七年级数学下册8.3实际问题与二元一次方程组(第2课时)导学案(无答案)(新版)新人教版

合集下载

初中数学人教新版七年级下册8.3 实际问题与二元一次方程组 教案2(下)

初中数学人教新版七年级下册8.3 实际问题与二元一次方程组 教案2(下)

初中数学人教新版七年级下册实用资料《实际问题与二元一次方程组》教案【学习目标】1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值.【重点与难点】1、借助列表分问题中所蕴含的数量关系.2、用列表的方式分析题目中的各个量的关系.【学习方法】观察法、列表法,讨论解决生活中的实际问题.自学:阅读课本100页探究3---101页完:1、题目直接设数较难,那么我们如何间接设未知数呢?销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设x吨,重y吨.2、仔细阅读探究3,并完成表格,寻找相等关系.由上表找到的等量关系是:3、根据上面的分析写出“探究3”完整的解题过程.研学1、刚才方程已经解出来,看看问题最终如何解决:毛利润-销售款-原料费-运输费的关系如何?所以这批产品的销售款比原料费与运输费的和多元.2、仿照自学部分独立完成一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?示学:1、自学部分独立完成8分钟,小组对照,补充学案.1题分别派2小C层展示,B层补充,2小题7组黑板展示.3小题B层展示.2、研学部分先独立完成9分钟,小组内对照讨论,B层展示其他小组质疑.2小题B层黑板展示.比比那组最好.3、方程组是解决含有多个未知数问题的重要工具,用方程组解决问题时,要根据问题中的数量关系列出方程组,求出方程组的解后,应进一步考虑它是否符合问题的实际意义.检学1、课本102第52、某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7.5%,问现在学校中男、女生各是多少?小结结合本节课的学习目标说一说本节课的收获:我学会了本节课我还不明白,我的表现.我应向学习.7C学科网,最大最全的中小学教育资源网站,教学资料详细分类下载!。

七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程组第2课时教案新新人教

七年级数学下册第八章二元一次方程组8.3实际问题与二元一次方程组第2课时教案新新人教

8.3 实际问题与二元一次方程组第2课时【教学目标】知识技能目标1.能够找出实际问题中的已知数和未知数,分析它们之间的等量关系,列出方程组,并解决生活中一些实际问题.2.在列方程组建模的过程中,强化方程的模型思想.过程性目标让学生进一步经历和体验列方程组解决实际问题的过程,体会方程(组)是刻画现实世界的有效数学模型,培养学生数学应用能力.情感态度目标通过列方程组解决实际问题,培养学生应用数学的意识,提高学生学习数学的趣味性、现实性和科学性. 【重点难点】重点:根据简单应用题的题意列出二元一次方程组.难点:将实际情景中的数量关系抽取出来,并用二元一次方程组表示.【教学过程】一、创设情境最近几年,全国各地普遍出现了夏季用电紧张的局面,为疏导电价矛盾,促进居民节约用电、合理用电,各地出台了峰谷电价试点方案.电力行业中峰谷的含义是用山峰和山谷来形象地比喻用电负荷特性的变化幅度,一般白天的用电比较集中、用电功率比较大,而夜里人们休息时用电比较少,所以通常白天的用电称为是高峰用电,即8:00~22:00,深夜的用电是低谷用电即22:00~次日8:00.若某地的高峰电价为每千瓦时0.56元;低谷电价为每千瓦时0.28元.八月份小彬家的总用电量为125千瓦时,总电费为49元,你知道他家高峰用电量和低谷用电量各是多少千瓦时吗?学生独立思考,容易解答.二、新知探究探究点1:图表信息问题例1 (教材P100探究3)问题1:“1.2元/(t·km)”是什么意思?问题2:销售款与哪种量有关?原料费与哪种量有关?问题3:公路运费和铁路运费与哪些量有关?问题4:题中包含哪些等量关系?问题5:你能完成下面的表格吗?问题6:现在,你能解决这个问题了吗?探究点2:产品配套问题例2 (教材P102T4变形题)某车间有22名工人,每人每天可以生产1 200个螺钉或2 000个螺母.1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套,应安排生产螺钉和螺母的工人各多少名?分析:1.将题中出现的量在表格中呈现2.本题中的等量关系有哪些?如何列方程?探究点3:方案设计类问题例3 某客运公司,有大小两种客车.已知3辆小客车和1辆大客车每次可运送105人,1辆小客车和2辆大客车每次可运送110人,问每辆小客车和每辆大客车各能坐多少人?[变式一]题目条件不变,有400名学生到郊外参加植树活动,若计划租该公司小客车m辆,大客车n辆,一次送完,且恰好每辆车都坐满.请你设计出所有的租车方案.[变式二]若小客车每辆租金150元,大客车每辆租金250元,请选出最省钱的租车方案,并求出最少的租金.三、检测反馈1.陈老师打算购买气球装扮学校“六一”儿童节活动会场,气球的种类有笑脸和爱心两种,两种气球的价格不同,但同一种气球的价格相同,由于会场布置需要,购买时以一束(4个气球)为单位,已知第一、二束气球的价格如图所示,则第三束气球的价格为( )A.19B.18C.16D.152.某市准备对一段长120 m的河道进行清淤疏通,若甲工程队先用4天单独完成其中一部分河道的疏通任务,则余下的任务由乙工程队单独完成需要9天;若甲工程队单独工作8天,则余下的任务由乙工程队单独完成需要3天;设甲工程队平均每天疏通河道x m,乙工程队平均每天疏通河道y m,则(x+y)的值为( )A.5B.10C.15D.203.某超市为“开业三周年”举行了店庆活动,对A,B两种商品实行打折出售.打折前,购买5件A商品和1件B商品需用84元;购买6件A商品和3件B商品需用108元,而店庆期间,购买50件A商品和50件B商品仅需960元,这比不打折少花多少钱?4.一个工厂共42名工人,每个工人平均每小时生产圆形铁片120片或长方形铁片80片.已知两片圆形铁片与一片长方形铁片可以组成一个圆柱形密封的铁桶.你认为如何安排工人的生产,才能使每天生产的铁片正好配套?5.某牛奶加工厂现有鲜奶9吨,若在市场上直接销售鲜奶,每吨可获利润500元,若制成酸奶销售,每吨可获利润1200元,若制成奶片销售,每吨可获利润2000元.该厂生产能力如下:每天可加工3吨酸奶或1吨奶片,受人员的限制,两种方式不能同时进行,受季节的限制,这批鲜奶必须在4天内加工并销售完毕,为此该厂制定了两套方案:方案一:尽可能多的制成奶片,其余直接销售鲜奶.方案二:将一部分制成奶片,其余制成酸奶销售,并恰好4天完成你认为哪种方案获利最多,为什么?四、本课小结这节课我们借助了列表来分析具体问题中蕴含的数量关系,使题目中的相等关系随之而清晰地浮现出来,我们采取了间接设未知数列出方程组的方式,并通过解二元一次方程组使问题得以解决,提高了列方程组的技能.五、布置作业课本第102页习题8.3第5,7,8题六、板书设计七、教学反思此课的重点应该是使学生在探究如何应用二元一次方程组解决实际问题的过程中,进一步提高分析问题中的数量关系、设未知数、列方程组并解方程组、检验结果的合理性等能力,感受建立数学模型的作用.教学中应该根据学生的实际,选取学生熟悉的背景,让学生体会数学建模的思想.在教学中应发挥学生自主学习的积极性,引导学生先独立探究,再进行合作交流,倡导学生自主学习,自主探索,自我发现,学会合作.本课更为关注建立二元一次方程组数学模型的“探究”过程.它不仅为解决实际问题提供了重要策略,而且为数学交流提供了有效的途径,它的模型化的方法,合理化的思想意识为学生解决实际问题提供了理论上的科学依据.。

七年级数学下册《8.3.2实际问题与二元一次方程组(第二课时)》教案(新版)新人教版

七年级数学下册《8.3.2实际问题与二元一次方程组(第二课时)》教案(新版)新人教版

七年级数学下册《8.3.2实际问题与二元一次方程组(第二课时)》教案(新版)新人教版《8.3.2实际问题与二元一次方程组(第二课时)》教案(一)创设情景,导入新课据以往的统计资料,甲、乙两种作物的单位面积产量的比是1:1.5,现在在一块长200m ,宽100m 的长方形土地上种这两种作物,怎样把这块地分为两个长方形,使甲、乙两种作物的总产量的比是3:4(结果取整数)?交流在这个题目中,你认为有哪些问题。

(二)合作交流,解读探究问题1.“甲、乙两种作物的单位面积产量比是1:1.5”是什么意思?2.“甲、乙两种作物的总产量的比是3:4”是什么意思?3.本题有哪些等量关系?[点拨] 若甲种作物单位产量是a ,那么乙种作物单位产量是多少?[分析] 如图8-3-1所示,一种种植方案为:甲、乙两种作物的种植区域分别为长方形AEFD 和BC FE.设AE=x m ,BE=y m ,根据问题中涉及长度、产量的数量关系,列方程组=?=+4:3)5.1100(:)100(200a y xa y x 解这个方程组得==94 106y x 答:这两个长方形是在长方形ABCD 读地的长边上高A 约106米处把这块地分为两个长方形,较大一块种甲种作物,较小的一块种乙种作物.[思考] 这块地还可以怎样分?[练一练] 根据市场调查,某种消毒液的大瓶装(500g )和小瓶装(250g )两种产品的销售数量比(按瓶计算)为2:5.某厂每天生产这种消毒液22.5瓶,这些消毒液应该分装大、小瓶装两种产品各多少瓶?(三)应用迁移,巩固提高例1 两种枕木共300根,甲种枕木的总重量比乙种枕木的总重量轻1吨.如果每根枕木甲种重46千克,乙种重28千克,两种枕木个多少根?[点拨] 已知量未知量枕木总根数300甲种枕木每根重46千克甲种枕木的根数乙种枕木每根重28千克乙种枕木的根数等量关系:甲种枕木数+乙种枕木数=枕木总数300乙种枕木总重量-甲种枕木总重量=1000解:设甲种枕木x 根,乙种枕木y 根,根据题意得=-=+10004628,300x y y x 解这个方程组得?==200100y x 答:略.例2 蔬菜批发站有一批青菜分给两个学校的食堂,甲校食堂分得的5倍比乙校食堂分得的6倍少10 kg ;甲校食堂分得的3倍与乙校食堂分得的2倍的和是470 kg.甲、乙两校食堂分得青菜多少?[点拨] 题中有两个未知数——甲食堂分得的青菜数与乙食堂分得的青菜数.题中有两个相等关系:(1)乙校食堂分得的6倍-甲校食堂分得的5倍=10 kg ;(2)乙校食堂分得的2倍+甲校食堂分得的3倍=470 k g.例3 某单位外出参观.若每辆汽车坐45人,那么15人没有座位;若每辆汽车坐60人,则空出一辆汽车,问共需几辆汽车,该单位有几个人?[点拨] 1.题目中的已知条件是什么?2.“有人没有座位”是指什么意思?“有空座位”是什么意思?3.基于上述分析,那么已知条件“每辆汽车坐45人,那么15人没有座位”可理解什么?“每辆汽车坐60人,则空出一辆汽车”又可理解成什么?(由学生通过上述分析,自己设未知数,列方程组求解)[备选例题] 为满足市民对优质教育的需求,某中学决定改变办学条件,计划拆除一部分旧校舍、建新校舍.拆除旧校舍每平方米需80元,建造新校舍每平方米需700元.计划在年内拆除旧校舍与建新校舍共7200平方米,在实施中为扩大绿化面积,新建校舍只完成了计划的80%,而拆除校舍则超过了10%,结果恰好完成了原计划的拆、除的总面积.(1)求原计划拆建面积各多少平方米?(2)若绿化1平方米需200元,那么在实际完成的拆、建工程中节余的资金用来绿化大约是多少平方米(四)总结反思,拓展升华小结用二元一次方程组解实际问题的步骤是什么?拓展为了解决农民工子女入学难的问题,重庆市建立了一套进城农民工子女就学的保障机制,其中一项就是免交“借读费”.根据统计,2004年秋季有5000名农民工子女进入主城区中小学学习,预测2005年秋季进入主城区中小学学习的农民该子女将比2004年有所增加,其小学增加20%,中学增加30%,这样,2005年秋季将新增1160名农民子女在主城区中小学学习.(1)如果按小学每生每年收“借读费”500元,中学每生每年收“借读费”1000元计算.求2005年新增的1160名中小学生共免收多少“借读费”?(2)如果按小学每40名学生配备2名教师,中学每40名学生配备3名教师,若按2005年秋季入学后,农民工子女在主城区中小学就读的学生人数计算,一共需要配备多少名中小学教师?(五)课堂跟踪反馈1.学校购买35张电影票共用250元,其中甲种票每张8元,乙种票每张6元,设甲种票x张,乙种票y张,则列方程组,方程组的解是2.一根木棒长8米,分成两段,其中一段比另一段长1米,求这两段的长时,设其中一段为x米,另一段为y米,那么列的二元一次方程组为 .3.一个矩形周长为20cm,且长比宽大2cm,则矩形的长为 cm,宽为 cm.。

人教版初中数学七年级下册8.3实际问题和二元一次方程组(2)导学案 (无答案)

人教版初中数学七年级下册8.3实际问题和二元一次方程组(2)导学案 (无答案)

人教版初中数学七年级下册8.3实际问题与二元一次方程组(2)导学案学习目标:1、经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、能够找出实际问题中的已知数和未知数,分析它们之间的数量关系,列出方程组;3、学会开放性地寻求设计方案,培养分析问题,解决问题的能力;一、知识回顾1、列二元一次方程组解决实际问题的一般步骤是什么?(1)审清题意,找出已知量、未知量和等量关系;(2)设未知数,用两个字母表示问题中的两个未知数;(3)列方程组,依据等量关系列出与未知数个数相等的方程,组成方程组;(4)解方程组,得到方程组的解;(5)检验,检验求得的未知数的值是否符合实际问题的意义;(6)写答案。

二、探究新知1、做一做(1)把长方形纸片折成面积相等的两个小长方形,有哪些折法?(2)把长方形纸片折成面积之比为1:2的两个小长方形,又有哪些折法?2、认真阅读课本99页探究2,思考以下几个问题:据统计资料,甲、乙两种作物的单位面积产量的比是1:2,现要把一块长200m,宽100m 的长方形土地,分为两块小长方形土地,分别种植这两种作物,怎样划分这块土地,使甲、乙两种作物的总产量的比是3:4?问题:(1)什么是单位面积的产量?(2)甲、乙两种作物的单位面积产量的比是1:2是什么意思?(3)什么是总产量?(4)甲、乙两种作物的单位面积产量的比是1:2,那么甲、乙两种作物的总产量的比与种植面积的比有什么关系?(5)分割这块长方形土地有几种方法?(6)此题怎样设未知数?(7)此题有哪些相等关系?3、根据我们的思考,同学们把问题的解答过程完整的写出来吧!4、你还能设计别的种植方案吗?请写出来。

三、课堂练习1、如图,某单位为提高绿化品位,美化环境,准备将一块周长为76m的长方形操场,设计分成长和宽分别相等的9块小长方形,种上各种花卉,经市场预测,绿化每平方米造价为108元,计算完成这次绿化工程预计投入多少资金?2、一个长方形,它的长减少4cm,宽增加2cm,所得的是一个正方形,它的面积与长方形的面积相等,求原长方形的长与宽。

2019年七年级数学下册 8.3 实际问题与二元一次方程组导学案(新版)新人教版 .doc

2019年七年级数学下册 8.3 实际问题与二元一次方程组导学案(新版)新人教版 .doc

2019年七年级数学下册 8.3 实际问题与二元一次方程组导学案(新版)新人教版【学习目标】1、会借助二元一次方程组解决简单的实际问题。

2、进一步体会“分析数量关系,设未知数,列方程组,解方程组和检验结果”的过程,学会通过精确计算验证估计值的准确程度。

【学习重、难点】1、能根据题意列二元一次方程组;2、正确找出问题中的两个等量关系一、【复习】1、解二元一次方程组有哪些方法?2、列二元一次方程组解决实际问题的一般步骤是什么?二、【自主学习】课本99页探究11、本题中有哪些已知量?哪些未知量?2、本题中等量关系有哪些?分别是:①()②()解:设平均每只母牛和每只小牛1天各需用饲料为x kg和y kg根据题意列方程,得解这个方程组得答:每只母牛和每只小牛1天各需用饲料为()和(),饲料员李大叔估计每天母牛需用饲料18—20千克,每只小牛一天需用7到8千克与计算()出入。

(“有”或“没有”)归纳:1.列方程组解应用题是把“未知”转化为“已知”的重要方法,它的关键是把已知量和未知量联系起来,找出题目中的()2.一般来说,有几个未知量就必须列几个方程,所列方程必须满足:(1)方程两边表示的是()量;(2)同类量的单位要()(3)方程两边的数值要相符。

3.列方程组解应用题要注意检验和作答,检验不仅要求所得的解是否(),更重要的是要检验所求得的结果是否()二、【合作探究】1、某所中学现在有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?等量关系:①( );②( )2、有大小两辆货车,2辆大车与3辆小车一次可以支货15吨,5辆大车与6辆小车一次可以支货35吨,求1辆大车与1辆小车一次分别可以运货多少吨?等量关系:①( );②( )三、【达标测评】1、某工厂第一车间比第二车间人数的54少30人,如果从第二车间调出10人到第一车间,则第一车间的人数是第二车间的43,问这两车间原有多少人? 等量关系:①( );②( )2、某运输队送一批货物,原计划20天完成。

初中数学人教新版七年级下册(新):8.3《实际问题与二元一次方程组》教案(2)

初中数学人教新版七年级下册(新):8.3《实际问题与二元一次方程组》教案(2)

初中数学人教新版七年级下册实用资料《实际问题与二元一次方程组》教案【学习目标】1、进一步经历用方程组解决实际问题的过程,体会方程组是刻画现实世界的有效数学模型;2、会用列表的方式分析问题中所蕴涵的数量关系,列出二元一次方程组;3、培养分析问题、解决问题的能力,进一步体会二元一次方程组的应用价值.【重点与难点】1、借助列表分问题中所蕴含的数量关系.2、用列表的方式分析题目中的各个量的关系.【学习方法】观察法、列表法,讨论解决生活中的实际问题.自学:阅读课本100页探究3---101页完:1、题目直接设数较难,那么我们如何间接设未知数呢?销售款与产品数量有关,原料费与原料数量有关,而公路运费和铁路运费与产品数量和原料数量都有关.因此设x吨,重y吨.2、仔细阅读探究3,并完成表格,寻找相等关系.由上表找到的等量关系是:3、根据上面的分析写出“探究3”完整的解题过程.研学1、刚才方程已经解出来,看看问题最终如何解决:毛利润-销售款-原料费-运输费的关系如何?所以这批产品的销售款比原料费与运输费的和多元.2、仿照自学部分独立完成一批蔬菜要运往某批发市场,菜农准备租用汽车公司的甲、乙两种货车.已知过去两次租用这两种货车的记录如下表所示.这批蔬菜需租用5辆甲种货车、2辆乙种货车刚好一次运完,如果每吨付20元运费,问:菜农应付运费多少元?示学:1、自学部分独立完成8分钟,小组对照,补充学案.1题分别派2小C层展示,B层补充,2小题7组黑板展示.3小题B层展示.2、研学部分先独立完成9分钟,小组内对照讨论,B层展示其他小组质疑.2小题B层黑板展示.比比那组最好.3、方程组是解决含有多个未知数问题的重要工具,用方程组解决问题时,要根据问题中的数量关系列出方程组,求出方程组的解后,应进一步考虑它是否符合问题的实际意义.检学1、课本102第52、某学校现有学生数1290人,与去年相比,男生增加20%,女生减少10%,学生总数增加7.5%,问现在学校中男、女生各是多少?小结结合本节课的学习目标说一说本节课的收获:我学会了本节课我还不明白,我的表现 .我应向学习.。

七年级数学下册 第8章 二元一次方程组 8.3 实际问题与二元一次方程组导学案(无答案)(新版)新人教版

七年级数学下册 第8章 二元一次方程组 8.3 实际问题与二元一次方程组导学案(无答案)(新版)新人教版

8、3实际问题与二元一次方程组 ---利润问题德育目标:观察、归纳、推理对数学知识中获取数学猜想和论证的重要作用,在独立思考和小组交流中学习。

学习目标:会列二元一次方程组解利润、利息问题学习重点:列二元一次方程组解利润问题学习难点:寻找复杂的利润问题中的等量关系学习过程:一、课堂引入:(知识复习)问题引入:利润问题中的进价、售价、利润、利润率之间的关系是怎样的?利润问题中的标价、售价、折扣之间的关系是怎样的?利息问题中的利息如何求?辅导教师:帮助学生弄清进价、售价、利润、利润率之间的关系。

二、自学教材学生自学课本三、自学例题:例1、甲、乙两件服装的成本共500元,商店老板为获取利润,决定将甲服装按50﹪的利润定价,乙服装按40﹪的利润定价。

在实际出售时,应顾客要求,两件服装均按9折出售,这样商店共获利157元,求甲、乙两件服装的成本各是多少元?分析:①、题中50﹪、40﹪指的是什么?②、9折出售是什么意思?③、若设甲服装的成本为x元,乙服装的成本为y元,则甲服装的定价为元,乙服装的定价为元。

④、题中有哪些相等关系?例2、李明以两种形式分别储蓄了2000元与1000元,一年后全部取出,扣除利息所得税可得利息43.92元,已知两种储蓄年利率的和为3.24%,问这两种储蓄的年利率各是百分之几?(注:公民应交利息所得税=利息金额×20%)。

分析:①设2000元的年利率为x,则一年后的利息是元,利息税是元②设1000元的年利率为y,则一年后的利息是元,利息税是元辅导教师:帮助学生弄清题意,列出方程组四、当堂练习。

(学生活动:先进行小组讨论,然后独立完成,再进行小组交流和评价)(A组) 1、某市场购进甲、乙两种商品共50件,甲种商品进价每件35元,利润率是20%,乙种商品进价每件20元,利润率是15%,共获利278元,问甲、乙两种商品各购进了多少件?2、某商场按定价销售某种电器时,每台可获利48元,按定价的九折销售该电器6台与将定价降低30元销售该电器9台所获得的利润相等。

人教版七年级下册数学 实际问题与二元一次方程组(2)(导学案)

人教版七年级下册数学 实际问题与二元一次方程组(2)(导学案)

8.3 实际问题与二元一次方程组上信中学陈道锋第2课时实际问题与二元一次方程组(2)——探究2一、导学1.导入课题:上节课我们学习了运用方程组解决一些实际问题,这节课我们继续学习建立二元一次方程组的数学模型解应用题.2.学习目标:(1)在对各类应用题的解答过程中,学会构建二元一次方程组的数学模型.(2)养成自觉反思求解过程和自觉检验方程的解是否正确的良好习惯. 3.学习重点、难点:运用二元一次方程组解决有关设计的应用题.4.自学指导:(1)自学内容:课本P99探究2.(2)自学时间:10分钟.(3)自学要求:画出示意图,借助图形直观地分析理解题意.(4)探究提纲:①这里研究的实际上是长方形的面积的分割问题,你能画出示意图来帮助自己理解吗?②把一个长方形分成两个小长方形,有哪些分割方式?若保持宽不变,把长分成两段(即竖向分割,如上图所示),左边种植甲种作物,右边种植乙种作物,设AE=xm,BE=ym.(a)根据原长方形的长为200m,可列出方程:x+y=200.(b)因为长方形宽为100m,所以两小长方形面积分别为100xm2,100ym2,又因为甲、乙两种作物的单位面积产量比为1∶2,所以甲、乙两种作物的总产量比可表示为100x∶200y,于是再由甲、乙两种作物的总产量比为3∶4,列出方程:100x∶200y=3∶4.③你能求出由②中(a)、(b)的方程联立组成的方程组的解吗?④根据求出的结果应如何表述你的种植方案?⑤你还能设计其他种植方案吗(如右图)?二、自学同学们结合探究提纲相互研讨学习.三、助学1.师助生:(1)明了学情:教师深入课堂,了解学生的自学进度和自学中存在的问题.①能否顺利表示出甲、乙两种作物的总产量的比.②能否求出方程组的解并规范作答.(2)差异指导:对少数学有困难和学法不当的学生进行点拨引导.2.生助生:小组内学生之间相互交流、研讨、互帮互学.四、强化1.列二元一次方程组解应用题的一般步骤.2.展示设计出的其他种植方案,并相互交流.五、评价1.学生的自我评价:各小组代表介绍本组的学习得与失.2.教师对学生的评价:(1)表现性评价:学生在学习中的态度、方法和收效进行点评.(2)纸笔评价:课堂评价检测.3.教师的自我评价(教学反思):本课用二元一次方程组解决问题的教学过程充分体现了以学生为主体,让学生积极参与的教学模式,充分发挥了学生的主动意识.在解决问题过程中学生的各种解题方法,扩大了学生的思维能力,通过让学生体验解题的技巧,从而树立了学生学习的信心,激发了学生学习的积极性,让学生真正成为课堂的主人.(时间:12分钟满分:100分)一、基础巩固(60分)1.(20分)如图,AB⊥BC,∠ABD的度数比∠DBC度数的2倍少15°,设∠ABD与∠DBC的度数分别为x°、y°。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

利用二元一次方程组解决较复杂的实际问题
【学习目标】
1.会借助二元一次方程组解决简单的实际问题,再次体会二元一次方程组与现实生活的联系和作用;
2.通过应用题学习进一步使用代数中的方程去反映现实世界中等量关系,体会代数方法的优越性;
3.体会列方程组比列一元一次方程容易。

【学习重点与难点】
1.学习重点:通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题。

2.学习难点:通过实践与探索,运用二元一次方程组解决有关配套与设计的应用题。

【学习过程】 一、自主学习
二、合作探究
探究用二元一次方程组解决实际问题
(先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流与评价) 据统计资料,甲、乙两种作物的单位面积产量的比是1∶1.5.现要把一块长200m ,宽100m 的长方形土地,分为两块小长方形土地,分别种植这两种作物.怎样划分这块土地,使甲、乙两种作物的总产量的比是3∶4(结果取整数)? ⑴“甲、乙两种作物的单位面积产量比是1∶1.5”是什么意思?
⑵“甲、乙两种作物的总产量比为3∶4”是什么意思?
⑶本题中有哪些等量关系?
⑷如下图,一种种植方案为:甲、乙两种作物的种植区域分别为长方形AEFD 和BCFE. 此时设AE =xm ,BE =ym ,根据问题中涉及长度、产量的数量关系,列方程组
_______________,
_______________.⎧⎨⎩
解这个方程组,得
___,___.x y =⎧⎨=⎩
过长方形土地的长边上离一端约______处,把这块土地分为两块长方形土地.较大的一块土地种___种作物,较小的一块土地种____种作物.
⑸你还能设计其他种植方案吗?试试看.
练一练(先独立思考,后小组交流)
某农场300名职工耕种51公顷土地,计划种植水稻、棉花和蔬菜,已知种植植物每公顷所需的劳动力人数及投入的设备资金如下表:
已知该农场计划在设备投入67万元,应该怎样安排这三种作物的种植面积,才能使所有职工都有工作,而且投入的资金正好够用?
活动1 探究用二元一次方程组解决实际问题
(先独立分析问题中的数量关系,列出方程组,得出问题的解答,然后再互相交流与评价) 如图,长青化工厂与A ,B 两地有公路、铁路相连.这家工厂从A 地购买一批每吨1000元的原料运回工厂,制成每吨8000元的产品运到B 地.已知公路运价为1.5元(吨·千米),铁路运价为1.2元(吨·千米),且这两次运输共支出公路运费15000元,铁路运费97200元.这批产品的销售款比原料费与运输费的和多多少元?
⑴销售款与什么有关?原料费与什么有关?
⑵设产品重x 吨,原料重y 吨.根据题中数量关系填写下表.
⑶题目所求的数值是________________________________,为此需先解出___与____ . ⑷由上表,列方程组
⑸解这个方程组,得
____,____.x y
=⎧⎨=⎩
因此,这批产品的销售款比原料费与运输费的和多 ________________________元.
从以上探究可以看出,方程组是解决含有多个未知数问题的重要工具.要根据问题中的数量关系列出方程组,解出方程组的解后,应进一步考虑它是否符合问题的实际意义.
活动2 练习
医院用甲、乙两种原料为手术后的病人配制营养品,每克甲原料含0.5单位蛋白质和1单位铁质,每克乙原料含0.7单位蛋白质和0.4单位铁质.若病人每餐需要35单位蛋白质和40单位铁质,那么每餐甲、乙两种原料各多少克恰好满足病人的需要?
(小组共同讨论思路,完成后交流心得体会)
三、达标测试
1. 木工厂有56个工人,2个工人一天可以加工3张桌子,3个工人一天可加工10把椅子,现在如何安排劳动力,使生产的一张桌子与4把椅子配套?
2.用白铁皮做罐头盒.每张铁皮可制盒身25个或制盒底40个,一个盒身与两个盒底配成一套罐头盒.现有36张白铁皮,用多少张制盒身,多少张制盒底可以使盒身与盒底正好配套?
3.某所中学现在有学生4200人,计划一年后初中在校生增加8%,高中在校生增加11%,这样全校学生将增加10%,这所学校现在的初中在校生和高中在校生人数各是多少人?
4.打折前,买60件A商品和30件B商品用了1080元,买50件A商品和10件B商品用了840元.打折后,买500件A商品和500件B商品用了9600元.比不打折少花多少钱?
四、我的感悟
这节课我的最大收获是:我不能解决的问题是:五、课后反思。

相关文档
最新文档