南理工信号与信息处理

合集下载

信号与信息处理

信号与信息处理

信号与信息处理一、专业介绍1、学科简介信号与信息处理是一级学科信息与通信工程下设的二级学科。

此专业是当今发展最快的热点学科之一,随着信号与信息处理理论与技术的发展已使世界科技形势发生了很大的变革。

信息处理科学与技术已渗透到计算机、通信、交通运输、医学、物理、化学、生物学、军事、经济等各个领域。

它作为当前信息技术的核心学科,为通信、计算机应用、以及各类信息处理技术提供基础理论、基本方法、实用算法和实现方案。

它探索信号的基本表示、分析和合成方法,研究从信号中提取信息的基本途径及实用算法,发展各类信号和信息的编解码的新理论及技术,提高信号传输存储的有效性和可靠性。

在当前网络时代条件下,研究信号传输、加密、隐蔽及恢复等最新技术,均属于信号与信息处理学科的范畴。

积极开辟新的研究领域,不断地吸收新理论,在科学研究中运用交叉、融合、借鉴移植的方法不断地完善和充实本学科的理论,使之逐步形成自身的理论体系也是本学科的特点。

2、主要研究方向01图象处理、计算机视觉与模式识别02 语音信息处理与计算机听觉03 虚拟现实与计算机图形学04 现代信号处理与通信05 网络多媒体与信息安全06 嵌入式技术及应用07 无线传感网技术及其应用08 信息隐藏与数字水印技术09 普适计算技术与应用10 新一代通信网技术3、考试科目①101政治②201英语③301 数学一④913通信系统原理或920 数字信号处理(注:各招生单位研究方向和考试科目不同,在此以西安电子科技大学为例)二、就业前景1、就业方向此专业的毕业生可从事电子与通信、金融、商贸等企业的信息技术管理及电脑软硬件研发工作;进入通信与信息技术科研机构和教学部门从事科研与教学工作,政府公务员等。

2、就业前景进入21世纪,以信息技术为代表的科技革命使人们的生产、生活和思维方式发生了巨大改变。

随着信息技术在经济和社会各领域的应用和渗透,各行各业对信息类人才的需求也大大增加。

据权威人士预测,未来5年我国信息化人才需求可达1500万~2000万人。

南京理工大学研究生课程信号分析与处理作业答案

南京理工大学研究生课程信号分析与处理作业答案

1. 证明周期信号)(t f 的傅里叶级数可表示为如下指数形式)()(11∑∞-∞==n t jn e n F t f ωω其中 ∞-∞==⎰-,...,,)(1)(011n dt e t f T n F Tt jn ωω证明:)( 22212221)22(21)sin cos (21)(11111111110110101110∑∑∑∑∑∑∑∞-∞=∞=∞--=∞=--∞--=∞=-∞==-+-+=-+++=-+++=++=n t jn n tjn n n tjn n n n n tjn n n tjn n n n n tjn n n t jn n n n n ne n F e jb a e jb a a e jb a e jb a a e jb a e jb a a t n b t n aa t f ωωωωωωωωωω 当0=n 时⎰⎰=⨯==TTdt t f T dt t f Ta F 00)(1)(22121)0(当0≠n 时()dte tf Tdt t n j t n t f Tdt t n t f jdt t n t f T jb a n F T tjn TTTn n ⎰⎰⎰⎰-=-=⎥⎦⎤⎢⎣⎡-⨯=-=0011010111)(1sin cos )(1sin )(cos )(2212)(ωωωωωω2. 证明在能量误差最小准则下,用)sin cos (211110t n q t n pp n Nn nωω∑=++近似表示周期函数)(t f ,则N p p p ,...,,10和N q q ,...,1如何取值? 能量误差最小,即min )sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--⎰∑=dt t n q t n p p t f Tn Nn n ωω 0)sin cos (21)(021110=⎥⎦⎤⎢⎣⎡+--∂∂⎰∑=dt t n q t n p p t f p Tn N n n nωω 0cos )sin cos (21)(2101110=⎥⎦⎤⎢⎣⎡+--⎰∑=tdt n t n q t n p p t f Tn Nn n ωωωn TTn p Tdt t n p t n t f 2cos cos )(0121==⎰⎰ωω dt t n t f T p Tn ⎰=01cos )(2ω,N n ...,2,1=同理dt t n t f Tq Tn ⎰=01sin )(2ω,N n ...,2,1= 3. 证明:①实信号频谱共轭对称性⎰∞∞--=dt e t f F t j ωω)()()()(**)(ωω-=⎪⎪⎭⎫⎝⎛=⎰∞∞---F dt e t f t j②具有共轭对称频谱特性的信号一定是实信号[]⎰⎰∞∞-∞∞--+==ωωωωωωωd eF F d eF t f tj tj )()(21)()(*⎰⎰∞∞-∞∞--+=ωωωωωωd e F d eF tj tj )(21)(21*⎰∞∞--+=ωωωd eF t f tj )(21)(21*[])()(21)(21)(21**t f t f d eF t f tj +=⎪⎪⎭⎫ ⎝⎛+=⎰∞∞-ωωω )()(*t f t f ≡4. 设)(t x 为因果信号,即0<t 时,0)(=t x 。

南京理工大学信息管理和信息系统专业介绍

南京理工大学信息管理和信息系统专业介绍

信息管理和信息系统专业 ⼀、专业介绍 本专业为江苏省⾼等学校特⾊专业建设点。

1.在培养⽅向的定位上,充分突出⾯向企业需求为核⼼的复合型信息管理⼈才培养的⽬标特⾊; 2.在教学体系的设置上,充分突出计算机技术应⽤、经济管理、科技信息处理以及企业信息管理四⼤知识系列之间有机融和的建设特⾊; 3.在学⽣能⼒的培养上,重视知识教学与学⽣能⼒和素质培养的紧密结合,充分突出学⽣信息系统开发应⽤以及信息分析的基本能⼒培养的专业特⾊。

⼆、培养⽬标 本专业以马克思主义、⽑泽东思想、邓⼩平理论和现代哲学观念为基本原理,以国家经济建设需求为导向,以现代信息技术为⽀撑,培养具有计算机络技术应⽤技能、科技信息组织与分析的基本⽅法、经济管理与企业信息管理基础理论与知识、⾯向企业、⾯向社会的现代综合型、⾼素质的专门⼈才。

本专业毕业⽣可在各类企业、公司及政府部门从事信息化的管理⼯作、信息系统的规划、设计、建设与实施⼯作,以及经济和科技信息分析与决策⼯作。

三、培养要求 1.学习和掌握马克思主义、⽑泽东思想、邓⼩平理论的基本原理和思想,热爱祖国、遵纪守法、品德优良,刻苦钻研、勤于思考、勇于探索,敢于⾯对困难和挫折、不畏竞争与挑战、擅于团结和合作,具有敬业和献⾝的精神,为祖国的经济建设贡献才智。

2.认真学习计算机络技术原理和知识,重点掌握以企业为主要应⽤背景的基于络的信息系统开发技术;认真学习掌握以企业为主要应⽤对象的经济信息分析⽅法与信息资源管理知识与技能;认真学习掌握科技信息组织与处理的基本⽅法,并将相关思想与理论应⽤到络信息、企业信息的处理上;认真学习掌握经济管理相关知识,以为企业信息管理⼯作开展奠定基础。

3.培养运⽤所学的知识进⾏分析和解决问题的基本能⼒、实践操作能⼒,通过相关的实验、实践环境建设,强化⾯向企业的信息管理系统实际开发与应⽤能⼒培养,⾯向企业的市场信息、技术信息分析、竞争信息分析的操作能⼒培养;通过第⼆课堂的建设,强化学⽣创新能⼒与综合素质的培养。

南京理工大学电子信息工程课程设计之雷达信号分析处理

南京理工大学电子信息工程课程设计之雷达信号分析处理

附录一——MATLAB信号处理程序%% 1、准备工作 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 开始clc;clear;close all;clear vars;%% 雷达波形参数定义及说明f1=1e3; % 最低频率f2=11e3; % 最高频率B=f2-f1; % 信号带宽T=1e-2; % 信号扫频时宽(10ms)c=3e8; % 电磁波空间传播速度f0=(f1+f2)/2; % 雷达工作频率(中心频率)(3kHz)fs=1e5; % 采样率(100kHz)N_signal_T=round(fs*T); % 单周期信号的数据点数number_of_signal_period=400; % 脉冲信号的周期个数duty_ratio=0.5; % 信号占空比T_signal=T/duty_ratio; % 脉冲信号周期%% 导入AD数据时频分析[FileName,PathName] = uigetfile('C:\Users\XYB\Desktop\课程设计之雷达信号分析处理\AD数据\USB (3).dat','Select the USB.dat file');f = fullfile(PathName,filesep,FileName);fid = fopen(f,'r');data = fscanf(fid,'%x');fclose(fid);data = data(1:2:end)*256 + data(2:2:end); %将16进制转换为10进制datsgn = data./1000; %单位换算(mV->V)%转化为有符号数(去直流)datsgn=datsgn-mean(datsgn);%时域波形figure;plot([0:1/fs:(length(datsgn)-1)/fs],datsgn);xlabel('时间/s')ylabel('振幅/V')title('LFMCW时域波形')%频谱图N=1024;datfft = (2/N)*fftshift(fft(datsgn(1:N)));nordat = abs(datfft)/max(abs(datfft)); %对信号做FFT并归一化figure;plot([-length(datfft)/2:(length(datfft)/2-1)].*(fs/N),20*log10(abs(nordat)));xlabel('频率/Hz')ylabel('幅度/dB')title('LFMCW频谱图')%% 调频斜率曲线Hf=20*log10(abs(nordat));FHL=zeros(1,2);j=1;for i=round(length(Hf)/2):length(Hf)if(abs(Hf(i)+6.6)<0.2)FHL(j)=i;j=j+1;endendfigure;time_scan=(0:1/fs:T-1/fs);%扫描时间轴B_interval=(fs/N)*(FHL(2)-FHL(1))/length((0:1/fs:T-1/fs));%频率间隔B_test=[0:B_interval:(fs/N)*(FHL(2)-FHL(1))-B_interval]+(FHL(1)-(length(datfft)/2))*(fs/N);k_B=(fs/N)*(FHL(2)-FHL(1))/T/1000;error_B=abs(k_B*1000-(B/T))/(B/T)*100;%调频斜率测量误差plot(time_scan,B_test);xlabel('扫频周期/s')ylabel('频率范围/Hz')title({['L F M C W 扫频曲线'];['调频斜率:',num2str(k_B,'%.0f'),'KHz/s',' 测量误差:',num2str(error_B,'%.0f'),'%']});%% 信号变换与生成(转换为脉冲信号)if(N_signal_T>1024)N_signal_T=1024;endsignal_1T=datsgn(1:N_signal_T,1); %单周期的LFM信号signal_half_duty_ratio_1T=[signal_1T',zeros(N_signal_T/duty_ratio-N_signal_T,1)'];%单周期LFM脉冲信号(50%占空比)signal_NT=repmat(signal_half_duty_ratio_1T,1,number_of_signal_period); %周期延拓后的LFM脉冲信号(20个周期)figure;plot([0:1/fs:(length(signal_NT)-1)/fs],signal_NT);axis([0 (length(signal_NT)/80-1)/fs -2 2]);xlabel('时间/s')ylabel('振幅/V')title('LFM脉冲信号时域波形')%% 加入噪声noise=1*randn(1,length(signal_NT))';%高斯白噪声(没有滤波)/均值为0方差为1signal_noise=signal_NT+noise'; %信号叠加噪声%信号叠加噪声时域波形figure;subplot(211)plot([0:1/fs:(length(signal_NT)-1)/fs],signal_NT);xlabel('时间/s')ylabel('振幅/V')title('信号未叠加噪声时域波形')subplot(212)plot([0:1/fs:(length(signal_noise)-1)/fs],signal_noise);xlabel('时间/s')ylabel('振幅/V')title('信号叠加噪声时域波形')%% 2、单目标分析 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 回波信号合成(延时+多普勒+传输衰减)%-----------------------------% 目标信息:distance=8e5; % 目标径向距离(100km)t_delay=2*distance/c; % 与目标径向距离相对应的回波延时N_delay=round(t_delay*fs);%与回波延迟对应的数据点个数v=200000; % 目标径向速度(1000m/s)fd=2*v*f0/c; % 与目标径向速度对应的多普勒频移k=0.5; % 传输衰减系数%-----------------------------% 回波合成:t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd.*t)'; % 目标多普勒信号s_attenuation=k*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'+noise'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)sr_noise_doppler_1=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay)'; % 时延序列sr_noise_doppler_delay=[delay_n',sr_noise_doppler];% 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)sr_noise_doppler_delay_1=[delay_n',s_attenuation]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%-----------------------------% 回波时域图(未滤波):% 未考虑传输衰减figure;subplot(211)plot(t,signal_NT);xlabel('时间/s')ylabel('振幅/V')title('未考虑传输衰减的纯信号')% 考虑传输衰减subplot(212)plot(t,s_attenuation);xlabel('时间/s')ylabel('振幅/V')title('考虑传输衰减的纯信号')% 有多普勒信息的回波(带噪声)figure;plot(t,sr_noise_doppler);xlabel('时间/s')ylabel('振幅/V')title('有多普勒信息的回波')%figure;plot([0:1/fs:(length(sr_noise_doppler_delay)-1)/fs],sr_noise_doppler_delay);xlabel('时间/s')ylabel('振幅/V')title('合成回波')%% 接收机前端滤波% 带通滤波器设计(切比雪夫)% 指标:通带宽度:1kHz-5kHz 截止频率:0.5*f1(下)、1.25*f2(上)ws1=f1/fs; %下截止频率(可为其他)wp1=2*f1/fs; %下通带频率wp2=2*f2/fs; %上通带频率ws2=2.5*f2/fs; %上截止频率(可为其他)Rp=1;Rs=30;ws=[ws1 ws2];wp=[wp1 wp2];[ N3,wn ] = cheb1ord( wp , ws , Rp , Rs);[ b,a ] = cheby1(N3,Rp,wn,'bandpass'); %获得转移函数系数filter_bp_sn= filter(b,a,sr_noise_doppler_delay);%信号叠加噪声通过带通滤波器noise_filter =filter(b,a,noise); %纯噪声通过带通滤波器signal_filter=filter(b,a,s_attenuation_doppler); %(传输衰减后)纯信号(有多普勒)通过带通滤波器X_bp_s = fftshift(abs(fft(filter_bp_sn)))/length(sr_noise_doppler_delay); %信号叠加噪声通过带通滤波后的幅频X_bp_s_angle = fftshift(angle(fft(filter_bp_sn))); %信号叠加噪声通过带通滤波后的相频X_bp_n = fftshift(abs(fft(noise_filter)))/length(noise_filter); %纯噪声通过带通滤波后的幅频X_bp_n_angle = fftshift(angle(fft(noise_filter))); %纯噪声通过带通滤波后的相频%滤波器频谱特性figure;freqz(b,a);%信号叠加噪声滤波前后时域波形对比figure;subplot(211);plot([0:length(sr_noise_doppler_delay)-1]./fs,sr_noise_doppler_delay);grid on;xlabel('时间/s')ylabel('振幅/V')title('信号叠加噪声带通滤波前时域图形');subplot(212);plot([0:length(sr_noise_doppler_delay)-1]./fs,filter_bp_sn);grid on;xlabel('时间/s')ylabel('振幅/V')title('信号叠加噪声带通滤波后时域图形');% %纯噪声滤波前后时域波形对比figure;subplot(211);plot([0:length(noise)-1]./fs,noise);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯噪声带通滤波前时域图形');subplot(212);plot([0:length(noise_filter)-1]./fs,noise_filter);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯噪声带通滤波后时域图形');% %纯信号滤波前后时域波形对比figure;subplot(211);plot([0:length(s_attenuation_doppler)-1]./fs,s_attenuation_doppler);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯信号带通滤波前时域图形');subplot(212);plot([0:length(signal_filter)-1]./fs,signal_filter);grid on;xlabel('时间/s')ylabel('振幅/V')title('纯信号带通滤波后时域图形');% %信号叠加噪声带通滤波后幅频相频特性figure;subplot(2,1,1);f_fft_sn=[-length(sr_noise_doppler_delay)/2:length(sr_noise_doppler_delay)/2-1].*(fs/length(sr_noise_doppler_delay));%频率轴plot(f_fft_sn,X_bp_s);xlabel('频率/Hz')ylabel('幅度')title('信号叠加噪声带通滤波后频域幅度特性');subplot(2,1,2);plot(f_fft_sn,X_bp_s_angle);xlabel('频率/Hz')ylabel('相位')title('信号叠加噪声带通滤波后频域相位特性');% %纯噪声带通滤波后幅频相频特性figure;subplot(2,1,1);f_fft_n=[-length(noise)/2:length(noise)/2-1].*(fs/length(noise));%频率轴plot(f_fft_n,X_bp_n);xlabel('频率/Hz')ylabel('幅度')title('纯噪声带通滤波后频域幅度特性');subplot(2,1,2);plot(f_fft_n,X_bp_n_angle);xlabel('频率/Hz')ylabel('相位')title('纯噪声带通滤波后频域相位特性');%% 回波信噪比设定snr_in=0; %输入信噪比设定值sr_filter=filter_bp_sn; %带通滤波器处理后的回波信号S_P=sum((signal_filter).^2)/length(signal_filter); %(传输衰减的)回波纯信号滤波后平均功率noiseP=sum(abs(noise_filter).^2)/length(noise_filter); %滤波后的噪声平均功率A_extra=sqrt((noiseP/S_P).*(10.^(snr_in/10))); %信号外加幅度sr_snr=[delay_n',(A_extra*signal_filter+noise_filter')]; %设定输入信噪比的回波信号%设定输入信噪比后的时域波形figure;plot([0:1/fs:(length(sr_noise_doppler_delay)-1)/fs],sr_snr)xlabel('时间/s')ylabel('振幅/V')text_s=['设定输入信噪比后的时域波形(信噪比:',num2str(snr_in,'%.0f'),'dB',')'];title(text_s);%% 匹配滤波处理(时域卷积法)match_filter=fliplr(signal_1T'); % 匹配滤波器冲激响应match_out=conv(match_filter,sr_snr); % 信号叠加噪声通过匹配滤波器match_out_noise=conv(match_filter,noise_filter); % 纯噪声通过匹配滤波器match_out_signal=conv(match_filter,A_extra*signal_filter); % 纯信号通过匹配滤波器match_out_signal_1=conv(match_filter,signal_1T); % 单周期信号匹配滤波% 单周期匹配滤波波形figure;plot([0:1/fs:(length(match_out_signal_1)-1)/fs],20*log10(abs(match_out_signal_1)/max(abs(match_out_signal_1))));xlabel('时间/s')ylabel('振幅/V')title('单周期匹配滤波冲激响应')%匹配滤波冲激响应figure;plot([0:1/fs:(length(match_filter)-1)/fs],match_filter)xlabel('时间/s')ylabel('振幅/V')title('匹配滤波冲激响应')%匹配滤波输出波形figure;subplot(311)plot([0:1/fs:(length(match_out)-1)/fs],abs(match_out));title('信号叠加噪声匹配输出')subplot(312)plot([0:1/fs:(length(match_out_noise)-1)/fs],abs(match_out_noise));title('纯噪声匹配输出')subplot(313)% plot(abs(match_out_signal));plot([0:1/fs:(length(match_out_signal)-1)/fs],abs(match_out_signal));title('纯信号匹配输出')%匹配滤波信噪比增益计算n_mf_P=sum(abs(match_out_noise).^2)/length(match_out_noise);%匹配滤波后噪声功率s_mf_P_max=max(abs(match_out_signal))^2; %匹配滤波后信号峰值功率G_snr_mf=10*log10(s_mf_P_max/n_mf_P)-snr_in; %匹配滤波信噪比增益计算%% 多普勒滤波处理(MTD)%距离门重排distance_door=c/(2*fs); %相邻采样点之间的距离NT=number_of_signal_period;%信号周期数MTD_process_sn=zeros(N_signal_T/duty_ratio,NT);%信号和噪声同时经过脉压后重排MTD_process_s=zeros(N_signal_T,NT); %信号经过脉压后重排(用于信噪比增益分析)MTD_process_n=zeros(N_signal_T,NT); %噪声经过脉压后重排(用于信噪比增益分析)j=1;for i=1:N_signal_T/duty_ratio*NTif((mod(i,N_signal_T/duty_ratio)==0))MTD_process_s((i/j),j)=match_out_signal(i);MTD_process_sn((i/j),j)=match_out(i);MTD_process_n((i/j),j)=match_out_noise(i);j=j+1;elseMTD_process_s(mod(i,N_signal_T/duty_ratio),j)=match_out_signal(i);MTD_process_sn(mod(i,N_signal_T/duty_ratio),j)=match_out(i);MTD_process_n(mod(i,N_signal_T/duty_ratio),j)=match_out_noise(i);endendfigure;mesh([1:NT],(0:distance_door:(N_signal_T/duty_ratio*distance_door-distance_door))-N_signal_T*distance_door,(abs(MTD_process_sn)));xlabel('频率通道');ylabel('目标距离');title('距离门重排')%FFTi=round(log2((NT)));while ((2^i)<(NT))i=i+1;endMTD_N=2^(i);%确定FFT点数%内存分配MTD_FFT_sn=zeros(N_signal_T/duty_ratio,MTD_N);MTD_FFT_sn_w_H=zeros(N_signal_T/duty_ratio,MTD_N);MTD_FFT_sn_w_B=zeros(N_signal_T/duty_ratio,MTD_N);for i=1:N_signal_T/duty_ratioMTD_FFT_sn(i,:)=(2/MTD_N)*abs(fft([MTD_process_sn(i,:)],MTD_N));%信号+噪声脉压后FFT%加海明窗MTD_FFT_sn_w_H(i,:)=(2/MTD_N)*abs(fft(([MTD_process_sn(i,:),zeros(1,MTD_N-NT)]).*hamming(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFT%加布拉克曼窗MTD_FFT_sn_w_B(i,:)=(2/MTD_N)*abs(fft(([MTD_process_sn(i,:),zeros(1,MTD_N-NT)]).*blackman(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFTendfigure;[R_single,V_single]=find(fftshift(20*log10(abs(MTD_FFT_sn)))==max(max(fftsh ift(20*log10(abs(MTD_FFT_sn))))));V_single_1=(V_single(2,1)-MTD_N/2)*(0.5*(1/MTD_N)*c/f0/(T_signal));%目标速度error_v=abs(V_single_1-v)/v*100;%测速误差(%)R_single_1=R_single(1,1)*distance_door;%目标距离error_R=abs(R_single_1-distance)/distance*100;%测速误差(%)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),(fftshift(20*log10(abs(MTD_FFT_sn)))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title({['\fontsize{12}{单目标探测}'];['目标距离:',num2str(R_single_1,'%.0f'),'m',' 目标速度:',num2str(V_single_1,'%.0f'),'m/s'];['测距误差:',num2str(error_R,'%.0f'),'%',' 测速误差:',num2str(error_v,'%.0f'),'%']})figure;subplot(311)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),(fftshift(20*log10(abs(MTD_FFT_sn)))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('FFT单目标(不加窗)')subplot(312)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_H))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('FFT单目标(加海明窗)')subplot(313)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_B))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('FFT单目标(加布拉克曼窗)')%% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% 多目标分析 %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %**************************************%****************目标一****************%目标信息R_1=1e6; % 目标径向距离t_delay_1=2*R_1/c; % 与目标径向距离相对应的回波延时N_delay_1=round(t_delay_1*fs);%与回波延迟对应的数据点个数v_1=1250e3; % 目标径向速度fd_1=2*v_1*f0/c; % 与目标径向速度对应的多普勒频移k_1=0.8; % 传输衰减系数%目标回波t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd_1.*t)'; % 目标多普勒信号s_attenuation=k_1*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k_1*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay_1)'; % 时延序列sr_target_1=[delay_n',sr_noise_doppler]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%**************************************%****************目标二****************%目标信息R_2=1.5e6; % 目标径向距离t_delay_2=2*R_2/c; % 与目标径向距离相对应的回波延时N_delay_2=round(t_delay_2*fs); %与回波延迟对应的数据点个数v_2=500e3; % 目标径向速度fd_2=2*v_2*f0/c; % 与目标径向速度对应的多普勒频移k_2=0.6; % 传输衰减系数%目标回波t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd_2.*t)'; % 目标多普勒信号s_attenuation=k_2*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k_2*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay_2)'; % 时延序列sr_target_2=[delay_n',sr_noise_doppler]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%**************************************%****************目标三****************%目标信息R_3=5e6; % 目标径向距离t_delay_3=2*R_3/c; % 与目标径向距离相对应的回波延时N_delay_3=round(t_delay_3*fs); %与回波延迟对应的数据点个数v_3=1500e3; % 目标径向速度fd_3=2*v_3*f0/c; % 与目标径向速度对应的多普勒频移k_3=0.4; % 传输衰减系数%目标回波t=0:1/fs:(length(signal_NT)-1)/fs; % 回波信号时间轴(有信号的部分,不考虑延迟)doppler=cos(2*pi*fd_3.*t)'; % 目标多普勒信号s_attenuation=k_3*signal_NT; % 考虑传输衰减的纯信号(无多普勒)s_attenuation_doppler=k_3*signal_NT.*doppler'; % 考虑传输衰减的纯信号(有多普勒)sr_noise_doppler=s_attenuation.*doppler'; % 有多普勒信息的回波(带噪声)(已考虑传输衰减)delay_n=zeros(1,N_delay_3)'; % 时延序列sr_target_3=[delay_n',sr_noise_doppler]; % 有多普勒信息的回波(带噪声、时延)(已考虑传输衰减)%**************************************%**************回波合成****************max_1=max(length(sr_target_2),length(sr_target_1));max_n=max(length(sr_target_3),max_1);sr_multiple_target=[sr_target_1,zeros(1,max_n-length(sr_target_1))]+[sr_target_2,zeros(1,max_n-length(sr_target_2))]+[sr_target_3,zeros(1,max_n-length(sr_target_3))];%**************************************%**************BPF滤波*****************sr_multiple_target_BPF_out=filter(b,a,sr_multiple_target); %信号叠加噪声通过带通滤波器%**************************************%**************匹配滤波****************sr_multiple_target_BPF_out_match_out=conv(match_filter,sr_multiple_target_BPF_out);% 信号叠加噪声通过匹配滤波器%**************************************%**************距离门重排**************MTD_process_multiple_target=zeros(N_signal_T/duty_ratio,NT); %信号和噪声同时经过脉压后重排j=1;for i=1:N_signal_T/duty_ratio*NTif((mod(i,N_signal_T/duty_ratio)==0))MTD_process_multiple_target((i/j),j)=sr_multiple_target_BPF_out_match_out(i);j=j+1;elseMTD_process_multiple_target(mod(i,N_signal_T/duty_ratio),j)=sr_multiple_target_BPF_out_match_out(i);endendfigure;mesh([1:NT],(0:distance_door:(N_signal_T/duty_ratio*distance_door-distance_door)),(abs(MTD_process_multiple_target)));xlabel('频率通道');ylabel('目标距离');title('距离门重排')i=round(log2((NT)));while ((2^i)<(NT))i=i+1;endMTD_N=2^(i);%确定FFT点数%内存分配MTD_FFT_multiple_target=zeros(N_signal_T/duty_ratio,MTD_N);for i=1:N_signal_T/duty_ratioMTD_FFT_multiple_target(i,:)=(2/MTD_N)*abs(fft([MTD_process_multiple_target(i,:)],MTD_N)); %信号+噪声脉压后FFT%加海明窗MTD_FFT_sn_w_H(i,:)=(2/MTD_N)*abs(fft(([MTD_process_multiple_target(i,:),zeros(1,MTD_N-NT)]).*hamming(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFT%加布拉克曼窗MTD_FFT_sn_w_B(i,:)=(2/MTD_N)*abs(fft(([MTD_process_multiple_target(i,:),zeros(1,MTD_N-NT)]).*blackman(MTD_N)',MTD_N));%信号+噪声脉压后加窗后FFTendfigure;subplot(311)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),(fftshift(20*log10(abs(MTD_FFT_multiple_target)))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('多目标探测(不加窗)')subplot(312)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_H))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('多目标探测(加海明窗)')subplot(313)mesh((-MTD_N/2:MTD_N/2-1).*(0.5*(1/MTD_N)*c/f0/(T_signal)),(0:distance_door:(N_signal_T/duty_ratio*dis tance_door-distance_door)),fftshift(20*log10(abs(MTD_FFT_sn_w_B))));xlabel('目标速度');ylabel('目标距离'); zlabel('幅度/dB')title('多目标探测(加布拉克曼窗)')。

华南理工大学电子与信息学院XX年硕士研究生招生专业目录

华南理工大学电子与信息学院XX年硕士研究生招生专业目录
01-04研究方向979高分子化学与物理; 05-12方向985无机非金属材料科学基础; 13-14方向979高分子化学与物理或者985无机非金属材料科学基础; 15方向995无源电子元器件导论
02高分子改性与复合材料
同上
03橡胶、塑性、纤维工程与理论
同上
04功能高分子材料
同上
05光电信息功能材料
①101思想政治理论②201英语一③302数学二④845无机材料工艺原理
①101思想政治理论②201英语一③302数学二④846电介质物理学
37
01高分子材料成型加工
①101思想政治理论②201英语一③302数学二④865有机化学
01方向979高分子化学与物理;02-07方向929金属材料科学基础
02材料表面技术
①101思想政治理论②201英语一③302数学二④844金属学
同上
04高分子结构与性能
同上
05天然高分子与生物医用高分子
同上
06环境友好高分子化学
同上
31
01高分子光电器件物理
①101思想政治理论②201英语一③302数学二④860普通物理(含力、热、电、光学)
复试笔试科目:992材料物理化学前沿基础知识
02金属材料表面物理与化学
①101思想政治理论②201英语一③302数学二④844金属学或者845无机材料工艺原理或者852物理化学(二)或者860普通物理(含力、热、电、光学)
初试选考865科目,复试979高分子化学与物理; 初试选考845科目,复试985无机非金属材料科学基础; 初试选考844科目,复试929金属材料科学基础
02无机非金属材料工程
同上
03金属材料工程
同上
04生物医学材料工程

南京理工大学电子信息工程专业介绍

南京理工大学电子信息工程专业介绍

电⼦信息⼯程专业 ⼀、专业特⾊ 本专业重视学科基础建设和专业技能培养,注重学⽣全⾯素质的提⾼,特别是创新能⼒和实践能⼒的培养,采取有效的措施使学⽣得到必要的训练和锻炼。

本专业由信息系统和信息安全两个专业⽅向构成。

2005年被批准为江苏省品牌专业,2008年被批准为特⾊专业建设点。

毕业⽣适应⾯宽,具有良好的就业前景。

⼆、培养⽬标 本专业培养具备电⼦技术和信息系统的基础知识,能在信息、电⼦等⾏业从事各类电⼦设备和信息系统的研究、设计、制造、应⽤和开发的⾼级⼯程技术⼈才。

三、培养要求 本专业是⼀个电⼦和信息⼯程⽅⾯的较宽⼝径专业。

本专业学⽣主要学习信号的获取与转换、信息的传输与处理、电⼦设备与信息系统等⽅⾯的专业知识,受到电⼦信息系统⽅⾯的良好实践训练。

以电⼦技术和信息处理技术为主要研究内容,具备电⼦信息系统的设计、开发、应⽤和集成的基本能⼒。

毕业⽣应获得以下⼏个⽅⾯的知识和能⼒: 1.较系统地掌握本专业领域宽⼴的技术基础理论知识,适应电⼦和信息⼯程⽅⾯⼴泛的⼯作范围; 2.掌握电⼦电路的基本理论和实验技术,具备分析和设计电⼦设备的基本能⼒; 3.掌握信息获取、处理的基本理论和应⽤的⼀般⽅法,具有设计、集成、应⽤及计算机模拟信息系统的基本能⼒; 4.了解信息产业的基本⽅针、政策和法规,了解企业管理的基本知识; 5.了解电⼦设备和信息系统的理论前沿,具有研究、开发新系统、新技术的初步能⼒; 6.掌握⽂献检索、资料查询的基本⽅法,具有⼀定的科学研究和实际⼯作能⼒。

四、学制与学位 标准学制:四年 修业年限:三到六年 授予学位:⼯学学⼠ 五、主⼲学科、交叉学科 主⼲学科:信息与通信⼯程、系统⼯程、电磁场与微波技术,主⼲学科“信息与通信⼯程”具有⼀级学科博⼠学位授予权,设有博⼠后流动站;“通信与信息系统”为江苏省重点学科。

交叉学科:计算机科学与技术 六、主要课程 电路理论系列课程、计算机技术系列课程、通信原理、信号与系统、数字信号处理、数字逻辑电路、电磁场与电磁波、控制⼯程基础、信息理论与编码、信息融合技术、信息系统原理及应⽤、密码学基础、络对抗技术、密码学、模式分类及应⽤等。

南京理工大学随机信号处理实验报告

南京理工大学随机信号处理实验报告

题目:雷达线性调频信号的脉冲压缩处理线性调频脉冲信号,时宽10us,带宽40MHz,对该信号进行匹配滤波后,即脉压处理,处理增益为多少,脉压后的脉冲宽度为多少?用图说明脉压后的脉冲宽度,内差点看4dB带宽,以该带宽说明距离分辨率与带宽的对应关系。

1.程序为:T=10e-6;B=112e6;Rmin=8500;Rmax=11500;R=[9000,10000,10020];RCS=[1 1 1 ];C=3e8;K=B/T;Rwid=Rmax-Rmin;Twid=2*Rwid/C;Fs=10*B;Ts=1/Fs;Nwid=ceil(Twid/Ts);t=linspace(2*Rmin/C,2*Rmax/C,Nwid); M=length(R);td=ones(M,1)*t-2*R'/C*ones(1,Nwid);Srt1=RCS*(exp(1i*pi*K*td.^2).*(abs(td)<T/2));Srt=Srt1;Nchirp=ceil(T/Ts);Nfft=2^nextpow2(Nwid+Nwid-1); Srw=fft(Srt,Nfft);Srw1=fft(Srt1,Nfft);t0=linspace(-T/2,T/2,Nchirp);St=exp(1i*pi*K*t0.^2);Sw=fft(St,Nfft);Sot=fftshift(ifft(Srw.*conj(Sw)));Sot1=fftshift(ifft(Srw1.*conj(Sw)));N0=Nfft/2-Nchirp/2;Z=abs(Sot(N0:N0+Nwid-1));Z=Z/max(Z);Z=20*log10(Z+1e-6);figuresubplot(211)plot(t*1e6,real(Srt));axis tight;xlabel('us');ylabel('幅度')title(['线性信号压缩前']);subplot(212)plot(t*C/2,Z)xlabel('Range in meters');ylabel('幅度 ')title(['线性信号压缩后']);选取0.9*10^4HZ 的一个脉冲进行放大分析(调整Y 轴与X 轴的范围)58606264666870727476us幅度线性调频信号压缩前0.850.90.9511.05 1.1 1.15x 104-150-100-5050Range in meters 幅度 线性调频信号压缩后选取主瓣调整:大致可以看出压缩后的带宽为0.1hz理论上分析处理增益为:D=10*10e -6*112*10e6=1120D=112/B1=1120.B1=0.1HZ2.分辩率。

信号和信号处理的基本概念资料

信号和信号处理的基本概念资料


分 析
自 由





的 情两 况谐 分波 析信
号 叠 加
多自由度衰减振动信 号分析
Wigner-Ville STFT
信单 号一 的频
率 幅 值 调 制
的单





分 布
调 制 信

1.2 信号的分类
动态信号和静态信号 确定性信号和随机信号 能量信号和功率信号 模拟信号和数字信号
动态信号和静态信号
随机信号
周期信号 非周期信号 非平稳随机信号 平稳随机信号
准周期信号 瞬态信号 各态历经信号 非各态历经信号
确定性信号
若信号被表示为一确定的时间函数 x(t)=f(t),对于指定的某一时刻t,可 确定一相应的函数值 x(t),这种信号 称为确定性信号或规则信号。其实质是 可以用确定的数学关系来描述,例如, 我们熟知的正弦、方波和三角波等信号。 确定性信号可分为周期信号和非周期信 号。
和非平稳随机信号。
平稳随机信号
平稳随机信号指任意时间 t的幅值、频率和 相位虽然事先不可预知,但具有统计规律,可 以用统计规律进行分析的信号。
非平稳随机信号
非平稳随机信号没有统计特征。
各态历经随机信号
如果任何一个时间样本的统计特征都能代表整 个时间历程,这种信号是各态历经随机信号。
非各态历经随机信号
动态信号处理
华南理工大学机械与汽车工程学院 丁康
2012 年 12 月
信号和信号处理的基本概念
1.1 信号的基本概念 1.2 信号的分类 1.3 信号的获取 1.4 信号的描述 1.5 工程信号处理系统的基本组成和功能 1.6 系统和系统分析方法
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

(081001)★▲通信与信息系统
01、通信理论与技术
02、随机信号理论与应用
03、电子系统理论与技术
04、网络安全与对抗
[101] 思想政治理论
[201] 英语一
[301] 数学一
[818] 信号、系统与数字电路[信号与系统(75分)、数字电路(75分)]
模拟电子线路
和数字信号处

(081002)★信号与信息处理
01、信号获取与处理
02、现代信号处理
03、高速数字信号处理
04、多媒体信息处理与加密
[101] 思想政治理论
[203]日语[202]俄语
[201]英语一任选一门
[301] 数学一
[818] 信号、系统与数字电路[信号与系统(75分)、数字电路(75分)]
模拟电子线路
和数字信号处

(085208)电子与通信工程(专业学位)
01、通信理论与技术
02、网络安全与对抗
03、信号获取与处理
04、高速数字信号处理
05、微波毫米波通信技术
06、微波毫米波器件及系统
[101] 思想政治理论
[204] 英语二
[302] 数学二
[818] 信号、系统与数字电路[信号与系
统(75分)、数字电路(75分)]
模拟电子线路
和数字信号处

818 信号、系统与数字电路
《信号与系统》(第三版)2008年电子工业出版社徐天成、谷亚林、钱玲《信号与系统》(第二版)2000年高等教育出版社郑君里、应启珩、杨为理《数字电子技术基础》(第五版)高等教育出版社闫石
《数字逻辑电路与系统设计》2008.7 电子工业出版社蒋立平
《Digital logic Circuit Analysis and Design》清华大学出版社Nelson VP 等
数字电路《数字电路》兵器工业出版社蒋立平。

相关文档
最新文档