[优质版]高二数学上学期期末测试

合集下载

河南省高二上学期期末考试数学试题(解析版)

河南省高二上学期期末考试数学试题(解析版)

一、单选题1.直线的倾斜角为( ) 50x +=A . B .C .D .30︒60︒120︒150︒【答案】D【分析】求出直线的斜率,然后根据斜率的定义即可求得倾斜角.【详解】直线可化为 50x +=y x =则斜率,满足, tan k α==α0180α≤<︒所以倾斜角为. 150︒故选:D2.下列有关数列的说法正确的是( )A .数列1,0,,与数列,,0,1是相同的数列 1-2-2-1-B .如果一个数列不是递增数列,那么它一定是递减数列C .数列0,2,4,6,8,…的一个通项公式为 2n a n =D ,…的一个通项公式为n a =【答案】D【分析】根据数列的定义和表示方法,逐一判断,即可得到本题答案.【详解】对于选项A ,数列1,0,-1,-2与数列-2,-1,0,1中的数字排列顺序不同,不是同一个数列,故A 错误;对于选项B ,常数数列既不是递增数列,也不是递减数列,故B 错误; 对于选项C ,当时,,故C 错误;1n =120a =≠对于选项D ,因为123a a a =====4a ==…,所以数列的一个通项公式为D 正确. n a =故选:D3.已知直线l 过点且方向向量为,则l 在x 轴上的截距为( ) ()3,4-()1,2-A . B .1C .D .51-5-【答案】A【分析】先根据方向向量求得直线的斜率,然后利用点斜式可求得直线方程,再令,即2k =-0y =可得到本题答案.【详解】因为直线的方向向量为,所以直线斜率, l ()1,2-2k =-又直线过点,所以直线方程为,即, l ()3,4-42(3)y x -=-+220x y ++=令,得,所以在x 轴上的截距为-1. 0y ==1x -l 故选:A4.已知,“直线与平行”是“”的( )m ∈R 1:0l mx y +=22:910l x my m +--=3m =±A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件【答案】C【分析】根据平行的成比例运算即可求解.【详解】直线与平行1:0l mx y +=22:910l x my m +--=则, 210=91m m m ≠--所以, 29m =解得,3m =±经检验,均符合题意, 3m =±故选:C.5.已知等差数列中,,是函数的两个零点,则{}n a 5a 14a 232()=--x x x f 381116a a a a +++=( ) A .3 B .6C .8D .9【答案】B【分析】由等差数列的性质进行计算即可.【详解】由已知,函数的两个零点,即方程的两根,, 232()=--x x x f 2320x x --=1x 2x ∴, 51412331a a x x -+=+=-=∵数列为等差数列, {}n a ∴, 3168115143a a a a a a +=+=+=∴. 3811166a a a a +++=故选:B.6.已知圆关于y 轴对称的圆与直线相切,则m 的值为( )221:230C x y x ++-=2C x m =A .B .3C .或3D .1或1-1-3-【答案】C【分析】先求出关于y 轴对称的圆的标准方程,然后利用圆心到切线的距离等于半径,列出方2C 程求解,即可得到本题答案.【详解】由圆,可得标准方程,圆心为,半径, 221:230C x y x ++-=22(1)4x y ++=(1,0)-2r =故关于轴对称的圆的圆心为,半径,则其标准方程为, y 2C (1,0)2r =22(1)4x y -+=又因为圆与直线相切,所以圆心到切线的距离等于半径, 2C x m =即,解得或. 12m -=1m =-3m =故选:C7.已知数列满足,且,则数列的前项和为( ) {}n a 13n n a a +=11a =-{}2n a n +5A . B . C . D .151-91-91151【答案】B【分析】由等比数列的定义判断出数列为等比数列,再使用分组求和法求解即可. {}n a 【详解】∵数列满足,且, {}n a 13n n a a +=11a =-∴数列是首项为,公比为的等比数列,{}n a 1-3∴,11133n n n a --=-⨯=-∴数列的前项和为,{}2n a n +5()()()()()01234532343638310S =-++-++-++-++-+()()0123433333246810=-----+++++()()51132105132-⨯-+⨯=+-12130=-+.91=-故选:B.8.已知椭圆过点且与双曲线有相同焦点,则椭圆的离心率22221(0)x y a b a b +=>>()3,2-22132x y -=为( )A B C D 【答案】C【分析】由题可得,,联立方程可求得,然后代入公式,即225a b -=22941a b +=22,a b e =可求得本题答案.【详解】因为椭圆与双曲线有相同焦点,所以椭圆两个焦点分别为22132x y -=12(F F ,则①, 2225c a b =-=又椭圆过点,所以②, ()3,2P -22941a b +=结合①,②得,,2215,10a b ==所以, e ==故选:C9.已知圆与圆的公共弦长为2,则m 的值为221:2220C x y x y +-+-=222:20(0)C x y mx m +-=>( )A B .C D .332【答案】A【分析】根据圆的圆心和半径公式以及点到直线的距离公式,以及公共线弦方程的求法即可求解. 【详解】联立和, 222220x y x y +-+-=2220x y mx +-=得,由题得两圆公共弦长,(1)10m x y -+-=2l =圆的圆心为,半径, 221:2220C x y x y +-+-=(1,1)-r 2=圆心到直线(1,1)-(1)10m x y -+-=,===平方后整理得,, 2230m -=所以 m m =故选:A.10.“斐波那契数列”又称黄金分割数列,指的是这样一个数列:1,1,2,3,5,8,13,…,即斐波那契数列满足,,设其前n 项和为,若,则{}n a 121a a ==21++=+n n n a a a n S 2021S m =2023a =( ) A . B .mC .D .1m -1m +2m 【答案】C【分析】由斐波那契数列满足,归纳可得,令{}n a 12121,1,n n n a a a a a --===+21m m a S +=+2021m =,即可求得本题答案.【详解】因为斐波那契数列满足, {}n a 12121,1,n n n a a a a a --===+所以,321a a a =+, 432211a a a a a =+=++, 5433211a a a a a a =+=+++……, 21122111m m m m m m m a a a a a a a a S ++--=+=++++++=+ 则. 2023202111a S m =+=+故选:C11.如图,在直四棱柱中,底面ABCD 是边长为2的正方形,,M ,N 分1111ABCD A B C D -13D D =别是,AB 的中点,设点P 是线段DN 上的动点,则MP 的最小值为( )11B CA B C D 【答案】D【分析】建立空间直角坐标系,设出点的坐标,根据两点距离公式表示,利用二次函数求值P MP 域,即可得到本题答案.【详解】以点为坐标原点,分别以所在直线为轴,轴,轴,建立如图所示的空D 1,,DA DC DD x y z 间直角坐标系.因为底面ABCD 是边长为2的正方形,,所以, 13D D =(1,2,3)M ∵点在平面上,∴设点的坐标为,P xOy P ()[],,0,0,1x y y ∈∵在上运动,∴,∴,∴点的坐标为, P DN 2AD x y AN==2x y =P (2,,0)y y==∵,∴当时, 取得最小值. []0,1y ∈45y =MP 故选:D12.已知双曲线C :l 与C 相交于A ,B 两2221(0)y x b b-=>点,若线段的中点为,则直线l 的斜率为( ) AB ()1,2NA .B .1CD .21-【答案】B【分析】先利用题目条件求出双曲线的标准方程,然后利用点差法即可求出直线的斜率.l 【详解】因为双曲线的标准方程为,2221(0)y x b b-=>所以它的一个焦点为,一条渐近线方程为, (,0)c 0bx y -=所以焦点到渐近线的距离,化简得,解得,d =2222(1)b c b =+22b =所以双曲线的标准方程为,2212y x -=设,所以①,②, 1122(,),(,)A x y B x y 221112y x -=222212y x -=①-②得,,222212121()()02x x y y ---=化简得③,121212121()()()()02x x x x y y y y +--+-=因为线段的中点为,所以, AB ()1,2N 12122,4x x y y +=+=代入③,整理得, 1212x x y y -=-显然,所以直线的斜率. 1212,x x y y ≠≠l 12121y y k x x -==-故选:B二、填空题13.已知A (1,-2,11)、B (4,2,3)、C (x ,y ,15)三点共线,则xy=___________. 【答案】2.【详解】试题分析:由三点共线得向量与共线,即,,AB AC ABk AC = (3,4,8)(1,2,4)k x y -=-+,解得,,∴. 124348x y -+==-12x =-4y =-2xy =【解析】空间三点共线.14.已知抛物线的焦点为F ,直线与抛物线交于点M ,且,则22(0)x py p =>2x =2MF =p =_______. 【答案】2【分析】先求点的纵坐标,然后根据抛物线的定义,列出方程,即可求得的值.M p 【详解】把代入抛物线标准方程,得,2x =22(0)x py p =>2(2,)M p 根据抛物线的定义有,,化简得,,解得. 222p MF MH p==+=244p p +=2p =故答案为:215.已知点,点为圆上的任意一点,点在直线上,其中为坐标原(1,1)--P M 22:1C x y +=N OP O点,若恒成立,则点的坐标为______.|||MP MN =N【答案】11,22⎛⎫-- ⎪⎝⎭【分析】设和的坐标,由,列等式,利用点在圆上,点在直线上,NM |||MP MN =M N OP 化简得恒成立的条件,求得点的坐标.N 【详解】易知直线的方程为,由题意可设,OP 0x y -=00(,)N x x 设,则可得,由,可得(,)M x y ''221x y ''+=||||MP MN 22222200||(1)(1)||()()MP x y MN x x y x ''+++==''-+-, 2002()322()12x y x x y x ''++=''-+++则,化简得,2002()322()12x y x x y x ''''⎡⎤++=-+++⎣⎦200(24)()41x x y x ''++=-即,[]00(12)2()(12)0x x y x ''+++-=若恒成立,则,解得,故.|||MP MN =0120x +=012x =-11,22N ⎛⎫-- ⎪⎝⎭故答案为:11,22⎛⎫-- ⎪⎝⎭16.已知双曲线C :的左、右焦点分别为,,其中与抛物线的22221(0,0)x y a b a b-=>>1F 2F 2F 28y x =焦点重合,点P 在双曲线C 的右支上,若,且,则的面积为122PF PF -=1260F PF ∠=︒12F PF △_______. 【答案】【分析】结合题目条件与余弦定理,先算出的值,然后代入三角形的面积公式12PF PF ⋅,即可得到本题答案. 1212121sin 2F PF S PF PF F PF =⋅∠A 【详解】由双曲线右焦点与抛物线的焦点重合,可得,所以, 2F 28y x =2(2,0)F 124F F =设,则,1122,PF r PF r ==122r r -=因为,所以, 22212121212||||2cos F F PF PF PF PF F PF =+-⋅⋅∠22121212162r r r r +-⨯=则,解得,21212()16r r r r -+=1212r r =所以,. 12121sin 602F PF S r r =︒=A故答案为:三、解答题17.已知数列满足,且点在直线上.{}n a 11a =111,n n a a +⎛⎫⎪⎝⎭2y x =+(1)求数列的通项公式;{}n a (2)设,求数列的前n 项和. 1n n n b a a +={}n b n T 【答案】(1) 121n a n =-(2) 21nn + 【分析】(1)先求出数列的通项公式,从而可得到数列的通项公式;1n a ⎧⎫⎨⎬⎩⎭{}n a (2)根据(1)中数列的通项公式,可写出数列的通项公式,再利用裂项相消的方法即可{}n a {}n b 求得前n 项和.n T 【详解】(1)由题意得,即, 1112n n a a +=+1112n n a a +-=所以数列是首项为,公差为2的等差数列,1n a ⎧⎫⎨⎬⎩⎭111a =故,即. 1112(1)21n n n a a =+-=-121n a n =-(2)由(1)知,11111(21)(21)22121n n n b a a n n n n +⎛⎫===- ⎪-+-+⎝⎭所以1111111112323522121n T n n ⎛⎫⎛⎫⎛⎫=⨯-+⨯-++⨯- ⎪ ⎪ ⎪-+⎝⎭⎝⎭⎝⎭ 111111123352121n n ⎛⎫=⨯-+-++- ⎪-+⎝⎭. 111221n ⎛⎫=- ⎪+⎝⎭21n n =+18.已知的顶点坐标分别是,,. ABC A ()3,0A ()1,2B ()1,0C -(1)求外接圆的方程;ABC A (2)若直线l :与的外接圆相交于M ,N 两点,求. 3480x y +-=ABC A MCN ∠【答案】(1) 22(1)4x y -+=(2) 60MCN ∠=︒【分析】(1)设出圆的一般方程,代入点,求出方程组的解,即可得到本题答案; ,,A B C (2)先求出圆心到直线的距离,即可得到,然后求出,即可得到本题答MN 30PMN ∠=︒MPN ∠案.【详解】(1)设圆的一般方程为:,, 220x y Dx Ey F ++++=22(40)D E F +->代入点得,(3,0),(1,2),(1,0)A B C -,解得,9+30142010D F DEF D F +=⎧⎪++++=⎨⎪-+=⎩203D E F =-⎧⎪=⎨⎪=-⎩所以圆的一般方程为:, 22230x y x +--=标准方程为:.22(1)4x y -+=(2)圆心到直线的距离,(1,0)P :3480l x y +-=d 又因为,在等腰中,, 2PM =PMN A 30PMN ∠=︒所以圆心角,则.260120MPN ∠=⨯︒=︒60MCN ∠=︒19.如图所示,在四棱锥中,平面ABCD ,,,且P ABCD -PA ⊥AD BC ∥AB BC ⊥,.1AB AP BC ===2AD =(1)求证:平面;CD ⊥PAC (2)若E 为PC 的中点,求与平面所成角的正弦值.PD AED 【答案】(1)证明见解析【分析】(1)先证,,由此即可证得平面; AC CD ⊥PA CD ⊥CD ⊥PAC (2)建立空间直角坐标系,求出,平面的一个法向量为,然后利用公(0,2,1)PD =- AED ()1,0,1n =- 式,即可求得本题答案. sin cos ,n PD n PD n PDθ⋅==⋅ 【详解】(1)作,垂足为,易证,四边形为正方形.CF AD ⊥F ABCF 所以,又1CF AF DF ===CD ==AC ==因为,所以.222AC CD AD +=AC CD ⊥因为平面,平面,所以.PA ⊥ABCD CD ⊂ABCD PA CD ⊥又,平面,平面,所以平面.AC PA A ⋂=AC ⊂PAC PA ⊂PAC CD ⊥PAC(2)以点为坐标原点,以所在的直线分别为x 轴,y 轴,z 轴,建立如图所示的空间A ,,AB AD AP 直角坐标系,则,,,,. ()0,0,0A ()0,0,1P ()1,1,0C ()0,2,0D 111,,222E ⎛⎫ ⎪⎝⎭则,,. (0,2,0)AD = (0,2,1)PD =- 111(,,)222AE = 设平面的法向量为,AED (),,n x y z = 由,得, 00n AE n AD ⎧⋅=⎪⎨⋅=⎪⎩ 11102220x y z y ⎧++=⎪⎨⎪=⎩令,可得平面的一个法向量为.1z =AED ()1,0,1n =- 设与平面所成角为,PD AED θ则sin cos ,n PD n PD n PDθ⋅====⋅ 20.已知抛物线:()的焦点为,过上一点向抛物线的准线作垂线,垂足C 22y px =0p >F C P 为,是面积为.Q PQF △(1)求抛物线的方程;C (2)过点作直线交于,两点,记直线,的斜率分别为,,证明:()1,0M -l C A B FA FB 1k 2k .120k k +=【答案】(1)24y x =(2)证明见解析【分析】(1)由等边三角形的面积可以求出边的长,再求出中的长,即可求出QF Rt FQN A FN 的值,从而求出抛物线的标准方程;p (2)设过的直线方程,与抛物线方程联立,借助,坐标表示,化简证明即可.M A B 12k k +【详解】(1)如图所示,的面积 PQF △1sin 602PQF S PQ PF =︒A ∴, 4PF PQ QF ===设准线与轴交于点,则在中,, x N Rt FQN A 906030FQN ∠=︒-︒=︒∴, 122p FN QF ===∴抛物线的方程为.C 24y x =(2)由题意知,过点的直线l 的斜率存在且不为,()1,0M -0∴设直线的方程为:(),l l ()1y k x =+0k ≠直线的方程与抛物线的方程联立,得,消去y 整理得, l C 2(1)4y k x y x=+⎧⎨=⎩,()2222240k x k x k +-+=当,即时,设,, ()2242440k k ∆=-->()()1,00,1k ∈-⋃()11,A x y ()22,B x y 则,, 212224k x x k =-+-121=x x 由第(1)问知,,()1,0F ∴直线的斜率,直线的斜率, FA 1111y k x =-FB 2221y k x =-∴. ()()()()()()()()()12112121212121221121011111111x x k x x y y k x k x x k k x x x x x -++--+=+===------+∴原命题得证.21.已知数列满足,且.{}n a 12n n a a +=12314++=a a a (1)求的通项公式;{}n a (2)设,数列的前n 项和为,若对任意的,不等式2n n b n a =⋅{}n b n T n *∈N ()2224844n n T n n λ++-≥-恒成立,求实数λ的取值范围.【答案】(1)2n n a =(2) 3,128⎡⎫+∞⎪⎢⎣⎭【分析】(1)由,可得数列为等比数列,公比,代入到,算出12n n a a +={}n a 2q =12314++=a a a ,即可得到本题答案;1a (2)根据错位相减的方法求得,然后将不等式,逐步等价转化为n T ()2224844n n T n n λ++-≥-,再利用单调性求出的最大值,即可得到本题答案. 2112n n λ-≥2112n nn c -=【详解】(1)因为,所以是公比为2的等比数列, 12n n a a +={}n a 所以,故,1231112414a a a a a a ++=++=12a =故.2n n a =(2),1222n n n b n n +=⋅=⋅则,23411222322n n T n +=⨯+⨯+⨯++⨯ 所以,()345121222321222n n n n n T ++⨯+⨯+⨯++-⨯+⨯= 两式相减得,,()()2234122221222222212412n n n n n n T n n n ++++--=++++-⋅=-⋅=-⋅-- 因此. 2(1)24n n T n +=-⋅+由,可得,所以, ()2224844n n T n n λ++-≥-222844n n n n λ+⋅≥-2112nn λ-≥该式对任意的恒成立,则. n *∈N max2112n n λ-⎛⎫≥ ⎪⎝⎭令,则, 2112n n n c -=()1112111211132222n n n n n n n n c c ++++----=-=当时,,即数列递增,当时,,即数列递减,6n ≤10n n c c +->{}n c 7n ≥10n n c c +-<{}n c所以当时,, 7n =()max 3128n c =所以实数λ的取值范围是. 3,128⎡⎫+∞⎪⎢⎣⎭22.已知椭圆M :的短轴长为. 22221(0)x y a b a b +=>>(1)求椭圆M 的方程;(2)若过点的两条直线分别与椭圆M 交于点A ,C 和B ,D ,且共线,求直线AB 的()1,1Q -,AB CD 斜率.【答案】(1)22193x y +=(2) 13【分析】(1)由短轴长可求出可求出,由此即可求得本题答案; 23b =29a =(2)设点,因为共线,可设()()()()11223344,,,,,,,A x y B x y C x y D x y ,AB CD ,AQ QC BQ QD λλ== ,可得,,代入椭圆方程,然后相减,即可得到本题答案. 13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩24241(1)xx y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩【详解】(1)因为短轴长为,b =23b =因为离心率,所以,可得, e 2222213c b a a =-=2213b a =29a =所以椭圆M 的方程为. 22193x y +=(2)设.()()()()11223344,,,,,,,A x y B x y C x y D x y 设,则,即, AQ QC λ= 13131(1)1(1)x x y y λλ-=-⎧⎨--=+⎩13131(1)x x y y λλλλ+-⎧=⎪⎪⎨-+-⎪=⎪⎩代入椭圆方程,得, ()()22112211193x y λλλλ+-++⎡⎤⎡⎤⎣⎦⎣⎦+=即① ()()221141211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭同理可得② ()()222241211993x y λλλ+⎛⎫-+-=- ⎪⎝⎭由②-①,得, 11229393x y x y -=-所以,()12123y y x x -=-所以直线AB 的斜率. 121213y y k x x -==-【点睛】思路点睛:把共线这个条件,转化为,是解决此题的关键. ,AB CD ,AQ QC BQ QD λλ==。

高二数学上册期末考试试卷及答案

高二数学上册期末考试试卷及答案

解 (1) 由 x2-4ax+3a2< 0,得: ( x- 3a)( x- a) < 0, 当 a= 1 时,解得 1<x< 3, 即 p 为真时实数 x 的取值范围是 1<x<3。
x2- x- 6≤0, 由
x2+ 2x- 8>0。
解得: 2<x≤3,
即 q 为真时实数 x 的取值范围是 2<x≤3。
若 p 且 q 为真,则 p 真且 q 真,所以实数 x 的取值范围是 2<x< 3。 (2) p 是 q 的必要不充分条件,即 q 推出 p,且 p 推不出 q, 设集合 A={ x| p( x)} ;集合 B= { x| q( x)} ,则集合 B是集合 A的真子 集, 又 B= (2,3] , 当 a> 0 时, A= ( a, 3a) ; a<0 时, A= (3 a,a) 。
5 C. 0, 5
9.当 x>1 时,不等式 x+ 1 ≥ a 恒成立,则实数 a 的取值范围是 ( D ) . x1
A. ( -∞, 2] B.[2 ,+∞ )
C.[3 ,+∞ )
D.( -∞,
3]
解析 由于定义为 R 的偶函数 f ( x) 满足:对 ? x∈R,有 f ( x+2) = f ( x) -f (1) ,得 f ( -1+2) =f ( -1) -f (1) =0,即 f (1) =0,故 f ( x+2) = f ( x) ,可知 f ( x) 的周期 T=2,图象以 x= 2 为对称轴,作出 f ( x) 的部
B) .
A.直角三角形
B.等边三角形 C .等腰直角三角形 D.钝
角三角形
A. 160
B. 180
C.200
D.220
3.△ ABC中,∠ A,∠ B,∠ C所对的边分别为 a,b,c.若 a=3,b= 4, 7. 如图, PA⊥平面 ABCD,四边形 ABCD为正方形, E 是 CD的中点, F

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(每题4分,共40分)1. 若复数z满足|z-1|=|z+1|,则z在复平面内表示的点位于()A. 实轴B. 虚轴C. 线段AB的中点D. 圆心O答案:C2. 已知函数f(x)=2x+1,若f(f(x))=3,则x等于()A. -1B. 0C. 1D. 2答案:A3. 设函数g(x)=x²-4x+c,若g(x)的图象上存在两个点A、B,使得∠AOB=90°(其中O为坐标原点),则c的取值范围是()A. (-∞, 1]B. [1, +∞)C. (-∞, 3]D. [3, +∞)答案:A4. 已知等差数列{an}的前5项和为25,第5项为15,则该数列的首项为()A. 1B. 3C. 5D. 7答案:B5. 若平行四边形ABCD的对角线交于点E,已知BE=4,CE=6,∠DCE=30°,则BD的长度为()A. 8B. 10C. 12D. 16答案:B6. 已知函数h(x)=x³-3x,若h(x)的图象上存在一个点P,使得∠AOP=90°(其中O为坐标原点),则x的取值范围是()A. (-∞, 0]B. [0, +∞)C. (-∞, 1]D. [1, +∞)答案:C7. 若等比数列{bn}的前三项分别为1、2、4,则该数列的公比为()A. 2B. 3C. 4D. 5答案:A8. 已知函数p(x)=x²-2x+1,若p(p(x))=0,则x等于()A. 0B. 1C. 2D. 3答案:B9. 设函数q(x)=|x-1|+|x+1|,则q(x)的最小值为()A. 0B. 1C. 2D. 3答案:C10. 若三角形ABC中,∠A=60°,AB=3,AC=4,则BC的长度为()A. 5B. 6C. 7D. 8答案:B二、填空题(每题4分,共40分)11. 若复数z=a+bi(a、b为实数),且|z|=2,则___。

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)

数学期末考试试卷及答案(高二上学期)一、选择题(共40分,每小题2分)1. 一次函数y = 2x - 3的图象是直线,下列说法正确的是()。

A. 过点(-3, 3)B. 过点(0, -3)C. 过点(3, 0)D. 过点(0, 3)答案:C2. 已知函数y = ax² + bx + c的图象经过点(1, 4),则a + b + c的值为()。

A. 4B. 6C. 8D. 10答案:B3. 在直角坐标系中,已知点A(2, 3),点B在x轴上,且AB = 5,则点B的坐标为()。

A. (2, 0)B. (0, -3)C. (7, 0)D. (-3, 0)答案:A4. 设函数f(x) = 2x + 3,g(x) = x² - 4,则f(g(2))的值为()。

A. 3B. 7C. 9D. 11答案:C5. 函数y = x² - 6x + 8的图象是一条抛物线,下列说法正确的是()。

A. 开口向上B. 开口向下C. 与x轴平行D. 与y轴平行答案:A二、解答题(共60分)6. 解方程组:2x - y = 3x + y = 5解答:将第一式两边同时加上第二式得到:2x - y + x + y = 3 + 53x = 8x = 8/3将x的值代入第二式得到:8/3 + y = 5y = 5 - 8/3y = 15/3 - 8/3y = 7/3因此,方程组的解为x = 8/3,y = 7/3。

7. 某商品原价为120元,现在打8折出售,求出售价格。

解答:打8折即为原价乘以0.8,所以出售价格为120元 × 0.8 = 96元。

8. 某数的5倍减去6等于30,求这个数。

解答:设这个数为x,则根据题意可以列出方程:5x - 6 = 305x = 30 + 65x = 36x = 36/5因此,这个数为36/5。

9. 已知等差数列的首项为3,公差为4,求第10项。

解答:第10项可以通过首项加上9倍公差来计算:第10项 = 3 + 9 × 4= 3 + 36= 39因此,第10项为39。

高二数学上学期期末试卷及答案 (50)

高二数学上学期期末试卷及答案 (50)

BAEDC高二第一学期期末考试数学试卷(文理科)一.选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.抛物线22y x =的准线方程为A .12y =-B .18y =-C .12x =-D .18x =-2.给出四个条件:①22ac bc >;②a b c c >;③22a b >;>其中能分别成为a b>的充分条件的个数为A .0B .1C .2D .330y +-截圆224x y +=所得的弦长为AB.C .1D .24.若抛物线)0(22>=p px y 上横坐标为3的点到焦点的距离等于5,则p 等于A .1.5B .2C .4D .85.直线012=++y a x 与直线03)1(2=+-+by x a 互相垂直,∈b a ,R 则||ab 的最 小值为A .1B .2C .3D .46.已知b a 、是不垂直的异面直线,α是一个平面,则b a 、在α内的射影有可能是 ① 两条平行直线;②两条互相垂直的直线;③同一条直线;④一条直线及其外一点。

在上面的结论中正确结论的编号是 A .①②④B .①②C .②④D .①②③7.已知直线l 的方向向量为(3,3)v =-,则此直线的倾斜角为A .30︒B .45︒C .150︒D .120︒8.如图,在△ABC 中,∠CAB=∠CBA=30°,AC .BC 边上的高分别为BD .AE,则以A .B 为焦点,且过D .E 的椭圆与双曲线的离心率的倒数和为AB .1C.D.9.若不等式2222x x a y y ++≥--对一切实数x y ,恒成立,则实数a 的取值范围是 A .a ≥1 B .a ≤1 C .a ≥2 D .a ≤210.设12F F 、是双曲线22214x y b -=的两个焦点,点P 在双曲线上,且1290F PF ∠=, △12F PF 的面积为1,则正数b 的值为AB .2C.2 D .111.已知a ,b 都是负实数,则b a bb a a +++2的最小值是A .65B .2(2-1)C .22-1D .2(2+1)12.在约束条件⎪⎩⎪⎨⎧≤+≤+≥420x y s y x x 下,当53≤≤s 时,目标函数y x z 23+=的最大值的变化范围是 A .[7,8]B .[7,)+∞C .[6,8]D .[7,15]二.填空题:本大题共4小题,每小题5分,共20分.将答案填在题中的横线上. 13.不等式2212x x --<的解集是 .14.设2z x y =+,式中,x y 满足约束条件220,1.x y x y +≥⎧⎨+≤⎩ 则z 的最小值是 . 15.已知椭圆191622=+y x 的左.右焦点分别为F 1,F 2,点P 在椭圆上,若P .F 1.F 2是一个直角三角形的三个顶点,则点P 到x 轴的距离为 .16.方程11422=-+-t y t x 表示曲线C ,给出以下命题:①曲线C 不可能是圆;②若曲线C 为椭圆,则41<<t ;MD ABCEF NA 1B 1C 1D 1③若曲线C 为双曲线,则1<t 或4>t ;④若曲线C 为焦点在x 轴上的椭圆,则251<<t ;其中正确的命题是___________(将所有正确命题的序号都填上).三.解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分)设直线1+=kx y 与圆0422=-+++my kx y x 交于N M ,两点,且N M ,关于 直线0=+y x 对称,求不等式⎪⎩⎪⎨⎧≤-≥≥+-01my kx y y kx 表示的平面区域的面积.18.(本小题满分12分) (本题满分12分)已知M .N .E .F 分别是正方体ABCD —A 1B 1C 1D 1 的棱BB 1.B 1C 1.AB 和AD 的中点. (I )求异面直线MN 和CD 1所成的角; (II )证明:EF//平面B 1CD 1.19.(本小题满分12分)如图所示,圆心P 在直线y x =上,且与直线210x y +-=相切的圆,截y 轴的上半轴所得的弦AB 长为2,求此圆的方程.20.(本小题满分12分)已知函数a x x a x x f -+--=3)1()(2(a a x ,≠为非零的常数)(1)解不等式x x f <)(;(2)如果1=a ,且1>x ,求()f x 的取值范围.21.(本小题满分12分)设双曲线C :2221(0)x y a a -=>与直线l :1x y +=相交于两个不同的点,A B ;(I)求双曲线C 的离心率e 的取值范围;(II)设直线l 与y 轴的交点为P,且512PA PB =,求a 的值.22.(本题满分12分)如图,已知圆A .圆B 的方程分别是()(),412,42522222=+-=++y x y x 动圆P 与圆A .圆B 均外切,直线l 的方程为:1()2x a a =≤. (I )求圆心P 的轨迹方程,并证明:当21=a 时,点P 到点B 的距离与到定直线l 距离的比为定值;(II ) 延长PB 与点P 的轨迹交于另一点Q ,求PQ的最小值;(III )如果存在某一位置,使得PQ 的中点R 在l 上的射影C ,满足,QC PC ⊥求a 的取值范围.参考答案一.选择题 1-4 BCDC 5-8 BACA 9-12 CDBA 二.填空题13.{x |―1<x <3,且x ≠1}; 14.2-; 15.;94 16.③④三.解答题17.解::因N M ,关于直线0=+y x 对称,∴直线1+=kx y 垂直于0=+y x ,∴k =1, ……3分 又∵圆心在0=+y x 上,∴m =-1, ……6分所以不等式⎪⎩⎪⎨⎧≤+≥≥+-0001y x y y x 表示的平面区域的面积为41……10分18.解:(I )连结BC 1.AD 1.AC ,则在正方体ABCD —A 1B 1C 1D 1中,AB .A 1B 1.C 1D 1所以四边形ABC 1D 1为平行四边形,从而AD 1//BC 1.又M .N 分别为BB 1,B 1C 1的中点,1//BC MN ∴,进而MN//AD 1. 从而∠AD 1C 为异面直线MN 与CD 1所成的角.………………4分 令正方体棱长为a ,则AD 1=D 1C=AC=a 2.即△AD 1C 为正三角形所以︒=∠601C AD ,即异面直线MN 和CD 1所成的角为60° ……6分 (II )证明: ∵ BB 1 //DD 1 BB 1 =DD 1 ∴四边形BB 1D 1D 是平行四边形∴ BD // B 1D 1 ……8分 又E .F 分别是棱.AB 和AD 的中点. ∴EF//BD ∴ EF // B 1D 1 ……10分 EF ⊄ 平面B 1CD 1 B 1D 1⊂平面B 1CD 1∴EF//平面B 1CD 1 ……12分 19.解:∵圆心P 在直线y = x 上,∴可设P 的坐标为(k ,k ),(k>0) 作PQ ⊥AB 于Q ,连接AP ,在Rt △APQ 中,AQ=1,AP=r ,PQ=k∴r=2k 1+ ……3分又r=点P 到直线x + 2y-1= 0的距离∴1k 211k 2k 222+=+-+ ……6分整理,得02k 3k 22=-- 解得,k=2或21k -=(舍去) ……9分∵所求圆的半径为1k r 2+==5∴所求圆的方程为:5)2y ()2x (22=-+- ……12分 20.解:(1)由x x f <)(,得xa x x a x <-+--3)1(2即03<-+a x x ,得0))(3(<-+a x x……3分(i )当3-<a 时,原不等式的解集为(a ,-3) (ii )当3-=a 时,原不等式的解集为φ;(iii )当3->a 时,原不等式的解集为(-3,a )……6分(2)如果1=a ,则13)(2-+=x x x f当1>x 时,214)1(14)1()(2+-+-=-+-=x x x x x f ……9分4100()261x f x x ->>∴≥=-,当且仅当141-=-x x 时,即3=x 时取等号故当1=a 且1>x 时,f(x)的取值范围是)6[∞+,……12分21.解:(I )由C 与l 相交于两个不同的点,故知方程组2221,1.x y ax y ⎧-=⎪⎨⎪+=⎩有两个不同的实数解.消去y 并整理得2222(1)220a x a x a -+-= ①24221048(1)0a a a a ⎧-≠⎪∴⎨+->⎪⎩解得01a a <<≠. ……3分双曲线的离心率e ==, 0a <<a ≠12e e ∴>≠即离心率e的取值范围是(2,)+∞. ……6分(II )设1122(,),(,),(0,1)A x y B x y P ,5,12PA PB =11225(,1)(,1).12x y x y ∴-=-由此得12512x x =. ……9分 由于12,x x 都是方程①的根,且210a -≠,∴212221222121a x x a a x x a ⎧+=-⎪⎪-⎨⎪⋅=-⎪-⎩⇒222222217212152121a x a ax a ⎧=-⎪⎪-⎨⎪=-⎪-⎩ ∴2221751212x x =, ∴20x =(舍)或2175x =,∴222289160a a-=- 由0a >,所以1713a =. ……12分 22.解: (I )设动圆P 的半径为r ,则|PA |=r+25,|PB| = r + 21,∴ |PA| -|PB| = 2. ……2分 ∴ 点P 的轨迹是以A .B 为焦点,焦距为4,实轴长为2的双曲线的右支,其方程为1322=-y x (x ≥1).证明:若21=a , 则l 的方程21=x 为双曲线的右准线,B 点为双曲线的焦点,∴点P 到点B 的距离与到l 的距离之比为双曲线的离心率e = 2. ……4分 (II)若直线PQ 的斜率存在,设斜率为k ,则直线PQ 的方程为y = k ( x -2 )代入双曲线方程, 得()034432222=--+-k x k xk ,由 ⎪⎪⎪⎩⎪⎪⎪⎨⎧>-+-=>--=+>∆0334034022212221k k x x k k x x , 解得2k >3. ……6分 ∴ |PQ |=632463)1(6||1222212>-+=-+=-+k k k x x k .当直线的斜率存在时,221==x x ,得3,321-==y y ,|PQ|=6. ∴ |PQ|的最小值为6. ……8分 (III )当PQ ⊥QC 时,P .C .Q 构成Rt △.∴ R 到直线l 的距离|RC|=ax PQ R -=2|| ①又 ∵ 点P .Q 都在双曲线1322=-y x 上,∴ 221||21||=-=-Q P x QB x PB .∴ 21||||=-++Q P x x QB PB ,即 24||-=R x PQ . ∴42||+=PQ x R ② ……10分将②代入①得 a PQ PQ -+=42||2||,|PQ |=642≥-a .故有1-≤a ……12分。

高二数学上学期期末试卷及答案 (74)

高二数学上学期期末试卷及答案 (74)

高二第一学期期末考试数学试卷本试卷分为第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分,考试时间120分钟.第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知命题甲:x >0;命题乙:0>x ,那么甲是乙的 ( ) A .充分非必要条件;B .必要非充分条件;C .充要条件;D .既不充分也不必要条件。

2、下列命题中正确的是 ( ) ①“若x 2+y 2≠0,则x ,y 不全为零”的否命题;②“若x=a, 则(x-a)(x-b)=0”的逆命题; ③“若m>0,则x 2+x -m=0有实根”的逆否命题;④“若a,b 都是偶数,则a+b 是偶数”的逆否命题。

A.①②③④ B.②③④ C .①③④ D.①④ 3.已知集合2{|47},{|120}M x x N x x x =-≤≤=-->,则MN 为 ( )A .{|43x x -≤<-或47}x <≤B .{|43x x -<≤-或47}x ≤<C .{|3x x ≤-或4x >}D .{|3x x <-或4}x ≥4.不等式022>++bx ax的解集是 {}11|23x x -<<,则b a +的值为( )A .14B .-14C .10D .-105. 如果 -1,a ,b ,c ,-9成等比数列,那么 ( ) A .b=3,ac=9; B .b= -3, ac=9; C .b=3,ac= -9; D .b= -3,ac= -96.在ABC △中,若2sinsin sin A B C =⋅且()()3b c a b c a bc +++-=,则该三角形的形状是( )A .直角三角形B .钝角三角形C .等腰三角形D .等边三角形7.在ABC ∆中,23,22,4a b B π===,则A 等于 ( )A .6πB .3πC .6π或56πD .3π或23π8.已知两点1(1,0)F -、2(1,0)F ,且12F F 是1PF 与2PF 的等差中项,则动点P 的轨迹方程是( )A .221169y x +=B .2211612y x +=C .22143y x += D .22134y x +=9.抛物线281x y -=的准线方程是 ( ) A .321=x B .2=y C . 321=y D .2-=y10.双曲线19422-=-y x 的渐近线方程是 ( ) A .x y 32±= B .x y 94±= C .x y 23±= D .xy 49±= 11.已知双曲线222212(,0)y x e y px e -==的离心率为,且抛物线的焦点坐标为,则p 的值为( ) A .-2B .-4C .2D .412.某企业生产甲、乙两种产品,已知生产每吨甲产品要用A 原料3吨、B 原料2吨;生产每吨乙产品要用A 原料1吨、B 原料3吨,销售每吨甲产品可获得利润5万元、每吨乙产品可获得利润3万元,若该企业在一个生产周期内消耗A 原料不超过13吨、B 原料不超过18吨,那么该企业可获得最大利润是A .27万元B .25万元C .20万元D .12万元第Ⅱ卷(非选择题 共90分)二、填空题:本大题共4小题,每步题4分,共16分,把答案填写在题中横线上. 13.在ABC ∆中,若B b A a cos cos =,则ABC ∆的形状是______________________.14.不等式组2510000x y x y -+>⎧⎪<⎨⎪>⎩表示的平面区域内的整点坐标是 .15. 已知F 1、F 2为椭圆192522=+y x 的两个焦点,过F 1的直线交椭圆于A 、B 两点,若1222=+B F A F ,则AB= _____________ 。

高二数学第一学期期末试卷.doc

高二数学第一学期期末试卷.doc

高二数学第一学期期末试卷满分100分,考试时间90分钟一、选择题:(本大题共8小题,每小题4分,共32分.在每题给出的四个选项中,只有一项是符合题目要求的.) (1)如果直线022=++y ax 与直线023=--y x 平行,那么系数a 等于( ) 3.2A -2.3B.3C - .6D -(2)两名同学进行英语听力练习,甲能听懂的概率为0.8,乙能听懂的概率为0.5 ,则甲、乙二人恰有一人能听懂的概率为( )A. 0.4B. 0.9C. 0.5D.0.1(3)已知x 、y 满足条件5003x y x y x -+≥⎧⎪+≥⎨⎪≤⎩,则y x z 42+=的最小值为( )A. –6B. 5C.10D.–10 (4)()521x -的展开式中第四项的系数是( )A.10B. -80C. 80D.-8(5)抛物线22y px = (0p >)上横坐标为3的点到焦点的距离是4,则p 等于( ) A. 8 B. 4 C. 2 D.1(6)已知直线l 的斜率为23-,且过双曲线14922=-y x 的左焦点,则直线l 与此双曲线的交点个数为( )个A. 3B. 2C. 1D. 0(7)五个人排成一排,其中甲、乙、丙三人左、中、右顺序不变(不一定相邻)的排法种数是( ) A .12 B .20 C .36 D .48(8)已知1F 、2F 是椭圆12422=+y x 的左、右焦点,l 是椭圆的右准线,点P l ∈且在x 轴上方,则12F PF ∠的最大值是( )A .15 B.30 C.45 D.60二、填空题:(本大题共6小题,每小题4分 ,共24分.答案填在题中横线上.)(9)在参加2006年德国世界杯足球赛决赛阶段比赛的32支球队中,有欧洲队14支,美洲队8支,亚洲队4支,大洋洲队1支,非洲队5支,从中选出一支球队为欧洲队或美洲队的概率为 .(10)3个班分别从2个风景点中选择1处游览,有________ 种不同的选法 .(11)若点(-2,t )在不等式2x -3y+6>0所表示的平面区域内,则t 的取值范围是_________ . (12) 圆cos 1sin x y θθ=⎧⎨=+⎩的(θ为参数)圆心坐标为 ;直线l 与此圆交于A 、B 两点,且线段AB 的中点坐标是)23,21(-,则直线l 的方程为 .(13)中心在原点,焦点在x 轴上,离心率为35,并且虚轴长为8的双曲线标准方程为 __________;若P 为此双曲线上的一点,1F 、2F 分别是此双曲线的左、右焦点,且120PF PF =,则12PF F ∆的面积为 . (14)过椭圆22184x y +=的右焦点作x 轴的垂线交椭圆于A ,B 两点,已知双曲线的焦点在x 轴上,对称中心在坐标原点且两条渐近线分别过A ,B 两点,则双曲线的离心率e 为.三、解答题:(本大题共4小题,共44分,解答应写出文字说明,证明过程或演算步骤.)(本题满分12分)(15)已知点P (2,0),C :044622=++-+y x y x .(Ⅰ)当直线l 过点P 且与圆心C 的距离为1时,求直线l 的方程;(Ⅱ)设过点P 的直线与C 交于A 、B 两点,且AB CP ⊥,求以线段AB 为直径的圆的方程.(本题满分10分)(16)一个小朋友将七支颜色各不相同的彩笔排成一列. (Ⅰ)求红色彩笔与黄色彩笔相邻的概率;(Ⅱ)求绿色彩笔与蓝色彩笔之间恰有一支彩笔的概率.(17)一次小测验共有3道选择题和2道填空题,每答对一道题得20分,答错或不答得0分.某同学答对每道选择题的概率均为0.8,答对每道填空题的概率均为0.5.各道题答对与否互不影响.(Ⅰ)求该同学恰好答对1道选择题和2道填空题的概率;(Ⅱ)求该同学至少答对1道题的概率;(Ⅲ)求该同学在这次测验中恰好得80分的概率.(本题满分10分普通校学生做,重点校学生不做)(18)已知两点()()2,0,2,0M N - ,动点(),P x y 在y 轴上的射影为,H PH 是2和PM PN ⋅ 的等比中项.(I )求动点P 的轨迹方程;(Ⅱ)若直线1x y +=交以点M 、N 为焦点的双曲线C 的右支于点Q ,求实轴长最长的双曲线C 的方程.(本题满分10分重点校学生做,普通校学生不做)(18)已知椭圆)0(12222>>=+b a by a x 的左、右焦点分别是12(,0),(,0)F c F c -,Q 是椭圆外的动点,满足1||2.FQ a =点P 是线段F 1Q 与该椭圆的交点,点T 在线段F 2Q 上,并且满足220,||0.PT TF TF ⋅=≠(I )设1x 为点P 的横坐标,求证:11||cF P a x a=+; (Ⅱ)求点T 的轨迹C 的方程;(Ⅲ)在点T 的轨迹C 上,是否存在点M ,使△F 1MF 2的面积S=.2b 若存在,求∠F 1MF 2的正切值;若不存在,请说明理由.草稿纸高二数学学科期末试卷答案9.1116 10 .8 11. 23t < 12. (0,1); 20x y -+= 13.116922=-y x ;16 14.注12,13小题每空2分)三.解答题15. (Ⅰ)解:设直线l 的斜率为k (若k 存在),则方程为 )2(0-=-x k y …(2分)又C 的圆心为C(3,-2) , r=3,由112232=++-k k k 43-=⇒k , …… (4分)直线l 的方程为)2(43--=x y ,即0643=-+y x ………(5分) 当k 不存在时,l 的方程为x=2. ………… (7分) (Ⅱ)依题意AB ⊥CP ,得P 为线段AB 的中点,即为以AB 为直径的圆的圆心……(9分) 已知C(3,-2) ,P (2,0),由两点间距离公式得5=CP . …… (10分) 在直角三角形BCP 中,可求半径2BP =. …………(11分) 故以AB 为直径的圆的方程为4)2(22=+-y x . …………(12分) 16.解:七支彩笔可排列总数为77A ,每一种排列出现的机会是等可能的 …………(3分) (Ⅰ)记红色彩笔与黄色彩笔相邻为事件A ,红色彩笔与黄色彩笔相邻的排列有6622A A 种,则P (A )=72776622=A A A . ……………… (7分) (Ⅱ)记绿色彩笔与蓝色彩笔之间恰有一支彩笔的事件为B ,则绿色彩笔与蓝色彩笔之间恰有一支彩笔的概率为215255775()21A A A PB A == . … (10分) (注:学生(1)问求出红色彩笔与黄色彩笔相邻的概率可得满分,未写出是等可能的不扣分)17. 解:(Ⅰ)该同学恰好答对1道选择题和2道填空题的概率为12535.05.0)2.0()8.0(222113=⨯⋅=C C P . ……………… (4分) (Ⅱ)该同学至少答对1道题的概率为5004992151123=⎪⎭⎫⎝⎛⎪⎭⎫ ⎝⎛- . ……… (8分)(Ⅲ)设该同学在这次测验中恰好得80分为事件A ,他恰好答对2道选择题和2道填空题为事件B 1,他恰好答对3道选择题和1道填空题为事件B 2 则A=B 1+B 2,B 1,B 2为互斥事件.12()()()P A P B P B =+=2232223132324114144()55252125C C C C ⎛⎫⎛⎫⎛⎫⎛⎫+= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭ ……(12分) 18. A (普通校)解:(Ⅰ)动点为(),P x y ,则()()()()0,,,0,2,,2,H y PH x PM x y PN x y =-=---=--…………………………… (2分)∴224PM PN x y ⋅=-+,且22PH x =. …………………………… (4分)由题意得22PH PM PN =⋅,即()22224x x y =-+,22184x y +=. …… (5分)PH 是2和PM PN ⋅ 的等比中项,点P 不能与点H 重合,0x ∴≠ .∴22184x y +=(0x ≠)为所求点P 的轨迹方程. ………………………… (6分) (Ⅱ)当直线1x y +=与双曲线C 右支交于点Q 时,而()2,0N 关于直线1x y +=的对称点为()1,1E -,则QE QN =∴双曲线C的实轴长2a QM QN QM QE ME =-=-≤(当且仅当 Q ,E ,M 共线时取“=”),此时,实轴长2a ;……………… (8分)所以,双曲线C 又∵122c MN ==,∴22232b c a =-= ∴双曲线C 的方程为2215322x y -=. …………………………… (10分)18.B (重点校)解:(Ⅰ)证明:设点P 的坐标为11(,).x y 椭圆的左准线方程为c a x 2-=. 由椭圆第二定义得121||||F P c a a x c=+,即2111||||||.c a c F P x a x a c a =+=+ 由11,0c x a a x c a a ≥-+≥-+>知,所以11||.c F P a x a=+ …………… 3分 (Ⅱ)解法一:设点T 的坐标为).,(y x当|0||0|2≠≠TF 且时,由0||||2=⋅TF , 得2TF ⊥.又由椭圆定义得a PF PF 221=+,如图可得a PQ PF 21=+ 则||||2PF PQ =,所以T 为线段F 2Q 的中点.在△QF 1F 2中,a F ==||21||1,所以有.222a y x =+ ………5分 当0||=时,点(a ,0)和点(-a ,0)在轨迹上.综上所述,点T 的轨迹C 的方程是.222a y x =+ …………………6分 解法二:设点T 的坐标为).,(y x当|0||0|2≠≠TF PT 且时,由02=⋅TF PT ,得2TF PT ⊥. 又||||2PF =,所以T 为线段F 2Q 的中点.设点Q 的坐标为(y x '',),则⎪⎪⎩⎪⎪⎨⎧'=+'=.2,2y y c x x 因此⎩⎨⎧='-='.2,2y y c x x ①由a F 2||1=得.4)(222a y c x ='++' ② 将①代入②,可得.222a y x =+ ………………5分当0||=PT 时,点(a ,0)和点(-a ,0)在轨迹上.综上所述,点T 的轨迹C 的方程是.222a y x =+ ………………6分 (Ⅲ)解法一:C 上存在点M (00,y x )使S=2b 的充要条件是⎪⎩⎪⎨⎧=⋅=+.||221,2022020b y c a y x由③得a y ≤||0,由④得20||.b y c = 所以,当c b a 2≥时,存在点M ,使S=2b ; 当c b a 2<时,不存在满足条件的点M. …………………8分 当cb a 2≥时,),(),,(002001y xc MF y x c --=---=, 由2222022021b c a y c x MF MF =-=+-=⋅, 212121cos ||||MF F MF MF MF ∠⋅=⋅,22121sin ||||21b MF F MF MF S =∠⋅=,得.2tan 21=∠MF F ……10分 解法二: 由上解法当cb a 2≥时,存在点M ,使S=2b ; 当cb a 2<时,不存在满足条件的点M. ………………………8分 当2b a c≥时, 100F M y k x c=+,200F M y k x c =-,由122F F a <,知1290F MF ︒∠<, 所以00200012222022022tan 21y y x c x c cy b F MF y b b x c--+∠====+-. ………10分③ ④。

高二上学期期末考试数学试题(解析版)

高二上学期期末考试数学试题(解析版)

2021-2022学年福建省福州闽江学院附属中学高二上学期期末考试数学试题一、单选题1.等差数列{an }中,a 4+a 8=10,a 10=6,则公差d 等于( ) A .B .C .2D .-141212【答案】A【分析】由条件,可得,又可得答案. 486210a a a +==65a =106410a a d =+=【详解】等差数列中,,则{}n a 486210a a a +==65a =,所以,则 1064546a a d d =+=+=41d =14d =故选:A2.已知函数可导,且,( )0()3f x '=000()()limx f x x f x x xΛ→+∆--∆=∆A .-3 B .0C .3D .6【答案】D【分析】利用导数的概念对进行整理,可得结论.000()()limx f x x f x x x∆→+∆--∆∆【详解】000()()limx f x x f x x x ∆→+∆--∆=∆000()()lim x f x x f x x ∆→+∆-∆000()()lim x f x f x x x ∆→--∆+∆.()026f x '==故选:D.【点睛】本题主要考查了导数的概念.属于基础题.3.已知数列{an }的通项公式为an =-2n 2+21n ,则该数列中的数值最大的项是( ) A .第5项 B .第6项C .第4项或第5项D .第5项或第6项【答案】A【分析】根据,结合二次函数的性质即可得出答案.2221441221248n a n n n ⎛⎫=-+=--+ ⎪⎝⎭【详解】解:,2221441221248n a n n n ⎛⎫=-+=--+ ⎪⎝⎭因为,且, *21,564n N ∈<<5655,54a a ==所以数值最大的项为第5项. 故选:A .4.设函数,若为奇函数,则曲线在点(0,0)处的切线()()32212f x x a x ax =+++()f x ()y f x =方程为( ) A . B .C .D .2y x =-y x =-2y x =y x =【答案】A【分析】根据该函数为奇函数,求出a 的值,然后求出得所求切线斜率,最后利用点斜式求0f '()出切线的方程【详解】,函数为奇函数,有,即()()32212f x x a x ax =+++()()f x f x -=-,()()()()()3232212212x a x a x x a x ax ⎡⎤-++-+-=-+++⎣⎦故,即,10a +=1a =-所以,所以,,, ()322f x x x =-()262f x x ='-00f =()02f '=-()所以曲线在点(0,0)处的切线斜率为,切线方程为:. ()y f x =2-2y x =-故选:A.5.如图所示是函数的导函数的图象,则下列判断中正确的是( )()f x ()f x 'A .函数在区间上是减函数 ()f x (3,0)-B .函数在区间上是减函数 ()f x (3,2)-C .函数在区间上是减函数 ()f x (0,2)D .函数在区间上是单调函数 ()f x (3,2)-【答案】A【分析】根据函数的导函数>0时单调递增,时单调递减,依次判断选项即()y f x =()f x '()0f x '<可.【详解】由函数的导函数的图像知,()y f x =()f x 'A :时,,函数单调递减,故A 正确; (30)x ∈-,()0f x '<()f x B :时,或, (32)x ∈-,()0f x '<()0f x '>所以函数先单调递减,再单调递增,故B 错误;()f x C :时,,函数单调递增,故C 错误; (02)x ∈,()0f x '>()f x D :时,或, (32)x ∈-,()0f x '<()0f x '>所以函数先单调递减,再单调递增,不是单调函数,故D 错误. ()f x 故选:A6.设是等差数列的前项和,若,则( ) n S {}n a n 891715a a =1517S S =A .2 B .C .1D .0.51-【答案】C【分析】利用等差数列的求和公式结合等差数列的性质化简求解即可 【详解】解:因为在等差数列中,, {}n a 891715a a =所以, 1151511588117171179915()15()152152117()17()172172a a S a a a a a a S a a a a ++⨯====⋅=++⨯故选:C7.下列结论正确的是( )A .若为等比数列,是的前n 项和,则,,是等比数列 {}n a n S {}n a n S 2n n S S -32n n S S -B .若为等差数列,是的前n 项和,则,,是等差数列{}n a n S {}n a n S 2n n S S -32n n S S -C .若为等差数列,且均是正整数,则“”是“ “的充要{}n a m n p q ,,,m n p q +=+m n p q a a a a +=+条件D .满足的数列为等比数列 1n n a qa +={}n a 【答案】B【分析】根据等差数列前n 项和性质可以判定B 选项正确,利用特例判定其余选项错误. 【详解】若为等比数列,设公比为,是的前n 项和,{}n a 0q q ≠,n S {}n a 设,当时,,,,则,,不是等比数()1na -=2n =0S =0S S -=0S S -=S S S -S S -列,所以A 选项错误;若为等差数列,是的前n 项和,设公差为, {}n a n S {}n a d 则,12n n S a a a +++ =,22212212n n n n n n n S S a a a a a a n d S n d ++-++++++++ ==()=,2232212231222n n n n n n n n n n S S a a a a a a n d S S n d ++++-+++++++-+ ==()=()所以,,是等差数列,所以B 选项正确;n S 2n n S S -32n n S S -为等差数列,考虑,,,所以C 选项错误;{}n a 1n a =1234a a a a +=+1234+≠+考虑常数列,,,满足,数列不是等比数列,所以D 选项错误. {}n a 0n a =0q =1n n a qa +={}n a 故选:B.8.已知是定义在上的偶函数,当时,,且,则不等式()f x R 0x >'2()()0xf x f x x->()20f -=的解集是( ) ()0f x x>A . B . ()()2,00,2-⋃()(),22,-∞-+∞ C . D .()()2,02,-+∞ ()(),20,2-∞- 【答案】C【分析】是定义在上的偶函数,说明奇函数,若时,,可得()f x R ()f x x 0x >'2()()0xf x f x x ->为增函数,若,为增函数,根据,求出不等式的解集; ()f x x 0x <()f x x()()220f f -==【详解】解:∵是定义在上的偶函数,当时,, ()f x R 0x >'2()()0xf x f x x->∴为增函数,为偶函数,为奇函数,()f x x ()f x ()f x x∴在上为增函数, ()f x x(),0∞-∵,()()220f f -==若,,所以; 0x >()202f =2x >若,,在上为增函数,可得, 0x <()202f -=-()f x x (),0∞-20x -<<综上得,不等式的解集是. ()0f x x>()()2,02,-+∞ 故选:C.二、多选题9.(多选)已知数列中,,,下列选项中能使的n 为( ) {}n a 13a =()*111n n a n a +=-∈+N 3n a =A .17 B .16C .8D .7【答案】BD【分析】由递推公式可得数列为周期数列,即得答案. 【详解】由,, 13a =111n n a a +=-+得,,,214a =-343a =-43a =所以数列是周期为3的数列,{}n a 所以,.81714a a ==-7163a a ==故选:BD .10.若为数列的前项和,且,则下列说法正确的是 n S {}n a n 21,(*)n n S a n N =+∈A .B .516a =-563S =-C .数列是等比数列 D .数列是等比数列{}n a {}1n S +【答案】AC【解析】根据题意,先得到,再由,推出数列是等比数列,根据等11a =-1(2)n n n a S S n -=-≥{}n a 比数列的通项公式与求和公式,逐项判断,即可得出结果. 【详解】因为为数列的前项和,且, n S {}n a n 21,(*)n n S a n N =+∈所以,因此,1121S a =+11a =-当时,,即,2n ≥1122n n n n n a S S a a --=-=-12n n a a -=所以数列是以为首项,以为公比的等比数列,故C 正确;{}n a 1-2因此,故A 正确;451216a =-⨯=-又,所以,故B 错误;2121n n n S a =+=-+552131S =-+=-因为,所以数列不是等比数列,故D 错误. 110S +={}1n S +故选:AC.【点睛】本题主要考查由递推公式判断等比数列,以及等比数列基本量的运算,熟记等比数列的概念,以及等比数列的通项公式与求和公式即可,属于常考题型. 11.已知函数,则( ) ()31443f x x x =-+A .在上单调递增 ()f x ()0,∞+B .是的极大值点 2x =-()f x C .有三个零点()f x D .在上最大值是 ()f x []0,34【答案】BCD【分析】对求导,令,可得的值,列表可得函数的单调性与极值,再逐个选项()f x ()0f x '=x ()f x 判断即可.【详解】解:因为 ()31443f x x x =-+所以, 2()4(2)(2)f x x x x '=-=+-令,解得或,()0f x '=2x =-2x =与随的变化情况如下表: ()f x '()f x xx(,2)-∞- 2-(2,2)- 2(2,)+∞()f x ' +0 -0 +()f x极大值极小值因此函数在,上单调递增,在上单调递减,故错误;()f x (,2)-∞-(2,)+∞(2,2)-A 是的极大值点,故正确;2x =-()f x B 因为,,,, (6)440f -=-<28(2)03f -=>()423f =-()652f =由函数的单调性及零点存在性定理可知有三个零点,故正确; ()f x C 当的定义域为时,()f x []0,3在,上单调递减,在,上单调递增,()f x [02](23]又, ,(0)4f =()31f =故选:.BCD 12.“提丢斯数列”是18世纪由德国数学家提丢斯给出的,具体如下:取0,3,6,12,24,48,96,192,…这样一组数,容易发现,这组数从第3项开始,每一项是前一项的2倍,将这组数的每一项加上4,再除以10,就得到“提丢斯数列”:0.4,0.7,1.0,1.6,2.8,5.2,10.0,…,则下列说法中正确的是( ) A .“提丢斯数列”是等比数列B .“提丢斯数列”的第99项为9732410⨯+C .“提丢斯数列”的前31项和为 30321211010⨯+D .“提丢斯数列”中,不超过20的有9项 【答案】BC【分析】根据题意得,由此利用等比数列的性质即可求出结果.20.4,1324,210n n n a n -=⎧⎪=⎨⋅+≥⎪⎩【详解】记“提丢斯数列”为数列,则当时,,当时,{}n a 3n ≥326243241010n n n a --=⋅+⋅+=2n =,符合该式,当时,不符合上式,故,故A 错误;20.7a =1n =10.4a =20.4,1324,210n n n a n -=⎧⎪=⎨⋅+≥⎪⎩,故B 正确;“提丢斯数列”的前31项和为979932410a ⨯+=()3002923232121223051051010⨯++⋅⋅⋅++⨯=+,故C 正确;令,即,得,又,故不超过20的有23242010n -⋅+≤219623n -≤2,3,4,5,6,7,8n =120a <8项,故D 错误. 故选:B C.三、填空题13.在等比数列中,,则_____. {}n a 7125a a =891011a a a a =【答案】25【分析】根据等比数列下标和的性质即可得到结论. 【详解】在等比数列中,, {}n a 7125a a =则, 891011811910712712()()()()25a a a a a a a a a a a a ===故答案为:25【详解】时到直线的距离最短, 22,1,(1,0)21y x P x ==∴='-所以点230x y -+=15.设Sn 是数列{an }的前n 项和,且a 1=-1,an +1=SnSn +1,则Sn =__________. 【答案】-. 1n【详解】试题分析:因为,所以,所以,11n n n a S S ++=111n n n n n a S S S S +++=-=111111n n n n n n S S S S S S +++-=-=即,又,即,所以数列是首项和公差都为的等差数列,所1111n n S S +-=-11a =-11111S a ==-1n S ⎧⎫⎨⎬⎩⎭1-以,所以. 11(1)(1)n n n S =----=-1n S n=-【解析】数列的递推关系式及等差数列的通项公式.【方法点晴】本题主要考查了数列的通项公式、数列的递推关系式的应用、等差数列的通项公式及其性质定知识点的综合应用,解答中得到, ,确定数列是首项和公差1111n n S S +-=-111S =-1n S ⎧⎫⎨⎬⎩⎭都为的等差数列是解答的关键,着重考查了学生灵活变形能力和推理与论证能力,平时应注意方1-法的积累与总结,属于中档试题. 16.设函数f (x )=x 3--2x +5,若对任意的x ∈[-1,2],都有f (x )>a ,则实数a 的取值范围是22x ________.【答案】7(,2-∞【分析】利用导数求得函数在上的值域,即可列出不等式求得结果. []1,2-【详解】,令,得或,2()32f x x x '=--()0f x '=23x =-1x =∴在和上为增函数,在上为减函数, ()y f x =2()3-∞-,(1)+∞,2(1)3-,∴在处有极大值,在处有极小值,()f x 23x =-1x =极小值为17(1)12522f =--+=而,111(1)12522f -=--++= ∴在上的最小值为, ()f x [12]-,72对于任意都有成立,得的范围. 1[]2x ∈-,()f x a >a 72a <故答案为:.7(,)2-∞【点睛】该题考查利用导数求函数在区间上的最值,属于基础题目.四、解答题17.设是公比为正数的等比数列,,. {}n a 12a =214a a =+(1)求的通项公式;{}n a (2)设是首项为1,公差为2的等差数列,求数列的前n 项和. {}n b {}n n a b +n S 【答案】(1)123n n a -⨯=(2) 231n n +﹣【分析】(1)设为等比数列的公比,由已知易得值,则数列的通项可求; q {}n a q {}n a (2)由已知可得的通项,利用分组求和法,求解. {}n b n S 【详解】(1)设为等比数列的公比, q {}n a 则由,得,解得q =3, 12a =214a a =+224q =+∴的通项为;{}n a 123n n a -⨯=(2)由已知可得, ()12121n b n n =+=﹣﹣∴,12321n n n a b n +⨯+﹣=(﹣)1122n n n S a b a b a b =+++ +++()()1212n n a a a b b b =+++ +++ 2(13)(121)132n n n-+-=+-.231n n =+﹣18.已知函数()2ln f x x x =+(1)求的极值;()()3h x f x x =-(2)若函数在定义域内为增函数,求实数的取值范围. ()()g x f x ax =-a【答案】(1)见解析;(2)a ≤【分析】(1)由已知可得,求出其导函数,解得导函数的零点,由导函数的零点对定义域分()h x 段,求得函数的单调区间,进一步求得极值(2)由函数在定义域内为增函数,可得恒成立,分离参数,利()()g x f x ax =-()()‘00g x x ≥>a 用基本不等式求得最值可得答案【详解】(1)由已知可得()()233h x f x x lnx x x =-=+-,()()2‘2310x x h x x x-+=>令,可得或()2‘2310x x h x x-+==12x =1x =则当时,,当时, ()1012x ⎛⎫∈⋃+∞ ⎪⎝⎭,,()‘0h x >112x ⎛⎫∈ ⎪⎝⎭()‘0h x <在,上为增函数,在上为减函数 ()h x ∴102⎛⎫ ⎪⎝⎭,()1+∞,112⎛⎫⎪⎝⎭则 ()()12h x h ==-极小值,()15224h x h ln ⎛⎫==-- ⎪⎝⎭极大值(2)()()2g x f x ax lnx x ax =-=+-, ()‘12g x x a x=+-由题意可知恒成立,()()‘00g x x ≥>即12min a x x ⎛⎫≤+ ⎪⎝⎭时, 0x > 12x x +≥x =故12min x x ⎛⎫+= ⎪⎝⎭则a ≤【点睛】本题主要考查了函数的极值,只需求导后即可求出结果,在解答函数增减性时,结合导数来求解,运用了分离参量的解法,属于中档题19.已知数列的各项均为正数,表示数列的前n 项的和,且. {}n a n S {}n a 22n S n n =+(1)求数列的通项公式;{}n a(2)设,求数列的前n 项和. 12n n n b a a +={}n b n T 【答案】(1),21n a n =+*N n ∈(2)269n n + 【分析】(1)利用公式,分两种情况讨论,即可求解. ()()1112n n n S n a S S n -⎧=⎪=⎨-≥⎪⎩(2)根据已知条件,结合裂项相消法,即可求解.【详解】(1)∵,22n S n n =+∴当时,,1n =113a S ==当时,,2n ≥()()221212121n n n a S S n n n n n -=-=+----=+对时,等号也成立,1n =故,.21n a n =+*N n ∈(2)==, 12n n n b a a +=2(21)(23)n n ++112123n n -++故前n 项和= 11111135572123n T n n =-+-++-++ 11232369n n n -=++20.已知函数. 22()ln 1x f x x x -=-+(1)判断函数的零点个数;()f x (2)设,若,是函数的两个极值点,求实数a 的取值范围. 4()()2()1a g x f x a x +=-+∈+R 1x 2x ()g x 【答案】(1)有且仅有1个零点;(2).(),4-∞-【分析】(1)先判断函数的单调性,再结合,即可知零点个数;()10f =(2)由题意知,是方程在内的两个不同的实数解,也是方程1x 2x ()0g x '=(0,)+∞在内的两个不同的实数解,再根据实根分布知识即可解出.()()2210h x x a x =+++=(0,)+∞【详解】(1)由题知函数的定义域为,()f x ()0,∞+对任意恒成立, ()22212(1)2(1)(1)0(1)(1)x x x f x x x x x +---'=-=≥++()0,x ∈+∞当且仅当时,,所以在上单调递增.1x =()0f x '=()f x ()0,∞+又,所以函数有且仅有1个零点. ()2121ln1011f ⨯-=-=+()f x(2)因为, ()()42ln 11a a g x f x x x x +=-+=-++所以. ()()2221(2)10(1)(1)a x a x g x x x x x x +++'=+=>++由题意知,是方程在内的两个不同的实数解.1x 2x ()0g x '=(0,)+∞令,又,且函数图象的对称轴为, ()()221h x x a x =+++()010h =>()h x 22a x +=-所以只需 220,(2)40,a a -->⎧⎨∆=+->⎩解得,即实数的取值范围为.4a <-a (),4-∞-21.已知数列的前n 项和,,且满足.{}n a n S 11a =12n n S na +=(1)求;n a (2)若,求数列的前n 项和.(1)2n a n n b a =+⋅{}n b n T 【答案】(1)n a n =(2)12n n T n +⋅=【分析】(1)由题意可得,可得,累乘即可得; ()121n n S n a --=11n n a n a n ++=n a n =(2)由,利用错位相减即可求和. 12n n b n =+⋅()【详解】(1)由题意可得.....①,12n n S na +=当时,......②,2n ≥()121n n S n a --=①﹣②得,,可得, ()121n n n a na n a +--=11n n a n a n ++=又,, 2122a S ==2121a a =综上,时,, 1n ≥11n n a n a n ++=当时,=, 2n ≥3241231n n a a a a a a a a -⋅⋅⋅ 2341231n n ⋅⋅⋅⋅- ∴,∴, 1n a n a =n a n =又满足,11a =n a n =综上,.n a n =(2) )12(12n a n n n b n a =+⋅=+⋅()数列的前n 项和,.......① {}n b 1231223242...212n n n T n n ⋅+⋅+⋅++⋅++⋅﹣=(),.........②23122232...212n n n T n n +⋅+⋅++⋅++⋅=()①﹣②可得 ()12112+222...2122n n n n T n n ++-++++-+⋅=-⋅=,∴.12n n T n +⋅=22.已知抛物线的焦点恰好是双曲线的一个焦点,是坐标原点.22(0)y px p =>F 221243x y -=O (1)求抛物线的方程;(2)已知直线与抛物线相交于,两点,:22l y x =-A B ①求;AB ②若,且在抛物线上,求实数的值.OA OB mOD += D m 【答案】(1);(2)①5;②. 24y x =13【解析】(1)求出双曲线的一个焦点是,从而可得,求出即可. (1,0)12p =p (2)联立直线与抛物线方程得,利用韦达定理结合焦半径公式可求出,设2310x x -+=AB ,根据向量的坐标运算即可求解.()00,D x y 【详解】(1)双曲线方程可化为, 221243x y -=2211344x y -=因此,所以双曲线的一个焦点是, 2131,144c c =+==(1,0)于是抛物线的焦点为,则, 22(0)y px p =>(1,0)F 12p =24p =故抛物线的方程为.24y x =(2)①依题意,由可得,设, 2224y x y x=-⎧⎨=⎩2310x x -+=()()1122,,,A x y B x y 由韦达定理知,123x x +=1225AB FA FB x x ∴=+=++=②设,则由,得, ()00,D x y OA OB mOD += ()01213x x x m m=+=()01212y y y m m =+=由于D 在抛物线上,因此,可得. 2412m m=13m =【点睛】方法点睛:本题考查了抛物线的标准方程、焦半径公式,有关直线与抛物线的弦长问题,要注意直线是否过抛物线的焦点,若过抛物线的焦点,可直接使用公式,若不过焦12AB x x p =++点,则必须用一般弦长公式.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二数学上学期期末测试一、选择题(本大题共12小题,每小题5分,共60分) 1.已知R c b a ∈,,,下列命题正确的是( )A .22bc ac b a >⇒>B .b a cb ca>⇒>C .b a ab b a 11033>⇒⎭⎬⎫<>D .ba ab b a 11022<⇒⎭⎬⎫>> 2.过点M (-4,3)和N (-2,1)的直线方程是 ( )A .03=+-y xB .01=++y xC .01=--y xD .03=-+y x 3.圆01)4()3(22=+=-+-y x y x 关于直线对称的圆的方程是 ( )A .1)4()3(22=-++y xB .1)3()4(22=+++y xC .1)3()4(22=-++y xD .1)4()3(22=-+-y x4.过椭圆13422=+y x 的焦点且垂直于x 轴的直线l 被此椭圆截得的弦长为 ( ) A .23 B .3 C .32D .35.若0,0>>b a ,则与不等式a xb <<-1等价的是 ( )A .ax b x 11>-<或 B .bx a11<<-C .ax x b1001<<<<-或D .bx x a1001<<<<-或6.若a 、1||||,>+∈b a R b 成立的充分不必要条件 ( ) A .1||≥+b a B .21||21||≥≥b a 且 C .1≥aD .1->b7.与椭圆1251622=+y x 共焦点,且两准线间的距离为310的双曲线方程为( )A .14522=-x yB .14522=-y xC .13522=-x yD .13522=-y x8.不等式)310()31(<<-=x x x y 的最大值是 ( ) A .2434 B .121 C .641 D .721 9.两定点A (-2,-1),B (2,-1),动点P 在抛物线2x y =上移动,则△PAB 重心G 的轨迹方程是( )A .312-=x y B .3232-=x y C .3222-=x y D .41212-=x y 10.直线220323y x y x +=-+截圆=4得的劣弧所对的圆心角为( )A .6π B .4πC .3πD .2π11.不等式2|2|+>+x xx x 的解集是( )A .(-2,0)B .]0,2(-C .RD .),0()2,(+∞--∞12.定长为)2(2ab l l ≥的线段AB 的端点在双曲线222222b a y a x b =-的右支上,则AB 中点M 的横坐标的最小值为( ) A .222ba al +B .222ba l a ++ C .222)2(ba a l a +- D .222)2(ba a l a ++二、填空题(本大题共4小题,每小题5分,共20分) 13.若不等式}213|{0342>-<<->+++x x x x x ax 或的解集为,则a = 。

14.设椭圆)0(12222>>=+b a by ax 的右焦点为F 1,右准线为l 1,若过F 1且垂直于x 轴的弦长等于F 1到l 1的距离,则椭圆的离心率为 。

15.F 1,F 2是双曲线145422=-y x 的两个焦点,P 是双曲线上的点,已知|PF 1|,|PF 2|,|F 1F 2|依次成等差数列,且公差大于0,则∠F 1PF 2= 。

16.给出下列命题:(1)角2tan -=ααx y 是的倾斜角; (2)若x x R x -++∈22,则的最小值为2;(3)若x 、|"|||||""0",y x y x xy R y +=-<∈是则的充要条件; (4)若定义1*)1(*)1(,1)1)(1(*+=-+++-=x x x x y x y x 则 其中正确命题的序号是 。

三、解答题(本大题共6小题,共70分)17.求过点P (1,6)与圆25)2()2(22=-++y x 相切的直线方程。

(10分)18.已知不等式}1|{2)63(log 22b x x x x ax ><>+-或的解集是。

(1)求a ,b 的值; (2)解不等式0>+-bax xc (c 为常数)。

(12分)19.已知椭圆12222=+by a x ,其长轴长是短轴长的2倍,右准线方程为334=x 。

(1)求该椭圆方程;(2)如过点(0,m ),且倾斜角为4π的直线l 与椭圆交于A 、B 两点,当△AOB (O 为原点)面积最大时,求m 的值。

(12分)20.已知抛物线的顶点在原点,它的准线经过曲线12222=-by a x 的右焦点,且与x 轴垂直,抛物线与此双曲线交于点(6,23),求抛物线与双曲线的方程。

(12分)21.某工厂库存A 、B 、C 三种原料,可用生产、Y 两种产品,市场调查显示可获利润等各数据如下表:问:若市场情况如(I ),怎样安排生产能获得最大利润?若市场情况如(II ),怎样安排生产才能获得最大利润?(12分)22.已知抛物线x y 42-=的焦点为F ,其准线与x 轴交于点M ,过点M作斜率为k 的直线l 交抛物线于A 、B 两点,弦AB 的中点为P ,AB的垂直平分线与x 轴交于点E (,0x O ).(1)求k 的取值范围; (2)求证:30-<x (3)△PEF 能否成为以EF 为底的等腰三角形?若能,求出k 的值,若不能,请说明理由。

(12分)高二数学期末测试题参考答案一、1. C 2.B 3.B 4.D 5.A 6.D 7.A 8.B 9.B 10.C 11.A 12.D二、13.-2 14.2115.120° 16.(4) 三、17.(1)a =1, b =2 (3)c<-2时,解集为(c,-2); c=-2时空集;c>-2时, 解集为(-2,c )18.解:∵圆心为(-2,2) ∴|OP|=5 则P 在圆上,且切线的斜率存在.设切线方程为06)1(6=+---=-k y kx x k y 即 由0274343,51|622|2=-+∴-==++---y x k k k k 切线方程为解得19.解(1)2343,22222===-=∴=a c e a b a c b a .又141,3,2334222=+∴===∴=y x b c a ca椭圆方程为(2)设m x y l +=:,代入椭圆方程得0448522=-++m mx x 令550)44(206422<<->--=∆m m m 得.设544,58),(),(221212221-=-=+m x x m x x y x B y x A 则2212212155244)(2||2||m x x x x x x AB -=-+=-=∴ 原点O 到l 的距离2||m d =425)25(525||52||21222+--=-⋅=⋅=∴∆m m m d AB S OAB时当252=∴m ,S取得最大值. 即当△AOB 的面积最大时,.210±=m20.解:由题意可知抛物线的焦点到准线间的距离为2C (即双曲线的焦距).设抛物线的方程为.42cx y =∵抛物线过点112346)6,23(22=+=∴⋅=∴b a c c 即① 又知16491)6()23(222222=-∴=-b a b a ② 由①②可得43,4122==b a∴所求抛物线的方程为x y 42=,双曲线的方程为134422=-y x21.解:设安排生产产品、Y 的件数分别为x ,y ,利润总额为S 元.由题意得约束条件为⎪⎪⎩⎪⎪⎨⎧≥≥≤+≤+≤+0,01563125321004y x y x y x y x 如图,作出可行域. 若市场情况如(I ),则目标函数y x S 10002000+=C作直线020********:1=+=+y x y x l 即.把l 1向右上方平移到l 1′的位置时,直线经过可行域上的点C ,且与原点距离最大,此 时S 取得最大值. 解9,49.156312532==⎩⎨⎧=+=+y x c y x y x 点坐标得.此即所求最优解.若市场情况如(II)则目标函数030001000:,300010002=++=y x l y x S 作直线即03=+y x ,把l 2向右上方平移至l 2′的位置时,直线经过可行域上的点B,且与原点距离最大,此时S 取得最大值,解方程组.1540100412532⎩⎨⎧==⎩⎨⎧=+=+y x B y x y x 点坐标得此即所求最优解.答:若市场情况如(I ),应生产、Y 各49件和9件. 若市场情况如(II ),应生产、Y 各40件和15件.22.解:由题设有)0,1(),0,1(M F -(1)设0)2(24)1(),1(:22222=+--⎩⎨⎧-=-=-=k x k x k xy x k y x k y l 得由令11016164)2(42422<<->+-=--=∆k k k k 得 (2)设AB 中点为k x k y k k x x x y x P PP P P 2)1(,22),,(2221-=-=-=+=则 ∴AB的垂直平分线的方程为)2(1222k k x k k y ---=+ 令32212100222-<∴-<-∴<--==x k k k xy 得(3)PEF kk P k E F ∆∴-----).2,21(),0,21(),0,1(22 是以EF 为底的等腰三角形.)1,1(22,21221121222-∈±==∴---=-∴k k k k 则 ∴△PEF 能构成以EF 为底的等腰三角形,此时22±=k。

相关文档
最新文档