高中数学教案,函数零点
函数的零点与方程的解教学设计

函数的零点与方程的解教学设计零点和方程的解是数学中非常重要的概念。
它们在高中数学中被广泛讨论和应用。
为了帮助学生更好地理解和掌握函数的零点和方程的解,本文将介绍一个教学设计方案,包括教学目标、教学内容、教学方法和评价方式。
一、教学目标通过本次教学设计,学生将能够:1. 理解函数的零点和方程的解的概念;2. 掌握求解函数零点和方程的解的方法;3. 运用所学知识解决实际问题;4. 培养分析问题和解决问题的能力。
二、教学内容1. 函数的零点的概念和表示方法;2. 方程的解的概念和表示方法;3. 求解一元一次方程的方法;4. 求解一元二次方程的方法。
三、教学方法1. 导入:通过提出一个实际问题引入函数的零点和方程的解的概念,引发学生的思考和兴趣。
2. 概念讲解:以简明扼要的方式介绍函数的零点和方程的解的概念,帮助学生理解其含义和作用。
3. 解题演示:示范一些简单的例题,详细解释求解过程,并注重解题思路和方法的讲解。
4. 练习巩固:提供一些有代表性的练习题供学生独立完成,鼓励学生多思考、多实践,巩固所学知识。
5. 拓展应用:引导学生将所学知识应用于实际问题,如求解图像与坐标轴交点的问题、求解实际情景中的一元一次方程和一元二次方程。
四、评价方式1. 写作评价:要求学生写一篇关于函数的零点和方程的解的应用的文章,检验学生对所学知识的理解和应用能力。
2. 问题解答:设计一些问题,要求学生口头回答,并根据回答的准确程度进行评价。
3. 实践能力评估:提供一些实际问题,要求学生用数学知识进行分析和解决,评价学生的实践能力和解决问题的能力。
4. 合作学习评价:鼓励学生在小组合作中进行讨论和交流,评价学生的合作与交流能力。
在教学过程中,需要教师合理安排时间,注重知识的讲解和练习的结合,同时给予学生充分发挥的空间,提高他们的主动性和创造性思维。
通过合理的评价方式,能够全面地评估学生的学习情况和能力水平。
综上所述,通过本次教学设计,学生将能够深入理解函数的零点和方程的解的概念,并掌握应用各种方法求解函数和方程的技巧。
高中数学解决零点问题教案

高中数学解决零点问题教案
一、教学目标
1. 理解零点的概念,掌握零点问题的解决方法。
2. 学会利用函数图象、方程、不等式等方法求解零点问题。
3. 培养学生的数学思维和问题解决能力。
二、教学内容
1. 零点的概念及意义。
2. 零点问题的解决方法。
3. 利用函数图象、方程、不等式等方法求解零点问题。
三、教学过程
1. 引入:通过一个简单的例子引入零点概念,让学生了解什么是零点。
2. 授课:介绍零点问题的解决方法,包括利用函数图象、方程、不等式等方法求解零点问题的基本步骤。
3. 案例分析:给学生若干个实际问题,并引导他们分析问题,利用所学知识解决问题。
4. 练习:让学生进行练习,巩固所学内容。
5. 总结:总结本节课所学内容,并强调方法的运用和注意事项。
四、教学要点
1. 熟练掌握零点的概念及其解决方法。
2. 学会运用函数图象、方程、不等式等方法解决零点问题。
3. 注意理解问题的意义,加强实际问题的练习。
五、教学辅助
1. 教材课件
2. 案例练习册
六、教学效果评估
1. 课堂提问:通过提问学生并解答问题来评估学生的理解程度。
2. 练习成绩:通过练习册的成绩来评估学生的掌握程度。
3. 课堂表现:通过观察学生的课堂表现来评估学习态度和参与度。
七、教学反馈
1. 及时对学生的练习册进行批改和评价。
2. 分析学生在学习中的问题和不足,及时进行指导和辅导。
函数零点的教案范文

函数零点的教案范文教案:介绍函数零点的概念和求解方法教学目标:1.了解函数零点的定义和性质;2.掌握求解函数零点的方法;3.能够应用所学知识解决实际问题。
教学步骤:导入:教师可先出示一个函数的图像,让学生观察并描述该函数图像的特点。
然后引导学生思考:在函数图像上,哪些点的纵坐标为0?导入部分旨在激发学生对函数零点的兴趣,并引导学生思考函数零点的概念以及与函数图像的关系。
1.函数零点的定义通过引导学生观察上面所出示的函数图像,让学生总结函数零点的概念并给出一个准确的定义。
函数零点是指函数图像与x轴相交的点,即函数在该点的纵坐标为0。
2.函数零点的性质通过带入函数的定义,让学生发现函数的零点一定是函数图像与x轴相交的点,即函数的图像在零点处与x轴相切。
同时,函数的零点可能有多个,也可能没有零点。
3.求解函数零点的方法3.1图像法通过观察函数的图像,通过估计的方式找出函数的零点的大致位置。
然后可以使用迭代的方法,逐步逼近零点的精确值。
教师可通过实例演示这一方法,并让学生尝试解决一个自己设计的例子。
3.2代数法对于一次函数,例如$f(x)=ax+b$,很容易通过解一元一次方程的方法求得零点。
而对于二次函数,可以通过配方法、求根公式或因式分解等方法求解零点。
对于高次函数,可以使用数值法(二进制逼近等方法)或计算机求解。
4.应用实例通过出示一些实际问题,引导学生将问题抽象成函数,再求解函数的零点。
例如,已知一物体由静止开始自由落体,确定物体从落下到落地花费的时间。
巩固与拓展:学生通过上面的学习,已经初步掌握了求解函数零点的方法。
在巩固部分,教师可设计一些练习题,在课堂上适当给予时间让学生独立解答,并批改作业。
在拓展部分,教师可给学生提供一些更复杂的函数,让学生应用所学知识求解其零点,并引导学生思考函数零点的应用领域。
小结与归纳:教师通过对本节课的内容进行小结和归纳,再次强调函数零点的定义和求解方法,并与学生共同总结函数零点的概念、性质以及求解方法。
人教新课标高中数学B版必修1《2.4.1 函数的零点》教学设计(表格式)

2.4.1《函数的零点》教学设计课题:函数的零点教材:人教B版新课标高中数学必修1教学内容:第二章函数2.4.1函数的零点教材分析:一.教材的地位和作用本课时主要学习函数的零点,通过研究二次函数的图象性质归纳函数的零点的性质。
本节课的内容起到了承上启下的作用。
本节课重点在于研究函数的零点概念及其存在性,函数零点的概念及求法,函数零点与方程根之间的关系。
难点是理解方程的根与函数零点的关系,利用函数的零点作图。
通过本节课的学习进一步加深学生对函数概念及性质的理解和认识,使学生能够整理出较为系统的函数知识体系和完整的思维方式方法,并由此及彼,帮助后面函数的学习。
二.教学目标:1.知识目标:(1)理解函数零点的定义,能判断二次函数零点的存在性;(2)会求简单函数的零点。
理解函数零点和方程的根的关系。
(3)理解函数零点存在的判定条件。
2.能力目标:通过充分运用函数与方程,数形结合的数学思想方法教学,体验函数零点概念的形成过程,体会数形结合、等价转化的数学思想.同时注重培养学生对于解题方法的灵活性和多样性的掌握。
3.情感态度与价值观目标:感悟形与数不同的数学形态间的和谐统一美,培养学生对事物之间转化的辩证唯物主义观点的认识三.教学重点和难点重点:函数零点的概念及求法,函数零点与方程根之间的关系难点:理解方程的根与函数零点的关系,利用函数的零点作图.教学关键点:从实际出发,在学生获得一定感性认识的基础上,通过观察,比较,归纳进一步提升到理性认识,逐步形成完整的概念,在此基础上结合图象,运用数学结合的数学思想解决问题。
学情分析:学生已经学习过函数的基本性质,本节课函数关系的建立做好了知识准备,在此基础上进行函数的零点的学习,可以将对函数的认识进一步系统化和完善化。
教法分析:(一)教学方式教师引导,学生讨论,与启发探究相结合。
(二)教学手段借助几何画板和函数编辑器等教学软件和投影仪等,展示学生的做图结果,并演示高次函数的图像。
人教B版必修一高中数学第二章第四节《函数的零点》教案

人教B版《必修一》第二章第四节《函数的零点》(第一课时)【教材分析与学情分析】1.本节课是人教B版《必修一》第二章第四节“函数与方程”的第一课时。
高一学生在学习本节内容之前,对三次函数的了解仅限于第二章的幂函数;而利用函数零点与方程根的关系作图也仅限于二次函数。
随着学习内容的加深与扩展,本节课的设计对学生来说,是一次思想方法上的突破和学习观念的提升。
2.任教班级学生数学基础良好。
【课型】新授课【教学目标】1.能说出函数零点的定义,会求简单函数的零点。
2.经历二次函数零点性质推广到一般连续函数的过程,体会“函数与方程”、“转化与化归”、、“数形结合”的数学精神。
3. 用数学的眼光发现问题,并用数学知识方法给予解决;在学习新知的过程中,体会数学的应用价值;树立正确的人生观、价值观以及爱国主义情怀。
【教学准备】1.多媒体技术;2.网络资源;3.三封信件4.图书文献资源和网络资源:对“我国女排发球技术研究”的查阅【教学方法】自主探究、合作探究【教学重点】函数零点的概念与求法,作三次函数图象【教学难点】作三次函数图象、解决简单应用问题【教学过程】(含时间分配)(先准备几封写好的信(其实为最后学习要点的引出埋下伏笔),鼓励课堂活动踊跃的学生)(一)新课引入(5分钟)1.情景引入(激发学生的好奇心)播放中国女排在2016年里约奥运会夺冠的视频,指出女排的夺冠与数学紧密相连。
2.问题引入(激发学生求知欲)(二)概念的形成与深化(5分钟)1.实例引入 ?062=--=y x x x y 取何值时,,当对于函数2.函数的零点3.概念深化 函数y=f(x)有零点方程f(x)=0有实数根函数y=f(x)的图象与x 轴有交点(三)实践与探究(14分钟)1.自主尝试求下列函数的零点:2.总结升华(学生把一般二次函数零点的判定以表格形式给出)3.深入探究(学生自主探究)当二次函数有零点时,请由图象探究:(1)在零点的两侧,函数值符号是否改变?(2)相邻两个零点之间函数值的符号是否相同?1.你能画出函数y=2x+7的图象吗?22.你能画出函数y=x -x-6的图象吗?323.你能画出函数y=x -2x -x+2的图象吗?(1)236(2)y x y x =-+=222(3)(4)21(5)23y x x y x x y x x =+=-+=-+()=0f x x 使得函数的实数的值,叫做这个函数的零点.(学生自主完成)对于二次函数而言: (1)当函数图象穿过零点时,函数值变号; 当函数图象遇到零点但不穿过零点时,函数值不变号. (2)相邻两个零点之间的所有函数值保持同号.(师总结)推广:对任意函数,只要函数图象是连续不断的,上述性质同样成立.(四)应用举例(18分钟)1.(学生亲自投影,面对同学讲解做法,教师适当补充)在这4个区间内,取x 的一些值,以及零点,列出这个函数的对应值表: X … -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 … Y … -4.38 0 1.88 2 1.13 0 -0.63 0 2.63 … 在坐标系内,描点连线,作出图象.x y 0 x 1x 1 x 2 0yx 321.例求函数y=x -2x -x+2的零点,并画出它的图象.322211x x x --+-解:因为 =(x-2)(x-1)(x+1)所以函数的零点为, , 2.x 4--1-11122,+∞∞3个零点把轴分成个区间:(,),(,),(,),()*学生总结方法求函数y=f(x)零点的方法:求方程f(x)=0的根.(常用:因式分解)画三次函数图象的步骤:(1)求函数的零点,用其将x 轴分成几个区间;(2)利用在区间内适当取的x 值及零点,得到图象上的一些点;(3)描点连线,得到图象.2.自主尝试(学生黑板板演)*课下研究课题3.(回扣课头)例 2 研究发现:排球发球的成功率y%与抛球角度x(单位:度)近似满足二次函数关系:216144,25y x x =-+-(3090)x << 在一场排球比赛中,每位发球队员的成功率只有大于80%,才有利于比赛胜出。
高中数学 第8章 函数应用 8.1.1 函数的零点教学案(含解析)高一第一册数学教学案

8.1 二分法与求方程近似解8.1.1 函数的零点一般地,我们把使函数y=f(x)的值为0的实数x称为函数y=f(x)的零点.2.方程、函数、图象之间的关系(1)函数y=f(x)的零点就是方程f(x)=0的实数解.(2)函数y=f(x)的零点就是它的图象与x轴交点的横坐标.3.零点存在性定理若函数y=f(x)在区间[a,b]上的图象是一条不间断的曲线,且f(a)f(b)<0,则函数y =f(x)在区间(a,b)上有零点.1.思考辨析(正确的打“√”,错误的打“×”)(1)任何函数都有零点.( )(2)任意两个零点之间函数值保持同号.( )(3)若函数y=f(x)在区间(a,b)上有零点,则一定有f(a)·f(b)<0.( )[提示](1)可举反例f(x)=x2+1无零点.(2)两个零点间的函数值可能会保持同号,也可以异号,如f(x)=(x-1)(x-2)(x-3)有三个零点,即x=1,2,3,在(1,2)上f(x)为正,在(2,3)上f(x)为负,故在零点1和3之间有正有负.(3)举例f (x )=x 2-1,选择区间(-2,2),显然f (x )在(-2,2)上有零点1和-1,但是f (2)·f (-2)>0.[答案] (1)× (2)× (3)×2.(一题两空)函数y =x 2+3x +2的零点是________,其图象与x 轴的交点为________. -1,-2 (-1,0),(-2,0) [令x 2+3x +2=0,则(x +2)(x +1)=0,∴x =-1或x =-2.]3.若函数f (x )在区间[2,5]上是减函数,且图象是一条连续不断的曲线,f (2)·f (5)<0,则函数f (x )在区间(2,5)上零点的个数是________.1 [由f (x )在区间[2,5]上是减函数,可得f (x )至多有一个零点.又因为f (x )是一条连续不断的曲线,f (2)·f (5)<0,所以f (x )在(2,5)上至少有一个零点,可得f (x )恰有一个零点.]求函数的零点(1)f (x )=x 3-x ;(2)f (x )=2x-8;(3)f (x )=1-log 4 x ;(4)f (x )=(ax -1)(x -2)(a ∈R ).[思路点拨] 根据函数的零点和方程根的关系,求函数的零点就是求相应方程的实数根.[解] (1)∵f (x )=x 3-x =x (x 2-1)=x (x -1)(x +1),令f (x )=0,得x =0,1,-1,故f (x )的零点为x =-1,0,1.(2)令f (x )=2x-8=0,∴x =3, 故f (x )的零点为x =3.(3)令f (x )=1-log 4 x =0,∴log 4 x =1,∴x =4. 故f (x )的零点为x =4.(4)当a =0时,函数为f (x )=-x +2, 令f (x )=0,得x =2. ∴f (x )的零点为2.当a =12时,f (x )=⎝ ⎛⎭⎪⎫12x -1(x -2)=12(x -2)2,令f (x )=0,得x 1=x 2=2. ∴f (x )有零点2.当a ≠0且a ≠12时,令f (x )=0,得x 1=1a ,x 2=2.∴f (x )的零点为1a,2.综上,当a =0时,f (x )的零点为2;当a =12时,函数有零点2;当a ≠0且a ≠12时,f (x )的零点为1a,2.函数的零点的求法求函数f (x )的零点时,通常转化为解方程f (x )=0,若方程f (x )=0有实数根,则函数f (x )存在零点,该方程的根就是函数f (x )的零点;否则,函数f (x )不存在零点.[跟进训练]1.求下列函数的零点.(1)f (x )=⎩⎪⎨⎪⎧ln x -1,x >12x -1-1,x ≤1;(2)f (x )=(2x-3)ln(x -2);(3)f (x )=sin ⎝⎛⎭⎪⎫2x -π3,x ∈[0,π].[解] (1)当x >1时,令f (x )=ln(x -1)=0,得x =2;当x ≤1时,令f (x )=2x -1-1=0,得x =1.所以函数的零点是1和2.(2)因为函数f (x )的定义域为(2,+∞),所以2x>4, 由(2x-3)ln(x -2)=0,得x -2=1,所以x =3, 即函数f (x )=(2x-3)ln(x -2)的零点是3. (3)因为x ∈[0,π],所以⎝⎛⎭⎪⎫2x -π3∈⎣⎢⎡⎦⎥⎤-π3,5π3,由sin ⎝ ⎛⎭⎪⎫2x -π3=0,得2x -π3=0或2x -π3=π,解得x =π6或x =2π3,所以函数f (x )=sin ⎝⎛⎭⎪⎫2x -π3,x ∈[0,π]的零点是π6和2π3.零点存在性定理及其应用x序号)①⎝ ⎛⎭⎪⎫-14,0;②⎝ ⎛⎭⎪⎫0,14;③⎝ ⎛⎭⎪⎫14,12;④⎝ ⎛⎭⎪⎫12,34. [思路点拨] 利用函数零点的存在性定理判断,即是否具备f (a )f (b )<0,也可以利用函数图象判断,即函数图象与x 轴是否有交点.③ [∵f ⎝ ⎛⎭⎪⎫14=4e -2<0,f ⎝ ⎛⎭⎪⎫12=e -1>0,∴f ⎝ ⎛⎭⎪⎫14·f ⎝ ⎛⎭⎪⎫12<0, ∴零点在⎝ ⎛⎭⎪⎫14,12上.] 1.判断零点所在区间有两种方法:一是利用零点存在性定理,二是利用函数图象. 2.要正确理解和运用函数零点的性质在函数零点所在区间的判断中的应用,若f (x )的图象在[a ,b ]上连续,且f (a )·f (b )<0,则f (x )在(a ,b )上必有零点,若f (a )·f (b )>0,则f (x )在(a ,b )上不一定没有零点.[跟进训练]2.根据表格中的数据,可以断定方程e x-(x +3)=0(e≈2.72)的一个根所在的区间是________.(填序号)x-1 0 1 2 3e x0.37 1 2.72 7.40 20.12 x +323456①(-1,0);②(0,1);③(1,2);④(2,3).③ [设f (x )=e x-(x +3),由上表可知,f (-1)=0.37-2<0,f (0)=1-3<0,f (1)=2.72-4<0,f (2)=7.40-5>0,f (3)=20.12-6>0,∴f (1)·f (2)<0,因此方程e x-(x +3)=0的根在(1,2)内.]函数零点(方程不等实根)个数的判断1.如何去求一个方程的零点?[提示] (1)可以解方程;(2)可以结合图象;(3)可以用零点存在性定理. 2.求方程零点的方法有何优缺点?能否用来判断零点的个数? [提示] 解方程法.优点:解的准确,不需估算.缺点:有些方程,我们解不出根的精确值,如f (x )=2x-3x .图象法和零点存在性定理解得的零点未必是精确值,但我们可以通过图象的交点个数来判断方程零点的个数.【例3】 (1)函数f (x )=e x-3的零点个数为________. (2)函数f (x )=ln x -1x -1的零点个数是________. (3)已知关于x 的一元二次方程(x -1)(3-x )=a -x (a ∈R ),试讨论方程实数根的个数. [思路点拨] (1)利用函数的零点的概念解方程求解.(2)利用函数图象来求解.(3)原方程可化为(x -1)(3-x )+x =a ,利用直线y =a 与抛物线y =(x -1)(3-x )+x 的位置关系讨论,也可以利用判别式.(1)1 (2)2 [(1)令f (x )=0,∴e x-3=0,∴x =ln 3,故f (x )只有1个零点. (2)在同一坐标系中画出y =ln x 与y =1x -1的图象,如图所示,函数y =ln x 与y =1x -1的图象有两个交点,所以函数f (x )=ln x -1x -1的零点个数为2.] (3)[解] 法一:原方程化为-x 2+5x -3=a . 令f (x )=-x 2+5x -3,g (x )=a .作函数f (x )=-x 2+5x -3的图象,抛物线的开口向下,顶点的纵坐标为12-254×-1=134,画出如图所示的简图: 由图象可以看出:①当a >134时,方程没有实数根;②当a =134时,方程有两个相等的实数根;③当a <134时,方程有两个不相等的实数根.法二:原方程化为x 2-5x +3+a =0.Δ=25-4(3+a )=-4a +13.①当Δ<0,即a >134时,方程没有实数根;②当Δ=0,即a =134时,方程有两个相等的实数根;③当Δ>0,即a <134时,方程有两个不相等的实数根.(变条件)若把本例(3)中x 加以限制(1<x <3),求解相应问题. [解] 原方程可化为-x 2+5x -3=a (1<x <3),作函数f (x )=-x 2+5x -3(1<x <3)的图象,注意f (x )=-x 2+5x -3的对称轴为x =52, f ⎝ ⎛⎭⎪⎫52=-254+252-3=50-25-124=134, f (1)=-1+5-3=1,f (3)=-9+15-3=3.故f (x )在1<x <3上的草图如图所示: 由图可知,①当a =134或1<a ≤3时,方程有一个实数根;②当3<a <134时,方程有两实数根;③当a ≤1或a >134时,方程无实数根.判断函数零点的个数的方法主要有:(1)可以利用零点存在性定理来确定零点的存在性,然后借助于函数的单调性判断零点的个数.(2)利用函数图象交点的个数判定函数零点的个数.[跟进训练]3.函数f (x )=lg x -sin x 的零点有i (i ∈N *)个,记为x i ,x i ∈(k π2,k +1π2),k ∈N *,则k 构成的集合为______________.{1,4,5} [由f (x )=lg x -sin x 得lg x =sin x ,在同一坐标系中作出y =lg x 和y =sin x 的图象,如下图,由图象知,函数f (x )=lg x -sin x 有三个零点x 1∈⎝⎛⎭⎪⎫π2,π,x 2∈⎝⎛⎭⎪⎫2π,5π2,x 3∈⎝⎛⎭⎪⎫5π2,3π,因为x i ∈(k π2,k +1π2),k ∈N *,所以k =1,4,5,所以k 构成的集合为{1,4,5}.]1.在函数零点存在性定理中,要注意三点:(1)函数是连续的;(2)定理不可逆;(3)至少存在一个零点.2.方程f (x )=g (x )的根是函数y =f (x )与y =g (x )的图象交点的横坐标,也是函数y =f (x )-g (x )的图象与x 轴交点的横坐标.3.函数与方程有着密切的联系,有些方程问题可以转化为函数问题求解,同样,函数问题有时化为方程问题,这正是函数与方程思想的基础.1.下列图象表示的函数中没有零点的是( )A [B 、C 、D 的图象均与x 轴有交点,故函数均有零点,A 的图象与x 轴没有交点,故函数没有零点.]2.设函数f (x )是定义在R 上的奇函数,当x >0时,f (x )=e x+x -3,则f (x )的零点个数为( )A .1B .2C .3D .4C [因为函数f (x )是定义域为R 的奇函数,所以f (0)=0,所以0是函数f (x )的一个零点.当x >0时,令f (x )=e x+x -3=0,则e x=-x +3.分别画出函数y =e x和y =-x +3的图象(图略),如图所示,有一个交点,所以函数f (x )在(0,+∞)上有一个零点.又根据对称性知,当x <0时函数f (x )也有一个零点. 综上所述,f (x )的零点个数为3.应选C .]3.已知函数f (x )的图象是连续不断的,有如下的x ,f (x )对应值表:4 [∵f (2)·f (3)<0,f (3)·f (4)<0,f (4)·f (5)<0,f (6)·f (7)<0,∴共有4个区间.]4.函数f (x )=x 2-ax +1在区间⎝ ⎛⎭⎪⎫12,3上有零点,求实数a 的取值范围.[解] 由题意知方程ax =x 2+1在⎝ ⎛⎭⎪⎫12,3上有解,即a =x +1x 在⎝ ⎛⎭⎪⎫12,3上有解,设t =x +1x ,x ∈⎝ ⎛⎭⎪⎫12,3, 则t 的取值范围是⎣⎢⎡⎭⎪⎫2,103.所以实数a 的取值范围是⎣⎢⎡⎭⎪⎫2,103.。
函数零点存在定理 高中数学教案

函数零点存在定理微课
教
学
设
计
田俊领
永年区第二中学
(课件展示函数图象)
(2)画出二次函数()32f x x =-+、23x y x =+与()()()()3224f x x x x x =+-++的图象,并观察函数零点附近函数值的变化规律。
说明: 体会如果函数在区间上的图象是一条不间断的曲线,且,则函数在区间内有零点。
(二)、合作探究
零点存在定理:
如果函数在区间上的图象是一条不间断的曲线,且
,则函数在区间
内至少有一个零点。
例1.求函数()ln 2f x x x =+-零点所在的区间.
变式:判断函数()ln 2f x x x =+-零点的个数
引导学生思辨以上问题,通过讨论认识问题的本质,升华对零点存在性判定的理解。
(1)在什么条件下,函数y =f(x)在区间(a,b)上可存在唯一零点?
(2)若f(a)·f(b)<0,函数y =f(x)在区间(a,b)上就存在零点吗?
(三)、归纳总结
说明:这个环节,总结本节课学到的知识,将本节课所讲的知识点系统整理,为后面的函数零点的应用奠定基础。
(四)、反馈练习
(1)函数f(x)=2x 2
-5x +2的零点是 ;
(2)已知函数f(x)的图象是不间断的,有如下的x,f(x)对应值表:
那么函数在区间[1,6]上的零点至少有 个;
()x f y =[]b a ,()()0<•b f a f ()x f y =()b a ,()x f y =[]b a ,()()0<•b f a f ()x f y =()b a ,。
高中数学:第20课时 函数的零点

第20课时函数的零点课时目标1.理解函数零点的定义,会判断函数零点的存在及零点的个数.2.了解函数的零点与方程根的联系,能根据具体函数的图象,借助计算器用二分法求相应方程的近似解.3.了解零点与方程根的关系.识记强化1.一般地,如果函数y=f(x)在实数α处的值等于零,即f(α)=0,则α叫做这个函数的零点.2.一般地,函数f(x)的零点与方程根的关系是f(x)的零点个数与方程根的个数相等.3.函数f(x)的图象与x轴有公共点叫这个函数有零点,也就是函数y=f(x)的图象与x 轴的交点的横坐标.4.如果函数f(x)在给定区间[a,b]上是连续不间断的,且在两个端点处的函数值f(a)·f(b)<0,那么该函数在给定区间(a,b)上至少有一个零点.5.如果函数图象通过零点时穿过x轴,则称这样的零点为变号零点.如果没有穿过x 轴,则称这样的零点为不变号零点.课时作业(时间:45分钟,满分:90分)一、选择题(本大题共6小题,每小题5分,共30分)1.下列图象表示的函数中没有零点的是()答案:A解析:由函数零点的意义,可得函数的零点是否存在表现在函数图象与x轴有无公共点,故选A.2.二次函数f(x)=ax2+bx+c中,ac<0,则函数的零点个数是()A.1 B.2C.0 D.无法确定答案:B解析:∵Δ=b2-4ac,ac<0,∴Δ>0,∴方程ax2+bx+c=0有两个根,∴函数f(x)有两个零点.3.函数f (x )=x 2-3x +1的零点之和为( )A .1B .2C .3D .4答案:C4.已知偶函数f (x )的定义域为(-∞,0)∪(0,+∞),且f (x )在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .一个B .两个C .至少两个D .无法判断答案:B解析:由函数f (x )的性质,易知f (-2)=0,画出函数f (x )的大致图象如图所示.由图象可知函数f (x )有两个零点.5.若函数f (x )=x 2-ax +b 的两个零点是2和3,则函数g (x )=bx 2-ax -1的零点是( )A .-1和16B .1和-16C.12和13 D .-12和 3 答案:B解析:∵函数f (x )=x 2-ax +b 的两个零点是2和3,∴⎩⎪⎨⎪⎧ 2+3=a 2×3=b ,即⎩⎪⎨⎪⎧ a =5b =6,∴g (x )=6x 2-5x -1,∴g (x )的零点为1和-16,故选B. 6.设函数f (x )=⎩⎪⎨⎪⎧ x 2+bx +c (x ≤0)2(x >0),若f (-4)=0,f (-2)=-2,则关于x 的方程f (x )=x 的解的个数为( )A .0B .1C .2D .3答案:C解析:根据f (-4)=0,f (-2)=-2,易求得,b =5,c =4,故f (x )=⎩⎪⎨⎪⎧x 2+5x +4(x ≤0)2(x >0),所以当x ≤0时,方程f (x )=x 为x 2+4x +4=0,此方程有两个相等的实数根,即x 1=x 2=-2,当x >0时,x =2也是方程f (x )=x 的解,故选C.二、填空题(本大题共3个小题,每小题5分,共15分)7.已知函数f (x )=ax +b 的零点为2,则函数g (x )=bx 2-ax 的零点为________.答案:0,-12解析:由f (x )=ax +b 的零点为2,得2a +b =0,即b =-2a ,则g (x )=bx 2-ax =-2ax 2-ax .令-2ax 2-ax =0,由题意,知a ≠0,则x =0或x =-12,则g (x )的零点为0和-12. 8.函数y =x 2-5x -14的零点为________.答案:-2或7解析:解二次方程x 2-5x -14=0可得x =-2或7.9.已知关于x 的方程x 2-(2m -8)x +m 2-16=0的两个实根为x 1和x 2,且满足x 2<32<x 1,则实数m 的取值范围是________.答案:(-12,72) 解析:关于x 的方程x 2-(2m -8)x +m 2-16=0的两个实根x 1、x 2满足x 2<32<x 1, 设f (x )=x 2-(2m -8)x +m 2-16,则有f ⎝⎛⎭⎫32<0,即94-(2m -8)·32+m 2-16<0,解得{m |-12<m <72}. 三、解答题(本大题共4小题,共45分)10.(12分)分别判断下列函数的零点的个数,并说明理由.(1)f (x )=x 2+6x +9;(2)f (x )=x -1x; (3)f (x )=⎩⎪⎨⎪⎧ x +1,x ≥0x -1,x <0. 解:(1)函数f (x )=x 2+6x +9的图象为开口向上的抛物线,且与x 轴有唯一的公共点(-3,0),所以函数f (x )=x 2+6x +9有一个零点.(2)令f (x )=0,得x -1x=0, 即x 2-1=0,解得x =±1,所以函数f (x )=x -1x有两个零点. (3)方法一 当x ≥0时,令f (x )=0,得x +1=0,解得x =-1,与x ≥0矛盾;当x <0时,令f (x )=0,得x -1=0,解得x =1,与x <0矛盾.所以函数f (x )=⎩⎪⎨⎪⎧x +1,x ≥0x -1,x <0没有零点.方法二 画出函数f (x )=⎩⎪⎨⎪⎧ x +1,x ≥0x -1,x <0的图象,如图所示. 因为函数f (x )的图象与x 轴没有公共点,所以f (x )=⎩⎪⎨⎪⎧ x +1,x ≥0x -1,x <0没有零点. 11.(13分)已知y =f (x )是定义在R 上的偶函数,当x >0时,f (x )=-x 2+x .(1)求f (x )的解析式;(2)求函数y =f (x )的零点.解:(1)设x ∈(-∞,0),则-x >0,由题意得f (-x )=-(-x )2+(-x )=-x 2-x ,∵函数f (x )是偶函数,∴f (x )=-x 2-x .∴f (x )=⎩⎪⎨⎪⎧-x 2+x (x ≥0),-x 2-x (x <0).(2)由f (x )=0,得⎩⎪⎨⎪⎧ -x 2+x =0,x ≥0, 或⎩⎪⎨⎪⎧-x 2-x =0,x <0,解得x =0,x =1,x =-1,∴y =f (x )的零点分别为-1,0,1. 能力提升12.(5分)若函数y =f (x )是偶函数,其定义域为{x |x ≠0},且f (x )在(0,+∞)上是减函数,f (2)=0,则函数f (x )的零点有( )A .唯一一个B .两个C .至少两个D .无法判断答案:B解析:由题意可知函数f (x )在(0,+∞)上有且仅有一个零点,根据y =f (x )是偶函数知该函数在(-∞,0)上也有一个零点,所以选B.13.(15分)如图所示,有一块边长为15 cm 的正方形铁皮,将其四个角各截去一个边长为x cm 的小正方形,然后折成一个无盖的盒子.(1)求出盒子的体积y 以x 为自变量的函数解析式,并讨论这个函数的定义域;(2)如果要做成一个容积是150 cm 3的无盖盒子,那么截去的小正方形的边长x 是多少cm ?(精确到0.1 cm)解:(1)盒子是一个底面边长是(15-2x )cm 、高为x cm 的长方体,则y =(15-2x )2·x ,这个函数的定义域为(0,7.5).(2)令y =150,则(15-2x )2·x -150=0,令f (x )=(15-2x )2·x -150,f (0)=-150,f (7.5)=-150,f (4)=46.①f (0)·f (4)<0,∴零点x 1∈(0,4),f (2)=92,f (2)·f (0)<0,∴x 1∈(0,2),f (1)=19,f (1)·f (0)<0,∴x 1∈(0,1),f (0.5)=-52,f (0.5)·f (1)<0,∴x 1∈(0.5,1),f (0.75)≈-13.313,f (0.75)·f (1)<0,∴x 1∈(0.75,1),同理x 1∈(0.75,0.875),x 1∈(0.812 5,0.875),∵|0.875-0.812 5|=0.062 5<0.1,∴取x 1≈0.8(cm).②f (4)·f (7.5)<0,∴零点x 2∈(4,7.5),f (4+7.52)=f (5.75)≈-79.563,f (5.75)·f (4)<0,∴x 2∈(4,5.75),f (4+5.752)=f (4.875)≈-15.633,f (4.875)·f (4)<0,∴x 2∈(4,4.875).同理x 2∈(4.4375,4.875),x 2∈(4.656 25,4.875),x 2∈(4.656 25,4.765 625),x 2∈(4.656 25,4.710 937 5),∵|4.656 25-4.710 937 5|<0.1,∴取x 2≈4.7(cm).由①②可知截去的小正方形边长约为0.8 cm 或4.7 cm.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
考向一 函数零点的求解与判断
知识点:方程0)(=x f 有实数根⇔函数)(x f y =的图象与x 轴
有交点⇔函数)(x f y =有零点.
注意:函数的零点不是点,是方程f (x )=0的根;
★函数零点的求法:
(代数法)求方程0)(=x f 的实数根;
(几何法)对于不能用求根公式的方程,可以将它与函数
)(x f y =的图象联系起来,并利用函数的性质找出零点.
定理:如果函数()y f x =在区间[,]a b 上的图象是连续不间断的一条曲线,并且有()()0f a f b ⋅<那么函数()y f x =在区间(,)a b 内有零点,
[例1] (2012年高考辽宁卷)设函数f (x )(x ∈R )满足f (-x )=f (x ),f (x )=f (2-x ),且
当x ∈[0,1]时,f (x )=x 3
.又函数g (x )=|x cos(πx )|,则函数h (x )=g (x )-f (x )在⎣⎢⎡⎦⎥⎤-12,32上的零点个数为( )
A .5
B .6
C .7
D .8
训练:
【体验高考1.】(2012年高考北京卷)函数f (x )=x 12-⎝ ⎛⎭
⎪⎫12x 的零点的个数为( ) A .0 B .1 C .2 D .3
【跟踪训练1】 (2013年唐山模拟)设f (x )=e x +x -4,则函数f (x )的零点位于区间( )
A .(-1,0)
B .(0,1)
C .(1,2)
D .(2,3)
【基础自测2】 (2012年高考天津卷)函数f (x )=2x +x 3-2在区间(0,1)内的零点个数是( )
A .0
B .1
C .2
D .3
提高:
★(2012年高考湖北卷)函数f(x)=x cos(2x)在区间[0,2π]上的零点个数为() A.2 B.3 C.4 D.4
【体验高考2】(2012年高考湖北卷)函数f(x)=x cos(x2)在区间[0,4]上的零点个数为()
A.4 B.5 C.6 D.7
考向二二分法
疑难关注:
零点存在定理的零点个数
(1)在(a,b)上存在零点(此处的零点不仅指变号零点),个数不定,若仅有变号零点,则有奇数个;
(2)若函数在(a,b)上有零点,不一定有f(a)f(b)<0.
(3)相邻两个零点之间的所有函数值保持同号.
[例2](2013年济南模拟)若函数f(x)=x3+x2-2x-2的一个正数零点附近的函
【跟踪训练2】.(2013年锦州模拟)用二分法求方程x3-2x-5=0在区间(2,3)上的近似解,取区间中点x0=2.5,那么下一个有解区间为________
考向三函数零点的应用
[例3]已知a是实数,函数f(x)=2ax2+2x-3-a,如果函数y=f(x)在区间[-1,1]上有零点,求a的取值范围.
【互动探究】本例中条件若变为“f(x)=2x-2
x-a的一个零点在区间(1,2)内”求
实数a的取值范围.
【体验高考3】(2011年高考辽宁卷)已知函数f(x)=e x-2x+a有零点,则a的取值范围是________.
【因材施教3.】(2013年合肥质检)函数f(x)=1-x2
x+3
-m有零点的充要条件是
【因材施教2.】 (2013年南昌模拟)已知函数f (x )=⎝ ⎛⎭
⎪⎫13x -log 2x ,正实数a ,b ,c 成公差为正数的等差数列且f (a )·f (b )·f (c )<0,若实数x 0是方程f (x )=0的一个解,那么下列不等式中不可能成立的是( )
A .x 0<a
B .x 0>b
C .x 0<c
D .x 0>c ★(2010浙江文9)已知x 0是函数f(x)=2x + 11x -的一个零点.若1x ∈(1,0x ), 2x ∈(0x ,+∞),则
(A )f(1x )<0,f(2x )<0 (B )f(1x )<0,f(2x )>0
(C )f(1x )>0,f(2x )<0 (D )f(1x )>0,f(2x )>0。