高中数学:函数图像及函数零点的运用

合集下载

2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用

2018-2019学年人教A版高中数学必修1课件:3.1.1函数的应用
a>0, ff((kk12))><00,, f(k3)>0.
(6)在(k1,k2)内有且仅有一个实根的充要条件是
Δ=0, f(k1)f(k2)<0,或k1<-2ba<k2.
例3 方程x2-2ax+4=0的两根均大于1,求实数a的取值范 围.
【解析】 方法一:设f(x)=x2-2ax+4,由于方程x2-2ax
由于相邻两个零点之间的所有函数值保持同号,函数的图 像如图所示.
(2)不等式xf(x)<0同解于
x>0, f(x)<0
或xf(<0x,)>0,
结合函数图
像得不等式的解集为(0,2)∪(-2,0).
探究 根据函数的零点定义与性质,可以用来帮助画函数
的图像,结合函数图像不仅可以直观的研究函数的性质,而且
∴函数y=-x2-2x+3的零点为-3,1. y=-x2-2x+3=-(x+1)2+4. 画出这个函数的简图(如右图),从图像 上可以看出,当-3<x<1时,y>0.
当x<-3或x>1时,y<0. ∴函数y=-x2-2x+3的零点是-3,1. y>0时,x的取值范围是(-3,1); y<0时,x的取值范围是(-∞,-3)∪(1,+∞). 探究2 由于一元二次不等式在前面没有讲过,因此对本题 的解法要正确作出函数的简图,从而解决问题.
课时学案
题型一 求函数的零点 例1 求函数f(x)=(x2+x-2)(x2-2x-8)的零点,并指出使 y<0成立的x的取值范围.
【解析】 y=(x2+x-2)(x2-2x-8)=(x+2)(x-1)(x+2)(x -4)=(x+2)2(x-1)(x-4),

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解

高考数学《函数零点的个数问题》知识讲解与例题讲解一、知识点讲解与分析:1、零点的定义:一般地,对于函数()()y f x x D =∈,我们把方程()0f x =的实数根x 称为函数()()y f x x D =∈的零点2、函数零点存在性定理:设函数()f x 在闭区间[],a b 上连续,且()()0f a f b <,那么在开区间(),a b 内至少有函数()f x 的一个零点,即至少有一点()0,x a b ∈,使得()00f x =。

(1)()f x 在[],a b 上连续是使用零点存在性定理判定零点的前提 (2)零点存在性定理中的几个“不一定”(假设()f x 连续) ① 若()()0f a f b <,则()f x 的零点不一定只有一个,可以有多个 ② 若()()0f a f b >,那么()f x 在[],a b 不一定有零点 ③ 若()f x 在[],a b 有零点,则()()f a f b 不一定必须异号3、若()f x 在[],a b 上是单调函数且连续,则()()()0f a f b f x <⇒在(),a b 的零点唯一4、函数的零点,方程的根,两图像交点之间的联系设函数为()y f x =,则()f x 的零点即为满足方程()0f x =的根,若()()()f x g x h x =−,则方程可转变为()()g x h x =,即方程的根在坐标系中为()(),g x h x 交点的横坐标,其范围和个数可从图像中得到。

由此看来,函数的零点,方程的根,两图像的交点这三者各有特点,且能相互转化,在解决有关根的问题以及已知根的个数求参数范围这些问题时要用到这三者的灵活转化。

(详见方法技巧) 二、方法与技巧:1、零点存在性定理的应用:若一个方程有解但无法直接求出时,可考虑将方程一边构造为一个函数,从而利用零点存在性定理将零点确定在一个较小的范围内。

例如:对于方程ln 0x x +=,无法直接求出根,构造函数()ln f x x x =+,由()110,02f f ⎛⎫>< ⎪⎝⎭即可判定其零点必在1,12⎛⎫⎪⎝⎭中 2、函数的零点,方程的根,两函数的交点在零点问题中的作用 (1)函数的零点: 工具:零点存在性定理作用:通过代入特殊值精确计算,将零点圈定在一个较小的范围内。

高一函数零点题型归纳

高一函数零点题型归纳

高一函数零点题型归纳函数零点是高中数学中的一个重要概念,它涉及到函数的值、图像、单调性等多个方面。

以下是高一函数零点的一些常见题型及其解题方法:一、判断零点个数例题:函数f(x) = x^{2} - 2xf(x)=x2−2x在区间( - 3,3)(−3,3)内的零点个数为( )A.0 B.11 C.22 D.33解析:首先确定函数的对称轴为x = 1x=1,然后判断函数的开口方向为向上。

接下来,根据对称轴和区间端点的距离,可以确定函数在区间内的零点个数。

二、求函数的零点例题:函数f(x) = \log_{2}(x - 3)f(x)=log2(x−3)的零点是( )A.22 B.33 C.44 D.55解析:对数函数的零点即为使对数内部表达式等于1的x值。

因此,令x - 3 = 1x−3=1,解得x = 4x=4。

三、判断零点所在区间例题:函数f(x) = x^{3} - x^{2} - xf(x)=x3−x2−x在区间( - 1,2)(−1,2)内的一个零点所在的区间是( )A.(0,1)(0,1) B.(1,2)(1,2) C.( - 1,0)(−1,0) D.(0,2)(0,2)解析:先确定函数在给定区间端点的函数值,然后判断其正负性。

如果端点函数值异号,则该区间内必存在零点。

四、应用题中的零点问题例题:某商品的成本价为每件30元,售价不超过50元时,售价y(元)与售价的整数部分x 满足关系式:y = x + 20y=x+20,当成本价与售价相等时,每月最多可售出该商品____件。

解析:根据题意,当成本价与售价相等时,即30 = x + 2030=x+20,解得x = 10x=10。

由于售价的整数部分为10,则售价为30元。

再根据一次函数的性质,当斜率大于0时,函数单调递增,因此每月最多可售出该商品33件。

五、判断函数是否为同一函数(根据零点个数)例题:下列四个函数中与函数f(x) = \frac{1}{x}f(x)=x1表示同一函数的是( )A.y = \frac{x^{2}}{x}y=xx2B.y = \frac{1}{\sqrt{x}}y=x1C.y = \frac{1}{\log_{a}x}y=logax1D.y = \frac{e^{x}}{x}y=xex解析:根据函数的三要素(定义域、值域、对应关系),分别判断各选项是否与给定函数定义域相同、值域相同以及对应关系相同。

高考数学: 函数专题2

高考数学: 函数专题2

第11讲 函数复习专题2.函数图象与零点一、教学目标:1.会运用函数图象理解和研究函数的性质.2.结合二次函数的图象,了解函数的零点与方程根的关系,判断一元二次方程根的存在性及根的个数.3.根据具体函数的图象,能够用二分法求相应方程的近似解二、重点难点:1.函数图像及运用2.函数零点与方程关系三、教学方法:“一学二记三应用” 四、知识梳理:(1)描点法作函数图象,应注意在定义域内依据函数的性质,选取关键的一部分点连接而成.(2)图象变换法,包括有平移变换、伸缩变换、对称翻折变换.的图像的画法:先画时,再将其关于对称,得轴左侧的图像. 的图像画法:先画的图象,然后位于轴上方的图象不变,位于轴下方的图象关于 轴翻折上去. 的图象关于对称;的图象关于点对称.的图象关于轴对称的函数图象解析式为;关于轴对称的函数解析式为;关于原点对称的函数解析式为.(3)熟记基本初等函数的图象,以及形如的图象五.课前评估:1.[2022·重庆六校联考]函数f (x )=sin πxx2的大致图象为( )0(0(()()a a a a f x f x a ><−−−−−−−→+向左平移个单位)向右平移个单位)0(0(()()+k k k f x f x k ><−−−−−−−→向上平移k 个单位)向下平移个单位)11(101(()()(0,1)f x f x w ωωωωωω><<−−−−−−−−−−−−−−−−→>≠图像上所有点的纵坐标不会,横坐标缩短为原来的)图像上所有点的纵坐标不会,横坐标伸长为原来的)1(01(()()(0,1)A A A f x Af x A A ><<−−−−−−−−−−−−−−−−→>≠图像上所有点的横坐标不会,纵坐标伸长为原来的)图像上所有点的横坐标不会,纵坐标缩短为原来的A )()f x 0x ≥()y f x =y y ()f x()y f x =x x x ()()f a x f a x +=-()y f x =x =a ()()f a x f a x +=--()y f x =(a,0)()y f x =x (y f x =-)y (-y f x =)-(-y f x =)1y x x=+xyf x () = x +1x–1–2–3–41234–1–2–3–41234O答案:D 解析:易知函数f (x )=sinπxx 2为奇函数且定义域为{x |x ≠0},只有选项D 满足, 2.[2022·福州质检]若函数f (x )的图象向右平移1个单位长度,所得图象与曲线y =e x 关于y 轴对称,则f (x )的解析式为( )A .f (x )=e x +1B .f (x )=e x -1C .f (x )=e -x +1D .f (x )=e -x -1 答案:D 解析:与y =e x 的图象关于y 轴对称的图象对应的函数为y =e -x .依题意,f (x )的图象向右平移1个单位长度,得y =e -x 的图象,∴f (x )的图象是由y =e -x 的图象向左平移1个单位长度得到的,∴f (x )=e -(x +1)=e -x -1.3.[2022·全国卷Ⅱ]函数f (x )=e x -e -xx 2的图象大致为( )A BCD答案:B 解析:∵ y =e x-e-x是奇函数,y =x 2是偶函数,∴ f (x )=e x -e -xx 2是奇函数,图象关于原点对称,排除A 选项.当x =1时,f (1)=e -e -11=e -1e>0,排除D 选项.又e>2,∴ 1e <12,∴ e -1e>1,排除C 选项.故选B.题型一 识图与辨图例1(1)(2022年高考浙江卷)在同一直角坐标系中,函数y =1x a ,y =log a (x +12)(a >0,且a ≠1)的图象可能是答:D(2)在同一直角坐标系中,函数()2f x ax =-, ()()log 2a g x x =+(0a >,且1a ≠)的图象大致为( )A. B. C. D.(3)(2022年高考全国3卷)函数3222x xxy -=+在[]6,6-的图像大致为 A . B .C .D .答:B(4)(2022年高考全国1卷)函数f (x )=在[,]-ππ的图像大致为 A .B .C .D .答:D课堂练习1:(1)(内江市高中2022届第一次模拟考试题)函数()()21=ln 2x f x x e -+-2sin cos ++x xx x的图象大致是( )A. B C. D.答:C (2).(2022届吉林省五地六校联考高三考前适应卷)已知函数()(22)ln ||x x f x x -=+的图象大致为( )A .B .C .D .【答案】B 【详解】()f x 定义域为{}0x x ≠,()()()()22ln 22ln x x x x f x x x f x ---=+-=+=()f x ∴为偶函数,关于y 轴对称,排除D ;当()0,1x ∈时,220x x -+>,ln 0x <,可知()0f x <,排除,A C .题型二 图象初等变换例2 (1)(江西省红色七校2022届高三第一次联考理科数学科试题)设,则函数的图象的大致形状是( )答:B(2)已知图①中的图象对应的函数为y =f (x ),则在下列给出的四个选项中,图②中的图象对应的函数只可能是( )A .y =f (|x |)B .y =|f (x )|C .y =f (-|x |)D .y =-f (|x |)0a >()y x x a =-答案:C解析:由图②知,图象关于y轴对称,对应的函数是偶函数.对于A,当x>0时,y=f(|x|)=f(x),其图象在y轴右侧与图①的相同,不符合,故错误;对于B,当x>0时,对应的函数是y=f(x),显然B错误;对于D,当x<0时,y=-f(-x),其图象在y轴左侧与图①的不相同,不符合,故错误;所以C选项是正确的.(3)已知函数,则函数的大致图象是()A. B. C. D.解析】,函数在处图象有跳跃点,选项AC错误;当(4).若函数y=f(x)的图象如图所示,则函数y=-f(x+1)的图象大致为()答案:C解析:要想由y=f(x)的图象得到y=-f(x+1)的图象,需要先将y=f(x)的图象关于x轴对称得到y=-f(x)的图象,然后向左平移1个单位长度得到y=-f(x+1)的图象,根据上述步骤可知C正确.(5)[2022·咸宁模拟]已知a>0,且a≠1,函数y=a x与y=log a(-x)的图象可能是图中的()答案:B解析:通解因为y=a x与y=log a x互为反函数,而y=log a x与y=log a(-x)的图象关于y轴对称,根据图象特征可知选B.优解首先,曲线y=a x只可能在x轴上方,曲线y=log a(-x)只可能在y轴左边,从而排除A,C;其次,y=a x与y=log a(-x)的增减性正好相反,排除D,选B.(6)(提高)函数的部分图象大致为( )A. B. C. D.【解析】分析:分析函数的奇偶性,以及是函数值的符号,利用排除法即可得到答案.解:由题意,函数满足,所以函数为奇函数,图象关于轴对称,排除B 、D ;又由当时,函数,排除C ,故选A.[规律方法] 识图常用方法:(1)定性分析法:通过对问题进行定性的分析,从而得出图像的上升(或下降)的趋势,利用这一特征分析解决问题;(2)定量计算法:通过定量的计算来分析解决问题;(3)函数模型法:由所提供的图像特征,联想相关函数模型,利用这一函数模型来分析解决问题. 课堂练习2.(1).函数的图象大致为( )A. B. C. D. 【解析】根据函数表达式得到,故函数是奇函数,排除D 选项,当x 趋向于正无穷时,函数值趋向于0,并且大于0,排除B ;当x 从左侧趋向于1时,函数值趋向于负无穷,故排除 C.故答案为:A. (2) 函数的图象可能是( )A. B. C. D. 【解析】试题分析:化简函数的解析式,判断函数的对称性,利用函数的值判断即可. 详解:函数f (x )==,可知函数的图象关于(2,0)对称,排除A ,B .当x <0时,ln (x ﹣2)2>0,(x ﹣2)3<0,函数的图象在x 轴下方,排除D ,故选:C .题型三 零点判断与运用例3 (1)[2022·南昌调研]函数f (x )=2x +ln 1的零点所在的大致区间是( ) A .(1,2) B .(2,3) C .(3,4) D .(4,5)答案:B 解析:易知f (x )=2x +ln 1x -1=2x-ln(x -1)在(1,+∞)上单调递减且连续,当1<x <2时,ln(x -1)<0,2x>0,所以f (x )>0,故函数f (x )在(1,2)上没有零点.f (2)=1-ln1=1,f (3)=23-ln2=2-3ln23=2-ln83,8=22≈2.828>e ,所以8>e 2,即ln8>2,所以f (3)<0.所以f (x )的零点所在的大致区间是(2,3),故选B.(2).[2022·山东枣庄模拟]函数f (x )=x 12-⎝⎛⎭⎫12x的零点个数为( )A .0B .1C .2D .3 答案:B解析:在同一直角坐标系中作出函数y =x 12与y =⎝⎛⎭⎫12x 的图象,如图所示.由图知,两个函数图象只有一个交点,所以函数f (x )的零点只有1个.故选B. a c 若()2019()()f x x a x b =---的零点为c ,d ,则下列不等式正确的是( ) A . a c b d >>> B .a b c d >>> C.c d a b >>> D .c a b d >>>答:由()2019()()f x x a x b =---,又()()2019f a f b ==,c ,d ,为函数()f x 的零点,且a b >,c d >,所以可在平面直角坐标系中作出函数()f x 的大致图像,如图所示,由图可知c a b d >>>,故选D.(4) [2022·河南省实验中学模拟]已知函数f (x )=⎩⎪⎨⎪⎧x +1,x ≤0,log 2x ,x >0,则函数y =f (f (x ))-1的图象与x 轴的交点个数为( )A .3 B .2 C .0 D .4答案: A 解析:y =f (f (x ))-1=0,即f (f (x ))=1.当f (x )≤0时,得f (x )+1=1,f (x )=0. 所以log 2x =0,得x =1;由x +1=0,得x =-1.当f (x )>0时,得log 2f (x )=1, 所以f (x )=2.由x +1=2,得x =1(舍去);由log 2x =2,得x =4. 综上所述,函数y =f (f (x ))-1的图象与x 轴的交点个数为3.故选A. (5) (提高)已知函数,则函数的零点个数是( )A. 7 B. 6 C. 5 D. 4 【解析】分析:令 函数的零点个数问题的根的个数问题.结合图象可得的根,方程有1解,有3解,有3解.从而得到函数的零点个数详解:令函数的零点个数问题的根的个数问题.即的图象如图,结合图象可得的根方程有1解,有3解,有3解.综上,函数的零点个数是7.故选A.(6)(提高) 定义在实数集上的函数满足,当时,,则函数的零点个数为__________.【解析】分析:先根据函数的奇偶性与周期性画出函数的图象,以及的图象,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点.详解:定义在上的函数,满足,上的偶函数,因为满足,函数为周期为的周期函数,且为上的偶函数,因为时,,所以,在上递增,且值域为,根据周期性及奇偶性画出函数的图象和的图象,如图,根据的图象在上单调递增函数,当时,,当时,的图象与函数无交点,结合图象可知有个交点,故答案为.课堂练习3:(1)已知函数f (x )=1x -a为奇函数,g (x )=ln x -2f (x ),则函数g (x )的零点所在区间为( ) A .(0,1) B .(1,2) C .(2,3) D .(3,4)解:由函数f (x )=1x -a为奇函数,可得a =0,则g (x )=ln x -2f (x )=ln x -2x ,所以g (2)=ln2-1<0,g (3)=ln3-23>0,所以g (2)·g (3)<0,可知函数的零点在(2,3)之间。

高中数学函数零点教案

高中数学函数零点教案

高中数学函数零点教案
目标:
学生能够掌握函数零点的概念以及求解零点的方法。

教学内容:
1. 函数零点的定义
2. 方程求解的方法(因式分解、配方法、二次函数公式)
3. 利用图像法求解零点
教学步骤:
1. 引导学生了解函数零点的定义,即函数图像与X轴的交点。

2. 讲解如何求解函数的零点,分别介绍因式分解、配方法和二次函数公式的应用。

3. 演示练习,让学生在老师的指导下解决一些函数的零点问题。

4. 引导学生通过作图的方法求解函数的零点,讲解如何在函数图像上找到交点。

5. 练习巩固,让学生自主完成一些函数的零点求解问题。

评价方式:
1. 学生的课堂参与度
2. 课堂练习的正确率
3. 课后作业的完成情况
Homework:
1. 完成课后练习
2. 尝试解决更复杂的函数零点问题
备注:
老师在教学过程中要引导学生注意函数零点的概念理解和求解方法,遇到困难要及时给予帮助和指导。

提倡学生多做练习,加深对函数零点的理解和掌握。

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析

高中数学-函数零点问题及例题解析一、函数与方程基本知识点1、函数零点:(变号零点与不变号零点)(1)对于函数)(x f y =,我们把方程0)(=x f 的实数根叫函数)(x f y =的零点。

(2)方程0)(=x f 有实根⇔函数()y f x =的图像与x 轴有交点⇔函数()y f x =有零点。

若函数()f x 在区间[],a b 上的图像是连续的曲线,则0)()(<b f a f 是()f x 在区间(),a b 内有零点的充分不必要条件。

2、二分法:对于在区间[,]a b 上连续不断且()()0f a f b ⋅<的函数()y f x =,通过不断地把函数()y f x =的零点所在的区间一分为二,使区间的两个端点逐步逼近零点,进而得到零点的近似值的方法叫做二分法; 二、函数与方程解题技巧零点是经常考察的重点,对此部分的做题方法总结如下:(一)函数零点的存在性定理指出:“如果函数)(x f y =在区间[a,b]上的图象是连续不断的一条曲线,并且0)()(<b f a f ,那么,函数)(x f y =在区间(a,b )内有零点,即存在),(b a c ∈,使得0)(=c f ,这个c 也是方程0)(=x f 的根”。

根据函数零点的存在性定理判断函数在某个区间上是否有零点(或方程在某个区间上是否有根)时,一定要注意该定理是函数存在零点的充分不必要条件:如例、函数xx x f 2)1ln()(-+=的零点所在的大致区间是( ) (A )(0,1); (B )(1,2); (C ) (2,e ); (D )(3,4)。

分析:显然函数xx x f 2)1ln()(-+=在区间[1,2]上是连续函数,且0)1(<f ,0)2(>f ,所以由根的存在性定理可知,函数xx x f 2)1ln()(-+=的零点所在的大致区间是(1,2),选B(二)求解有关函数零点的个数(或方程根的个数)问题。

高中函数解题技巧

高中函数解题技巧

高中函数解题技巧高中函数解题技巧引言在高中数学中,函数是一个重要的内容,解题时需要运用合适的技巧来解决各种函数问题。

本文将详细说明高中函数解题的各种技巧,帮助学生更好地应对考试。

技巧一:函数定义的掌握1.理解函数的定义:函数是一个映射关系,将自变量映射到因变量。

2.弄清楚定义域和值域:定义域是自变量的取值范围,值域是因变量的取值范围。

3.利用定义域和值域求解问题:在解题过程中,需要根据函数的定义域和值域来确定自变量和因变量的取值范围,进而解决相关问题。

技巧二:函数的性质应用1.利用奇偶性判断函数的对称性:奇函数以原点对称,偶函数以y轴对称。

通过判断函数的奇偶性,可以简化一些计算和问题的分析。

2.利用导数判断函数的增减性:函数的导数代表其斜率,通过求导可以判断函数在某一区间内的增减情况,有助于解决最值和特殊点问题等。

3.利用周期性解决重复性问题:某些函数具有周期性特征,通过寻找周期性解决问题,可以简化计算和分析过程。

技巧三:函数图像的应用1.利用函数图像解读问题:观察函数的图像,可以帮助理解函数的性质和规律,进而解决相关问题。

2.利用函数图像求解交点和切点:通过观察函数图像的交点和切点,可以求解函数的零点、最大最小值和特殊点等问题。

技巧四:函数图像的变换1.利用平移变换函数图像:平移函数图像可以改变函数图像的位置,通过平移变换可以简化计算和分析过程。

2.利用伸缩变换函数图像:伸缩函数图像可以改变函数图像的尺寸,通过伸缩变换可以观察到函数的变化规律。

技巧五:函数组合和复合1.利用函数组合化简问题:将多个函数组合起来,可以简化计算和分析过程,有助于解决复杂的问题。

2.利用函数复合求解复合函数值:通过将自变量代入复合函数,可以求解复合函数的值,解决相关问题。

技巧六:方程和不等式的解法1.利用函数解方程:将方程转化为函数等式,通过解函数等式来求解方程,可以简化计算和分析过程。

2.利用函数解不等式:将不等式转化为函数不等式,通过解函数不等式来求解不等式,解决相关问题。

高中数学讲义:零点存在的判定与证明

高中数学讲义:零点存在的判定与证明

零点存在的判定与证明一、基础知识:1、函数的零点:一般的,对于函数()y f x =,我们把方程()0f x =的实数根0x 叫作函数()y f x =的零点。

2、零点存在性定理:如果函数()y f x =在区间[],a b 上的图像是连续不断的一条曲线,并且有()()0f a f b ×<,那么函数()y f x =在区间(),a b 内必有零点,即()0,x a b $Î,使得()00f x =注:零点存在性定理使用的前提是()f x 在区间[],a b 连续,如果()f x 是分段的,那么零点不一定存在3、函数单调性对零点个数的影响:如果一个连续函数是单调函数,那么它的零点至多有一个。

因此分析一个函数零点的个数前,可尝试判断函数是否单调4、几个“不一定”与“一定”(假设()f x 在区间(),a b 连续)(1)若()()0f a f b ×<,则()f x “一定”存在零点,但“不一定”只有一个零点。

要分析()f x 的性质与图像,如果()f x 单调,则“一定”只有一个零点(2)若()()0f a f b ×>,则()f x “不一定”存在零点,也“不一定”没有零点。

如果()f x 单调,那么“一定”没有零点(3)如果()f x 在区间(),a b 中存在零点,则()()f a f b ×的符号是“不确定”的,受函数性质与图像影响。

如果()f x 单调,则()()f a f b ×一定小于05、零点与单调性配合可确定函数的符号:()f x 是一个在(),a b 单增连续函数,0x x =是()f x 的零点,且()0,x a b Î,则()0,x a x Î时,()0f x <;()0,x x b Î时,()0f x >6、判断函数单调性的方法:(1)可直接判断的几个结论:① 若()(),f x g x 为增(减)函数,则()()f x g x +也为增(减)函数② 若()f x 为增函数,则()f x -为减函数;同样,若()f x 为减函数,则()f x -为增函数③ 若()(),f x g x 为增函数,且()(),0f x g x >,则()()f x g x ×为增函数(2)复合函数单调性:判断()()y f g x =的单调性可分别判断()t g x =与()y f t =的单调性(注意要利用x 的范围求出t 的范围),若()t g x =,()y f t =均为增函数或均为减函数,则()()y f g x =单调递增;若()t g x =,()y f t =一增一减,则()()y f g x =单调递减(此规律可简记为“同增异减”)(3)利用导数进行判断——求出单调区间从而也可作出图像7、证明零点存在的步骤:(1)将所证等式中的所有项移至等号一侧,以便于构造函数(2)判断是否要对表达式进行合理变形,然后将表达式设为函数()f x (3)分析函数()f x 的性质,并考虑在已知范围内寻找端点函数值异号的区间(4)利用零点存在性定理证明零点存在例1:函数()23x f x e x =+-的零点所在的一个区间是( )A.1,02æö-ç÷èø B.10,2æöç÷èø C.1,12æöç÷èø D.31,2æöç÷èø思路:函数()f x 为增函数,所以只需代入每个选项区间的端点,判断函数值是否异号即可解:1211234022f e -æöæö-=+×--=-<ç÷ç÷èøèø,()020f =-<11232022f æö=+×-=-<ç÷èø()12310f e e =+-=->()1102f f æö\×<ç÷èø01,12x æö\Îç÷èø,使得()00f x =答案:C例2:函数()()ln 1f x x x =-+的零点所在的大致区间是( )A.31,2æöç÷èø B.3,22æöç÷èøC.()2,eD.(),e +¥思路:先能判断出()f x 为增函数,然后利用零点存在性判定定理,只需验证选项中区间端点函数值的符号即可。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

XXXX教育学科教师辅导讲义讲义编号Ⅱ、函数()y f ax=(0)a>的图像可以将函数()y f x=的图像中的每一点纵坐标不变横坐标伸长(1)a>或压缩(01a<<)为原来的1a倍得到。

f(x)y=f(x)a x⨯→y=f(ax)★例题讲解:例1.作出下列函数的图象(1)y=|x-2|(x+1); (2)y=10|lgx|.分析:显然直接用已知函数的解析式列表描点有些困难,除去对其函数性质分析外,我们还应想到对已知解析式进行等价变形.解:(1)当x≥2时,即x-2≥0时,当x<2时,即x-2<0时,这是分段函数,每段函数图象可根据二次函数图象作出(见图6)(2)当x≥1时,lgx≥0,y=10|lgx|=10lgx=x;当0<x<1时,lgx<0,所以这是分段函数,每段函数可根据正比例函数或反比例函数作出.(见图7)说明:作不熟悉的函数图象,可以变形成基本函数再作图,但要注意变形过程是否等价,要特别注意x ,y 的变化范围.因此必须熟记基本函数的图象.例如:一次函数、反比例函数、二次函数、指数函数、对数函数,及三角函数的图象. 例2. 函数2sin(2)14y x π=--的图象经过怎样的变换才能得到sin y x =的图象?答案:2sin(2)14y x π=--向上平移1个单位得2sin(2)4y x π=-的图象,再向左平移8π个单位得2sin 2y x =的图象,横坐标扩大到原来的2倍得2sin y x =的图象,最后将纵坐标缩小到原来的12即得sin y x =的图象)。

课堂练习:1.一次函数y=kx+2k+1(x ∈[1,2])的图象在x 轴上方,则k 的取值范围是_____________.2.利用函数图象判定方程12+x =x+a 有两个不同的实数解时,实数a 的满足的条件.★课后作业, -x101 -1-11-1-111-11-1=x(A.312y x =- (02)x ≤≤ B.33122y x =-- (02)x ≤≤ C.312y x =-- (02)x ≤≤ D.11y x =-- (02)x ≤≤6.已知函数))((R x x f y ∈=满足)1()1(-=+x f x f ,且当[]1,1-∈x 时,2)(x x f =,则)(x f y =与x y 5log =的图象的交点个数为 ( )A 、2B 、3C 、4D 、5 7.函数||log 33x y =的图象是( )8.曲线y=x 2-3x 关于x 轴的对称图形所对应的函数是 ( ) A .x=y 2-3y B .y=x 2+3y C .y=-x 2-3x D .y=-x 2+3x9.将y=2x 的图象 ( ) A .先向左平移1个单位 B .先向右平移1个单位C .先向上平移1个单位D .先向下平移1个单位 再作关于直线y=x 对称的图象,可得到函数y=log 2(x+1)的图象.10.设函数y=f(x)定义在实数集上,则函数y=f(x -1)与y=f(1-x)的图象关于 ( ) A .直线y=0对称 B .直线x=0对称C .直线y=1对称D .直线x=1对称答案:1.B 2 .D 3.C 4.B 5.B 6.C 7.A 8.D9.D 10.D 6.由)1()1(-=+x f x f 知函数)(x f y =的周期为2,作出其图象如右,当x=5时,f(x)=1,log 5x=1; 当x>5时,f(x)=1∈[0,1],log 5x>1, )(x f y =与x y 5log =的图象不再有交点,故选C二.函数与方程★知识梳理yxO1-1 15构造函数)31(352<<-+-=x x x y 和a y =,作出它们的图像,易知平行于x 轴的直线与抛物线的交点情况可得:①当31≤<a 或413=a 时,原方程有一解;②当4133<<a 时,原方程有两解;③当1≤a 或413>a 时,原方程无解点评:图象法求函数零点,考查学生的数形结合思想。

本题是通过构造函数用数形结合法求方程lg x +x =3解所在的区间。

数形结合,要在结合方面下功夫。

不仅要通过图象直观估计,而且还要计算0x 的邻近两个函数值,通过比较其大小进行判断。

题型3:由函数的零点特征确定参数的取值范围[例4] (2007·广东)已知a 是实数,函数()a x ax x f --+=3222,如果函数()x f y =在区间[]1,1-上有零点,求a 的取值范围。

[解题思路]要求参数a 的取值范围,就要从函数()x f y =在区间[]1,1-上有零点寻找关于参数a 的不等式(组),但由于涉及到a 作为2x 的系数,故要对a 进行讨论[解析] 若0a = , ()23f x x =- ,显然在[]1,1-上没有零点, 所以 0a ≠.令()248382440a a a a ∆=++=++=, 解得372a -±=①当372a --=时, ()y f x =恰有一个零点在[]1,1-上;②当()()()()05111<--=⋅-a a f f ,即15a <<时,()y f x =在[]1,1-上也恰有一个零点.③当()y f x =在[]1,1-上有两个零点时, 则()()208244011121010a a a a f f >⎧⎪∆=++>⎪⎪-<-<⎨⎪≥⎪⎪-≥⎩或()()208244011121010a a a a f f <⎧⎪∆=++>⎪⎪-<-<⎨⎪≤⎪⎪-≤⎩③二次方程f (x )=0在区间(p ,q )内有两根⎪⎪⎪⎩⎪⎪⎪⎨⎧>⋅>⋅<-<>-=⇔.0)(,0)(,2,042p f a q f a q a b p ac b Δ④二次方程f (x )=0在区间(p ,q )内只有一根⇔f (p )·f(q )<0,或f (p )=0,另一根在(p ,q )内或f (q )=0,另一根在(p ,q )内.⑤方程f (x )=0的两根中一根大于p ,另一根小于q (p <q )⎩⎨⎧>⋅<⋅⇔.0)(,0)(q f a p f a[新题导练]1.已知二次函数f(x)=4x2-2(p -2)x -2p2-p+1,若在区间[-1,1]内至少存在一个实数c,使f(c)>0,则实数p 的取值范围是_________.[解析] (-3,23) 只需f(1)=-2p2-3p+9>0或f(-1)=-2p2+p+1>0即-3<p <23或-21<p <1.∴p ∈(-3, 23).2.若方程x2+(k-2)x+2k-1=0的两根中,一根在0和1之间,另一根在1和2之间,求实数k 的取值范围.[解析] 1223k <<;令12)2()(2-+-+=k x k x x f ,则依题意得 ⎪⎩⎪⎨⎧><>0)2(0)1(0)0(f f f ,即⎪⎩⎪⎨⎧>-+-+<-+-+>-01242401221012k k k k k ,解得1223k << 3.(2007·韶关)若关于x 的方程4x +2x a+a+1=0有实数根,求实数a 的取值范围.[解析]令t=2x ,Θ t>0∴关于x 的方程4x +2x a+a+1=0有实数根等价于方程t 2+at+a+1=0(t>0)有正实数根,令f(t)= t 2+at+a+1,且442--=∆a a 故方程t2+at+a+1=0(t>0)有正实数根等价于(1)方程有一个正根一个负根:由f(0)<0,得a<-1(2)方程有两个相等的正数根:由222020-=⇒⎪⎩⎪⎨⎧>-=∆a a(3)方程有两个不相等的正数根或有一个零根一个正根时:由22210)0(020-<≤-⇒⎪⎪⎩⎪⎪⎨⎧≥>->∆a f a求(1)(2)(3)的并集,得实数a 的取值范围:]222,(--∞[备选例题] (佛山市三水中学09届)下图是函数xy ⎪⎭⎫ ⎝⎛=21和23x y =图象的一部分,其中()212101,x x x x x <<<-=时,两函数值相等. (1)给出如下两个命题:①当1x x <时,2321xx<⎪⎭⎫ ⎝⎛;②当2x x >时,2321xx <⎪⎭⎫ ⎝⎛.判断命题①②的真假并说明理由.(2)求证:()1,02∈x[解析](1) 命题①是假命题,反例:10-=x ,则1x x <,但是 ()300103,102421210=-⨯=⎪⎭⎫ ⎝⎛-,2321x x <⎪⎭⎫ ⎝⎛不成立.命题②是真命题,因为x y ⎪⎭⎫ ⎝⎛=21在[)+∞,2x 上是减函数,函数23x y =在[)+∞,2x 上是增函数,所以当2x x >时,2223321212x x x x <=⎪⎭⎫ ⎝⎛<⎪⎭⎫ ⎝⎛.(2)构造函数x x x f ⎪⎭⎫ ⎝⎛-=213)(2,则025)1(,01)0(>=<-=f f ,所一)(x f 在区间()1,0有零点.有因为xx x f ⎪⎭⎫ ⎝⎛-=213)(2在区间()1,0是增函数,所以)(x f 在区间()1,0有唯一个零点,即2x ,所以()1,02∈x .★课后作业:1.(深圳九校09届联考)下图是函数()f x 的图像,它与x 轴有4个不同的公共点.给出下列四个区间,不能用二分法求出函数()f x 在区间( )上 的零点A .--[ 2.1,1];B .[1.9,2.3]8.[解析](1)条件说明抛物线f(x)=x2+2mx+2m+1与x 轴的交点分别在区间(-1,0)和(1,2)内,画出示意图,得⎪⎪⎪⎪⎩⎪⎪⎪⎪⎨⎧->-<∈-<⇒⎪⎪⎩⎪⎪⎨⎧>+=<+=>=-<+=65,21,21056)2(,024)1(,02)1(,012)0(m m R m m m f m f f m f ∴2165-<<-m . (2)据抛物线与x 轴交点落在区间(0,1)内,列不等式组⎪⎪⎩⎪⎪⎨⎧<-<≥∆>>10,0,0)1(,0)0(m f f ⎪⎪⎪⎩⎪⎪⎪⎨⎧<<--≤+≥->->⇒.01,2121,21,21m m m m m 或(这里0<-m<1是因为对称轴x=-m 应在区间(0,1)内通过)。

相关文档
最新文档