )【例2】如图所示,圆形线圈中串联了一个平行板电容器,线圈内有磁场,磁通量Φ随时间按正弦规律变化.以垂直纸面向里的磁场为正,从t =0时刻开始,在平行板电容器中点释放一个电子,若电子在运动中不会碰到板,关于电子在一个周期内的加速度的判断正确的是()A.第二个T/4内,加速度方向向上,大小越来越小B.第二个T/4内,加速度方向向上,大小越来越大C.第三个T/4内,加速度方向向下,大小越来越大D.第三个T/4内,加速度方向向下,大小越来越小【例3】两个用相同材料制成的粗细相同的圆环如图所示连接,其半径之比r A∶r B=2∶1.先单独将A环置于均匀变化的磁场中,测得P、Q两点间电压为U1,再单独将B环置于同一均匀变化的磁场中,测得P、Q两点间的电压为U2,则U1∶U2=(连接处电阻不计).【例4】如图所示,水平放置的平行金属导轨,相距L=0.50 m,左端接一电阻R=0.20 Ω,磁感应强度B=0.40 T,方向垂直于导轨平面的匀强磁场,导体棒ab垂直放在导轨上,并能无摩擦地沿导轨滑动,导轨和导体棒的电阻均可忽略不计,当ab以v=4.0 m/s的速度水平向右匀速滑动时,求:(结果保留两位有效数字)(1)ab棒中感应电动势的大小,并指出a、b哪端电势高;(2)回路中感应电流的大小;(3)维持ab棒做匀速运动的水平外力F的大小.三、自感1、自感现象由于导体本身的电流发生变化而产生的电磁感应现象.在自感现象中产生的电动势,叫做自感电动势.2、自感电动势的大小和方向对于同一线圈来说,自感电动势的大小取决于本身电流变化的快慢,其方向总阻碍导体中原来电流的变化公式:E自=LtI∆∆3、自感系数也叫自感或电感,由线圈的大小、形状、匝数及是否有铁芯决定,线圈越长、单位长度的匝数越多、横截面积越大,自感系数越大,若线圈中加有铁芯,自感系数会更大.单位:亨利(H).★通电自感和断电自感的比较通电自感断电自感电路图器材要求A1、A2同规格,R=R L,L较大L很大(有铁芯)现象在S闭合瞬间,A2立即亮起来,A1灯逐渐变亮,最终一样亮在开关S断开时,A灯渐渐熄灭原 因由于开关闭合时,流过电感线圈的电流迅速增大,使线圈产生自感电动势,阻碍了电流的增大,使流过A 1灯的电流比流过A 2灯的电流增加得慢断开开关S 时,流过线圈L 的电流减小,产生自感电动势,阻碍了电流的减小,使电流继续存在一段时间,在S 断开后,通过L的电流反向通过灯A ,A 灯不会立即熄灭,若R L <R A ,原来的I L >I A ,则A 灯熄前要闪亮一下,若R L ≥R A ,原来的电流I L ≤I A ,则A 灯逐渐熄灭,不再闪亮一下能量转化情况 电能转化为磁场能 磁场能转化为电能【典型例题】【例1】如图所示,L 为自感系数较大的线圈,电路稳定后小灯泡正常发光,当断开开关S 的瞬间会有( )A.灯A 立即熄灭B.灯A 慢慢熄灭C.灯A 突然闪亮一下再慢慢熄灭D.灯A 突然闪亮一下再突然熄灭 【例2】如图所示是测定自感系数很大的线圈L 直流电阻的电路,L 两端并联一个电压表,用来测自感线圈的直流电压,在测量完毕后,将电路拆开时应先( B )A.断开S 1B.断开S 2C.拆除电流表D.拆除电阻R【例3】如图所示的电路中,L 是一带铁芯的线圈,R 为电阻。

两条支路的直流电阻相等。

那么在接通和断开电键的瞬间,两电流表的读数I 1、I 2的大小关系是:A 、接通时I 1<I 2,断开时I 1>I 2;B 、接通时I 1<I 2,断开时I 1=I 2;C 、接通时I 1>I 2,断开时I 1<I 2;D 、接通时I 1=I 2,断开时I 1<I 2。

四、互感、涡流、电磁阻尼和电磁驱动1.互感现象一个线圈中的电流变化时,所引起的磁场的变化在另一个线圈中产生感应电动势的现象叫做互感现象.这种感应电动势叫做互感电动势.2.涡流(1)定义:当线圈中的电流随时间变化时,线圈附近的任何导体中都会产生感应电流,电流在导体内形成闭合回路,很像水的旋涡,把它叫做涡电流,简称涡流.(2)特点:整块金属的电阻很小,涡流往往很大. 3.电磁阻尼与电磁驱动(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力总是阻碍导体的运动,这种现象称为电磁阻尼 .(2)电磁驱动:磁场相对于导体转动,在导体中会产生感应电流,感应电流使导体受到安培力,安培力使导体运动,这种作用称为电磁驱动 .★涡流的产生机理处在磁场中的导体,只要磁场变化就会引起导体中的磁通量的变化,导体中就有感应电动势,这一电动势在导体内部构成回路,导体内就有感应电流.因为这种电流像水中的旋涡,所以称为涡流.在大块的金属内部,由于金属块的电阻很小,所以涡电流很大,能够产生很大的热量.严格地说,在变化的磁场中的一切导体内都有涡流产生,只是涡电流的大小有区别,所以一些微弱的涡电流就被我们忽视了.★电磁阻尼和电磁驱动电磁阻尼是导体与磁场相对运动时,感应电流使导体受到的安培力总是阻碍它们的相对运动,利用安培力阻碍导体与磁场间的相对运动就是电磁阻尼.磁电式仪表的指针能够很快停下,就是利用了电磁阻尼.“磁悬浮列车利用涡流减速”其实也是一种电磁阻尼.电磁驱动是导体与磁场相对运动时,感应电流使导体受到的安培力总是阻碍它们的相对运动,应该知道安培力阻碍磁场与导体的相对运动的方式是多种多样的.当磁场以某种方式运动时(例如磁场转动),导体中的安培力阻碍导体与磁场间的相对运动而使导体跟着磁场动起来(跟着转动),这就是电磁驱动.【典型例题】【例1】如图所示,两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环.当A以如图所示方向绕中心转动的角速度发生变化时,B中产生如图所示的方向的感应电流,则()A.A可能带正电且转速减小B.A可能带正电且转速增大C.A可能带负电且转速减小D.A可能带负电且转速增大【例2】著名物理学家弗曼曾设计过一个实验,如图所示.在一块绝缘板上中部安一个线圈,并接有电源,板的四周有许多带负电的小球,整个装置支撑起来.忽略各处的摩擦,当电源接通的瞬间下列关于圆盘的说法中,正确的是()A.圆盘将逆时针转动B.圆盘将顺时针转动C.圆盘不会转动D.无法确定圆盘是否会动【例3】如图所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A、B为该磁场的竖直边界.若不计空气阻力,则()A.圆环向右穿过磁场后,还能摆至原来的高度B.在进入和离开磁场时,圆环中均有感应电流C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大D.圆环最终将静止在平衡位置【例4】如图所示是利用高频交流电焊接自行车零件的原理示意图,其中外圈A是通高频交变电流的线圈,B是自行车零件,a是待焊接口,焊接时接口两端接触在一起.当A中通有交变电流时,B中会产生感应电流,使得接口处金属熔化焊接起来.(1)试分析说明,焊接的快慢与交变电流的频率有什么关系.(2)试分析说明,为什么焊接过程中,接口a处被熔化而零件的其他部分并不很热?五、电磁感应定律的应用(四类问题:图像、电路、力学和能量)1、图像问题图象类型(1)磁感应强度B、磁通量Φ、感应电动势E和感应电流I随时间t变化的图象,即B-t图象、Φ-t图象、E-t图象和I-t图象(2)对于切割磁感线产生感应电动势和感应电流的情况,还常涉及感应电动势E和感应电流I随线圈位移x变化的图象,即E-x图象和I-x图象问题类型(1)由给定的电磁感应过程选出或画出正确的图象(2)由给定的有关图象分析电磁感应过程,求解相应的物理量应用知识左手定则、安培定则、楞次定律、法拉第电磁感应定律、欧姆定律、牛顿定律、相关数学知识等2、电磁感应中的电路问题1.在电磁感应中,切割磁感线的导体或磁通量发生变化的回路将产生感应电动势,该导体或回路就相当于电源,将它们接上电容器,便可使电容器充电;将它们接上电阻等用电器,便可对用电器供电,在回路中形成电流.因此,电磁感应问题往往与电路问题联系在一起.2.解决与电路相联系的电磁感应问题的基本方法是:(1)用法拉第电磁感应定律和楞次定律确定感应电动势的大小和方向.(2)画等效电路.(3)运用全电路欧姆定律、串并联电路性质、电功率等公式联立求解.3.解决电磁感应的电路问题的四个注意:(1)注意有效切割长度;(2)注意有效接入长度;(3)注意有效面积;(4)注意有效包围.3、电磁感应现象中的力学问题1.通过导体的感应电流在磁场中将受到安培力作用,电磁感应问题往往和力学问题联系在一起,基本步骤是:(1)用法拉第电磁感应定律和楞次定律求感应电动势的大小和方向.(2)求回路中的电流强度.(3)分析研究导体受力情况(包含安培力,用左手定则确定其方向).(4)列动力学方程或平衡方程求解.2.对电磁感应现象中的力学问题,要抓好受力情况和运动情况的动态分析,导体受力运动产生感应电动势→感应电流→通电导体受安培力→合外力变化→加速度变化→速度变化→周而复始地循环,循环结束时,加速度等于零,导体达到稳定运动状态,要抓住a=0时,速度v达最大值的特点.4、电磁感应中的能量转化问题导体切割磁感线或闭合回路中磁通量发生变化,在回路中产生感应电流,机械能或其他形式的能量便转化为电能,具有感应电流的导体在磁场中受安培力作用或通过电阻发热,又可使电能转化为机械能或电阻的内能,因此,电磁感应过程总是伴随着能量转化,用能量转化观点研究电磁感应问题常是导体的稳定运动(匀速直线运动或匀速转动),对应的受力特点是合外力为零,能量转化过程常常是机械能转化为内能,解决这类问题的基本步骤是:1.用法拉第电磁感应定律和楞次定律确定电动势的大小和方向.2.画出等效电路,求出回路中电阻消耗电功率的表达式.3.分析导体机械能的变化,用能量守恒关系得到机械功率的改变与回路中电功率的改变所满足的方程.【典型例题】【例1】如图甲所示,平行于y 轴的导体棒以速度v 向右做匀速直线运动,经过半径为R 、磁感应强度为B 的圆形匀强磁场区域,导体棒中的感应电动势E 与导体棒位置x 关系的图象是( )【例2】如图所示中两条平行虚线之间存在匀强磁场.虚线间的距离为l ,磁场方向垂直纸面向里.abcd 是位于纸面内的梯形线圈,ad 与bc 间的距离也为l ,t =0时刻,bc 边与磁场区域边界重合(如图).现令线圈以恒定的速度v 沿垂直于磁场区域边界的方向穿过磁场区域,取沿a →b →c → d →a 的感应电流为正,则在线圈穿越磁场区域的过程中,感应电流I 随时间t 变化的图线可能是( B )【例3】质量为m 边长为L 的正方形线圈,线圈ab 边距离磁场边界为s ,线圈从静止开始在水平恒力F 的作用下,穿过如图所示的有界匀强磁场,磁场宽度为d (d <L ).若它与水平面间没有摩擦力的作用,ab 边刚进入磁场的速度与ab 边刚离开磁场时的速度相等.下列说法正确的是( )A.线圈进入磁场和离开磁场的过程通过线圈的电荷量不相等B.穿越磁场的过程中线圈的最小速度为md L s F )(2-+C.穿越磁场的过程中线圈的最大速度为22LB FRD.穿越磁场的过程中线圈消耗的电能为F (d +L )【例4】如图所示,在光滑水平面上有一竖直向下的匀强磁场,分布在宽度为L 的区域内,现有一边长为d (d <L )的正方形闭合线框以垂直于磁场边界的初速度v 0滑过磁场,线框刚好穿过磁场.则线框在滑进磁场的过程中产生的热量Q 1与滑出磁场的过程中产生的热量Q 2之比为( )A.1∶1B.2∶1C.3∶1D.4∶1【例5】(2008·山东)两根足够长的光滑导轨竖直放置,间距为L ,底端接阻值为R 的电阻,将质量为m 的金属棒悬挂在一个固定的轻弹簧下端,金属棒和导轨接触良好,导轨所在平面与磁感应强度为B 的匀强磁场垂直,如图所示.除电阻R 外其余电阻不计.现将金属棒从弹簧原长位置由静止释放,则( )A.释放瞬间金属棒的加速度等于重力加速度gB.金属棒向下运动时,流过电阻R 的电流方向为a →bC.电阻R 上产生的总热量等于金属棒重力势能的减少D.金属棒的速度为v 时,所受的安培力大小为F =B 2L 2vR【例6】如图所示,直角三角形导线框abc 固定在匀强磁场中,ab 是一段长为l 、电阻为R 的均匀导线,ac 和bc 的电阻可不计,ac 的长度为2l,磁场的磁感应强度为B ,方向垂直纸面向里.现有一段长度为2l 、电阻为2R 的均匀导体杆MN 架在导线框上,开始时紧靠ac ,然后沿ab 方向以恒定速度v 向b 端滑动,滑动中杆始终与ac 平行并与导线框保持良好接触.那么当MN 滑过的距离为3l时,导线ac 中的电流为多大?方向如何?【例7】光滑平行金属导轨在水平面内固定,导轨间距l =0.5 m ,导轨左端接阻值为R =2 Ω的电阻,右端接阻值为R L =4 Ω的小灯泡,导轨电阻不计.如图1所示,在导轨的MNQP 矩形区域内有竖直向上的磁场,MN 、PQ 间距d =2 m ,此区域磁感应强度B 随时间t 变化的规律如图2所示.垂直导轨跨接一金属杆,其电阻r =2 Ω.在t =0时刻,用水平恒力F 拉金属杆,使其由静止开始自GH 位置往右运动.在金属杆由GH 位置运动到PQ 位置的过程中,小灯泡的亮度始终没有变化,求:(1)通过小灯泡的电流; (2)金属杆的质量m .方向水平向里的匀强磁场.正方形线框abcd的质量为m,边长为L(L>h),电阻为R,线框平面与竖直平面平行,静止于位置“Ⅰ”时,cd边与磁场下边缘有一段距离H.现用一竖直向上的恒力F提线框,线框由位置“Ⅰ”无初速度向上运动,穿过磁场区域最后到达位置“Ⅱ”(ab边恰好出磁场),线框平面在运动中保持在竖直平面内,且ab边保持水平.当cd边刚进入磁场时,线框恰好开始匀速运动.空气阻力不计,g=10 m/s2.求:(1)线框进入磁场前距磁场下边界的距离H;(2)线框由位置“Ⅰ”到位置“Ⅱ”的过程中,恒力F做的功为多少?线框产生的热量为多少?属导体ab可在导轨上无摩擦地上下滑动,ab的电阻为0.4 Ω,导轨电阻不计,导轨ab的质量为0.2 g,垂直纸面向里的匀强磁场的磁感应强度为0.2 T,且磁场区域足够大,当ab导体自由下落0.4 s时,突然接通电键S,试说出S接通后,ab导体的运动情况.(g取10 m/s2)【例10】如图所示,倾角θ=30°、宽为L=1 m的足够长的U形场方向垂直导轨平面斜向上.现用一平行于导轨的牵引力F,牵引一根质量m=0.2 kg,电阻R=1 Ω的金属棒ab,由静止开始沿导轨向上移动(金属棒ab始终与导轨接触良好且垂直,不计导轨电阻及一切摩擦).问:(1)若牵引力是恒力,大小为9 N,则金属棒达到的稳定速度v1多大?(2)若牵引力的功率恒定,大小为72 W,则金属棒达到的稳定速度v2多大?。

相关文档
最新文档