高中数学复习课(三)概率教学案新人教B必修3
人教版高中必修3(B版)第三章概率教学设计

人教版高中必修3(B版)第三章概率教学设计
一、教学目标
1.掌握基本概率概念,理解概率的基本性质;
2.掌握古典概型计算原理;
3.通过实际问题解决,了解概率实际应用。
二、教学重点
1.基本概率概念的理解及应用;
2.古典概型计算原理的掌握;
3.概率在现实生活中的应用。
三、教学难点
1.如何理解概率的基本性质及应用;
2.应用古典概型计算原理解决实际问题;
3.发现概率在现实生活中的应用。
四、教学过程
1. 概率的概念及基本性质
(1)导入环节
通过展示随机事件与个人生活的联系,引入概率的概念。
(2)概率的定义与基本性质
1.定义:在某一重复试验中,事件A发生的次数与试验总次数之比称为
A的概率。
1。
高中数学人教版必修三第3章 概率全章复习 课件(共17张PPT)

例题精讲之概率的性质 8.如图,在等腰直角△ABC中, (1)过直角顶点C在∠ACB内部随机地 作一条射线CM,与线段AB交于点M, 求AM<AC的概率; (2)若是直接在线段AB上随机找一点 C M,求AM<AC的概率。
答案:
2 (1)3/4;(2) 2
A
M
B
例题精讲之概率的性质
9、在圆x2+y2-2x-2y+1=0内随机投点, 求点与圆心距离小于1/3的概率。 解:圆化为标准形式为:(x-1)2+(y-1)2=1, 这是以点C(1,1)为圆心,半径为1的圆 设“点P与圆心的距离小于1/3”为事件A, 则A成立的对应的区域是以C为圆心,半 径为1/3的圆。 所以P(A)=1/9。
例题精讲之概率的性质 2.有一人在打靶中,连续射击2次, 事件“至少有1次中靶”的对立事 件是( ) C A.至多有1次中靶 B.2次都中靶 C.2次都不中靶 D.只有1次中靶
例题精讲之概率的性质
3、袋内分别有红、白、黑球各3、2、 1个,从中任取2个,则互斥而不对 D )。 立的两个事件是( A.至少有一个白球;都是白球 B.至少有一个白球;至少有一个红球 C.至少有一个白球;一个白球一个黑 球 D.至少有一个白球;红、黑球各一个
必修3第3章 概率全章复习
一、基础知识归纳 设Ω有n个基本事件,随机事件A包含m 个基本事件,则事件A的概率P(A)=m/n. 对任何事件A:0≤P(A)≤1.
1、古典概率定义
事件A包含的基本事件数 P(A)= 基本事件总数 当且仅当所描述的基本事件的出 现是等可能性时才成立
2、简单概率事件关系
12.若以连续掷两次骰子分别得到的点数m、n 作为P点的坐标,则点P落在圆x2+y2=16内的 概率是 ________
高中数学必修三概率教案

高中数学必修三概率教案
教学目标:
1. 了解概率的基本概念;
2. 掌握基本概率计算方法;
3. 能够应用概率论解决实际问题。
教学重点:
1. 概率的基本概念;
2. 概率计算方法。
教学难点:
1. 复杂事件的概率计算。
教学准备:
1. 课件、教材;
2. 题目及答案;
3. 实验材料。
教学过程:
一、导入(5分钟)
老师可以通过提问引导学生回顾概率的基本概念,如事件、样本空间等。
二、概率的基本概念(15分钟)
1. 介绍概率的基本概念和性质;
2. 讨论概率的计算方法;
3. 举例说明概率的应用。
三、概率计算方法(20分钟)
1. 介绍概率计算方法:古典概率、几何概率、条件概率等;
2. 演示如何计算简单事件的概率;
3. 练习题练习。
四、复杂事件的概率计算(20分钟)
1. 介绍复杂事件的概率计算方法;
2. 分析实际案例,解决复杂事件的概率计算问题;
3. 练习题练习。
五、实验环节(15分钟)
老师设计简单的实验活动,让学生通过实验了解概率的概念和计算方法。
六、课堂总结(5分钟)
对本节课的重点内容进行总结,并提醒学生复习和巩固。
七、课后作业
布置相关作业,巩固学生所学知识。
备注:本教案仅供参考,具体教学过程还应根据实际情况进行调整。
人教版高中必修3(B版)第三章概率课程设计

人教版高中必修3(B版)第三章概率课程设计一、前言随着社会的发展,越来越多的行业开始关注概率统计的应用。
因此,掌握概率统计的知识,不仅是高考必备内容,更是未来需要的一项重要技能。
本文将基于人教版高中必修3(B版)第三章概率中的知识点,设计一节基础概率的课程。
二、教学目标在本次课程中,我们旨在使学生了解以下知识点:•理解基本事件的概念;•知道概率的基本性质;•能够通过列出样本空间求解概率;•掌握加法原理、乘法原理和条件概率的计算方法;•理解随机变量和概率分布的概念。
三、教学内容3.1 理解基本事件基本事件是概率论的基础概念之一,它是指只包含一个基本结果的事件。
例如,掷一枚骰子,出现点数1、2、3、4、5、6 分别是6个基本结果,而任何一个基本结果发生的概率都是1/6。
基本事件可以通过列举所有基本结果而得到。
3.2 知道概率的基本性质概率是表示事件发生可能性大小的数字,它具有以下基本性质:•非负性:对于任意事件 A,有P(A) ≥ 0;•规范性:对于必然事件 S,有 P(S) = 1;•可列可加性:对于任意互不相交的事件 A1,A2,…,An,有P(A1∪A2∪…∪An) = P(A1) + P(A2) + … + P(An)。
3.3 通过列出样本空间求解概率样本空间是指一个试验所有可能结果的集合。
例如,掷一枚骰子,其样本空间为{1, 2, 3, 4, 5, 6}。
在样本空间确定的情况下,可以通过列出事件的所有基本结果计算概率。
例如,掷一枚骰子,出现点数大于4的概率就等于基本结果5和6所对应的概率之和,即2/6=1/3。
3.4 掌握加法原理、乘法原理和条件概率的计算方法•加法原理是指:对于任意两个事件 A 和 B,有P(A∪B) = P(A) + P(B) - P(A∩B)。
这个原理对于任意有限个事件也成立。
•乘法原理是指:对于两个独立事件 A 和 B,有P(A∩B) = P(A) × P(B)。
说课稿 人教版 高中数学必修三 第三章第一节《概率的基本性质》

概率的基本性质一、说教材1.教材分析《概率的基本性质》是人教版高中数学必修第三册第三章第一节的内容。
本节内容是在学生学习了频率和概率的基础上,与集合类比研究事件的关系、运算和概率的性质。
它不仅使学生加深对频率和概率的理解,还能进一步认识集合,同时为后面“古典概型”和“几何概型”的学习打下基础。
因此,本节内容在学习概率知识的过程中起到承上启下的重要过渡作用。
2. 教学目标通过以上对教材的分析,并依据新课标的要求,我确定了以下教学目标:首先,知识与技能目标是:了解随机事件间的基本关系与运算;掌握概率的几个基本性质,并会用其解决简单的概率问题。
其次,过程与方法目标是:在借助掷骰子试验探究事件的关系和运算的过程中,体会类比的数学思想方法;通过研究概率的基本性质,发展分析和推理能力。
最后,情感态度和价值观目标是:通过数学活动,了解数学与实际生活的密切联系,感受数学知识应用于现实世界的具体情境,从而激发学习数学的兴趣。
3.教学重点和难点根据上述对教材的分析以及制定的教学目标,我确定本节课的教学重点为:事件的关系与运算;概率的加法公式及其应用。
考虑到学生已有的知识基础与认知能力,我确定本节课的教学难点是:互斥事件与对立事件的区别与联系。
二、说学情奥苏伯尔认为:“影响学习的最重要的因素,就是学习者已经知道了什么,要探明这一点,并应据此进行教学”,因而在教学之始,必须关注学生的基本情况。
学生在学习本节课以前,已经掌握了集合关系、运算,频率与概率的内在联系,对用频率估计概率研究问题的方法也有所掌握,特别是学生进入高二以后,数学学习能力有了很大提高,他们的观察探究能力也有了长足的进步。
学生在学习本节课内容时,一般会出现的问题或困难是:概率加法公式的发现以及将其公式化的过程。
三、说教法教学方法是课堂教学的基本要素之一。
它在学生获取知识、培养科学的思维方法和能力,特别是创造能力的过程中,具有重要的作用。
对于本课我主要采用的教法是以启发式教学法为主,讨论交流法为辅的教学方法。
人教版高中必修3(B版)3.4概率的应用课程设计

人教版高中必修3(B版)3.4概率的应用课程设计一、教学目标1.了解概率的应用场景和实际意义;2.掌握联合概率、条件概率和贝叶斯公式的计算方法;3.学会使用Excel进行概率计算。
二、教学重点和难点1.掌握联合概率、条件概率和贝叶斯公式的计算方法;2.学会使用Excel进行概率计算。
三、课程设计第一课时教学内容1.概率的应用场景和实际意义;2.联合概率的概念和计算方法。
教学步骤1.引入概率的应用场景,让学生了解概率普遍存在于生活中的方方面面;2.讲解联合概率的概念,给出计算公式,并通过具体例子演示计算方法;3.让学生自行完成联合概率的练习和作业,以加深对概念和计算方法的理解。
第二课时教学内容1.条件概率的概念和计算方法;2.Excel在概率计算中的应用。
教学步骤1.概念介绍:条件概率的概念、计算方法和实际应用;2.Excel操作:通过实际案例演示Excel在条件概率计算中的应用,引导学生完成操作;3.自主练习:给出相关的作业和练习,让学生进一步掌握Excel在概率计算中的使用方法。
第三课时教学内容1.贝叶斯公式的概念和计算方法;2.综合练习与巩固。
教学步骤1.概念介绍:贝叶斯公式的概念、计算方法和实际应用;2.实际练习:利用所学知识设计一套实际应用场景,并让学生自主利用Excel进行计算;3.总结回顾:针对学生在学习过程中的问题和困惑进行总结和回顾。
四、教学评价1.课程的教学目标是否达成;2.学生对概率的应用场景和实际意义的了解程度;3.学生对联合概率、条件概率和贝叶斯公式的掌握程度;4.学生对Excel在概率计算中的运用程度。
五、教学建议1.加强概率的实际应用场景的引入,让学生更具体地了解概率的意义和实际意义;2.对概率的基本概念和计算方法进行重点讲解和巩固,提高学生的基础知识掌握程度;3.注意在实际案例演示和Excel操作中给出详细的步骤和说明,提高学生操作技能。
(以上文档仅供参考,具体教学内容和步骤请根据实际教学情况进行调整)。
高中数学 复习课(三)概率教学案 新人教B版必修3-新人教B版高一必修3数学教学案

复习课(三) 概 率 古典概型对立事件结合在一起考查.也有时与抽样方法交汇命题.主要以选择题、填空题为主.有时也出解答题,属中低档题.[考点精要]1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A 与B 互斥时,P (A +B )=P (A )+P (B ),当事件A 与B 对立时,P (A +B )=P (A )+P (B )=1,即P (A )=1-P (B ).(3)求复杂事件的概率通常有两种方法:①将所求事件转化成彼此互斥的事件的和;②先求其对立事件的概率,然后再应用公式P (A )=1-P (A )求解.2.古典概型的求法 对于古典概型概率的计算,关键是分清基本事件的总数n 与事件A 包含的基本事件的个数m ,有时需用列举法把基本事件一一列举出来,再利用公式P (A )=m n 求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.[典例] 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)假设从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)假设从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解] 甲校两名男教师分别用A ,B 表示,女教师用C 表示;乙校男教师用D 表示,两名女教师分别用E ,F 表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种.从中选出的2名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种,所以选出的2名教师性别相同的概率为P =49. (2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D ),(A ,E ),(A ,F ),(B ,C ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),(D ,E ),(D ,F ),(E ,F ),共15种.从中选出的2名教师来自同一学校的结果有:(A ,B ),(A ,C ),(B ,C ),(D ,E ),(D ,F ),(E ,F ),共6种.所以,选出的2名教师来自同一学校的概率为P =615=25. [类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[题组训练]1.某导演先从2个金鸡奖和3个百花奖的5位演员中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为( )A.13B.110C.25D.310解析:选D 设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P =310. 2.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:(1)求x 的值; (2)假设用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)y ≥243,z ≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x 3 000=0.15,所以x =450. (2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,那么m 500=603 000.所以m =10. 即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下: (243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生〞,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815. 所以肥胖学生中男生不少于女生的概率为815. 几何概型题型多为选择题和填空题,主要涉及长度型、面积型以及体积型的几何概率模型.属低档题.[考点精要](1)几何概型满足的两个特点:①等可能性;②无限性.(2)几何概型的概率求法公式 P (A )=构成事件A 的区域长度面积、体积试验的全部结果长度面积、体积. [典例] (1)平面区域D 1=⎩⎨⎧⎭⎬⎫x ,y | ⎩⎪⎨⎪⎧ |x |<2,|y |<2,D 2={}x ,y |x -22+y -22<4.在区域D 1内随机选取一点P ,那么点P 恰好取自区域D 2的概率是( )A.14B.π4C.π16D.π32 (2)把一根均匀木棒随机地按任意点折成两段,那么“其中一段长度大于另一段长度2倍〞的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,应选C. (2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23. [答案] (1)C (2)23[类题通法]几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=m n 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.[题组训练]1.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,那么P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2. 2.区域E ={(x ,y )|0≤x ≤3,0≤y ≤2},F ={(x ,y )|0≤x ≤3,0≤y ≤2,x ≥y },假设向区域E 内随机投掷一点,那么该点落入区域F 内的概率为________.解析:依区域E 和区域F 的对应图形如下图.其中区域E 的面积为3×2=6,区域F 的面积为12×(1+3)×2=4,所以向区域E 内随机投掷一点,该点落入区域F 内的概率为P =46=23. 答案:233.在区间[0,2]上随机地取一个数x ,那么事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1〞发生的概率为( )A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.1.同时掷3枚质地均匀的骰子,记录3枚骰子的点数之和,那么该试验的基本事件总数是( )A .15B .16C .17D .18解析:选B 点数之和可以为3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,共16个基本事件.2.某娱乐栏目中的“百宝箱〞互动环节是一种竞猜游戏,游戏规那么如下:在20个商标中,有5个商标的背面注明了一定的奖金额,其余商标的背面是一X 苦脸,假设翻到带苦脸的商标就不获奖.参加这个游戏的观众有三次翻商标的机会.某观众前两次翻商标均获假设干奖金,如果翻过的商标不能再翻,那么这位观众第三次翻商标获奖的概率是( )A.14B.16C.15D.320解析:选B 该观众翻两次商标后,还有18个商标,其中有3个含奖金,所以第三次翻商标获奖的概率为P =318=16. 3.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元〞,卖油翁的技艺让人叹为观止.铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔.假设你随机向铜钱上滴一滴油,那么这滴油(油滴的大小忽略不计)正好落入孔中的概率是( )A.9π4B.94πC.4π9D.49π 解析:选D 此题显然是几何概型,用A 表示事件“这滴油正好落入孔中〞,可得P (A )=正方形的面积圆的面积=12⎝ ⎛⎭⎪⎫322π=49π. 4.掷一枚质地均匀的硬币两次,事件M ={一次正面向上,一次反面向上},事件N ={至少一次正面向上}.那么以下结果正确的选项是( )A .P (M )=13,P (N )=12B .P (M )=12,P (N )=34C .P (M )=13,P (N )=34D .P (M )=12,P (N )=12解析:选B 掷一枚质地均匀的硬币两次,所有基本事件为(正,正),(正,反),(反,正),(反,反),所以P (M )=24=12,P (N )=34.5.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.假设从中任选3人,那么选出的火炬手的编号相连的概率为( )A.310B.58C.710D.25 解析:选A 从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),所以选出的火炬手的编号相连的概率为P =310. 6.任意抛掷两颗骰子,得到的点数分别为a ,b ,那么点P (a ,b )落在区域|x |+|y |≤3中的概率为( )A.2536B.16C.14D.112解析:选D 基本事件为6×6=36,P (a ,b )落在区域|x |+|y |≤3中的有(1,1),(1,2),(2,1),所以P =36×6=112. 7.为了调查某某阿克苏野生动物保护区内鹅喉羚的数量,调查人员逮到这种动物400只做过标记后放回.一个月后,调查人员再次逮到该种动物800只,其中做过标记的有2只,估算该保护区共有鹅喉羚________只.解析:设保护区内共有鹅喉羚x 只,每只鹅喉羚被逮到的概率是相同的,所以400x ≈2800,解得x ≈160 000.答案:160 0008.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{}0,1,2,…,9.假设|a -b |≤1,那么称甲、乙“心有灵犀〞.现任意找两人玩这个游戏,那么他们“心有灵犀〞的概率为________.解析:当a 为0时,b 只能取0,1两个数;当a 为9时,b 只能取8,9两个数;当a 取其他数时,b 都可以取3个数,所以他们“心有灵犀〞的情况共有28种,又基本事件总数为100,所以所求的概率为28100=0.28. 答案:0.289.在一棱长为6 cm 的密闭的正方体容器内,自由飘浮着一气泡(大小忽略不计),那么该气泡距正方体的顶点不小于1 cm 的概率为________.解析:距离顶点小于1 cm 的所有点对应的区域可构成一个半径为1 cm 的球,其体积为4π3,正方体的体积为216,故该气泡距正方体的顶点不小于1 cm 的概率为1-π162. 答案:1-π16210.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,那么a +b 能被3整除的概率.解:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除〞为事件A ,有(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6),共12个.P (A )=1236=13.11.设关于x 的一元二次方程x 2+2ax +b 2=0.假设a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根〞,当a ≥0,b ≥0时,此方程有实根的条件是a ≥b .从两组数中各取数一个数的所有的基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个(其中第一个数表示a 的取值,第二个数表示b 的取值),事件A 包含的基本事件有(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共9个.故P (A )=912=34. 12.如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O 共面的概率.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种;y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种;z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共4+4+4+8=20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110.(2)选取的这3个点与原点O 共面的所有可能结果有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.(时间120分钟 总分值160分)一、选择题(本大题共12小题,每题5分,共60分.在每题给出的四个选项中,只有一项为哪一项符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品〞的概率为0.65,“抽到二等品〞的概率为0.3,那么“抽到不合格品〞的概率为( )A .0.95B .0.7C .0.35D .0.05解析:选D “抽到一等品〞与“抽到二等品〞是互斥事件,所以“抽到一等品或二等品〞的概率为0.65+0.3=0.95,“抽到不合格品〞与“抽到一等品或二等品〞是对立事件,故其概率为1-0.95=0.05.2.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分为五组,并绘制频率分布直方图(如下图).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.图中从左到右第一、第三、第四、第五小组的纵坐标分别为0.05,0.04,0.02,0.01,第二小组的频数为400,那么该校高三年级的男生总数和体重正常的频率分别为( )A .1 000,0.50B .800,0.50C .800,0.60D .1 000,0.60解析:选D 第二小组的频率为0.40,所以该校高三年级的男生总数为4000.40=1 000(人);体重正常的频率为0.40+0.20=0.60.3.执行如下图的程序框图,输出的S 值为( )A .2B .4C .8D .16解析:选C 执行程序S =1,k =0;S =1,k =1;S =2,k =2;S =8,k =3,输出S =8.4.现有甲、乙两颗骰子,从1点到6点出现的概率都是16,掷甲、乙两颗骰子,设分别出现的点数为a ,b 时,那么满足a <|b 2-2a |<10a的概率为( ) A.118B.112C.19D.16解析:选B ∵试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论. 假设a =1时,b =2或3;假设a =2时,b =1;∴共有3种情况满足条件,∴概率为P =336=112. 5.为积极倡导“学生每天锻炼一小时〞的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,假设记分员计算无误,那么数字x 应该是( )评委给高三(1)班打出的分数A.2B .3C .4D .5解析:选A ∵由题意知记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,即89+88+92+90+x +93+92+917=91.∴635+x =91×7=637,∴x = 2.6.为了在运行下面的程序之后输出16,键盘输入的x 应该是( ) x =input 〞x =〞;if x<0y =x +1*x +1;elsey =x -1*x -1;endprint %io 2,y ;endA .3或-3B .-5C .5或-3D .5或-5解析:选D 该程序先对x 进行判断,当x <0时,执行y =(x +1)×(x +1)计算语句,要使输出值为16,那么输入的x 为-5.当x >0时,执行y =(x -1)×(x -1)计算语句,要使输出值为16,那么输入的x 为5.7.点P 在边长为1的正方形ABCD 内运动,那么动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4D .π解析:选C 如下图,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,那么动点P 到定点A 的距离|PA |<1的概率为S ′S =π4. 8.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如右图).s 1,s 2分别表示甲、乙选手分数的标准差,那么s 1与s 2的关系是( )A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定解析:选C 由茎叶图可知:甲得分为78,81,84,85,92;乙得分为76,77,80,94,93.那么x 甲=84,x 乙=84,那么s 1=15[78-842+…+92-842]=22,同理s 2=62,故s 1<s 2,所以选C.9.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,那么取出的小球标注的数字之和为3或6的概率是( )A.310B.15 C.110D.112解析:选A 随机取出2个小球得到的结果数有10种,取出的小球标注的数字之和为3或6的结果为{}1,2,{}1,5,{}2,4,共3种,故所求概率为310.10.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),假设第16组得到的为126,那么第1组中用抽签的方法确定的是( )A .8B .6C .4D .2解析:选B ∵16020=8,∴抽样间隔为8,∴第1组中为126-15×8=6.11.对一位运动员的心脏跳动检测了8次,得到如下表所示的数据:检测次数 12345678检测数据a i(次/分钟)3940424243454647对上述数据的统计分析中,一部分计算见如以下图所示的程序框图(其中a 是这8个数据的平均数),该程序框图输出的值是( )A .6B .7C .8D .56解析:选B 该程序框图的功能是输出这8个数据的方差,因为这8个数据的平均数a =39+40+42+42+43+45+46+478=43,故其方差为18×[(39-43)2+(40-43)2+(42-43)2+(42-43)2+(43-43)2+(45-43)2+(46-43)2+(47-43)2]=7,所以输出的s 的值为7.应选B.12.某公司共有职工8 000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表: 所用时间(分钟) [0,20)[20,40)[40,60)[60,80)[80,100]人数25501555钟)的关系是y =200+40⎣⎢⎡⎦⎥⎤t 20,其中⎣⎢⎡⎦⎥⎤t 20表示不超过t20的最大整数.以样本频率为概率,那么公司一名职工每月用于路途补贴不超过300元的概率为( )A .0.5B .0.7C .0.8D .0.9解析:选D 由题意知y ≤300, 即200+40⎣⎢⎡⎦⎥⎤t 20≤300,即⎣⎢⎡⎦⎥⎤t 20≤2.5,解得0≤t <60,由表可知t ∈[0,60)的人数为90人, 故所求概率为90100=0.9.二、填空题(本大题共4个小题,每题5分,共20分.把答案填在题中的横线上) 13.将参加数学竞赛的1 000名学生编号如下:0 001,0 002,…,1 000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,从第一部分随机抽取一个为0 015,那么第40个为________.解析:根据系统抽样方法的定义,得第40个对应15+39×20=795,即得第40个为0 795. 答案:0 79514.有一根长为1米的细绳子,随机从中间将细绳剪断,那么使两截的长度都大于18米的概率为________.解析:如图,将细绳八等分,C ,D 分别是第一个和最后一个等分点,那么在线段CD 的任意位置剪断此绳得到的两截细绳长度都大于18米.由几何概型的概率计算公式可得,两截的长度都大于18米的概率为P =681=34.答案:3415.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,那么这两个球的编号之积为偶数的概率是________(结果用最简分数表示).解析:从中任意取出两个的所有基本事件有(1,2),(1,3),(1,4),…,(2,3),(2,4),…,(6,7)共21个.而这两个球编号之积为偶数的有(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(6,7)共15个.故所求的概率P =1521=57.答案:5716.某工厂对某产品的产量与成本的资料分析后有如下数据:产量x (千件) 2 3 5 6 成本y (万元)78912由表中数据得到的线性回归方程y ^=b ^x +a ^中b ^=1.1,预测当产量为9千件时,成本约为________万元.解析:由表中数据得x =4,y =9,代入回归直线方程得a ^=4.6,∴当x =9时,y ^=1.1×9+4.6=14.5.答案:14.5三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题总分值10分)某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6). (1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学〞,求事件M 发生的概率.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.18.(本小题总分值12分)某制造商3月生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:合计100(1)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(2)假设以上述频率作为概率,标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;(3)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).解:(1)频率分布表如下:分组频数频率频率组距[39.95,39.97)100.10 5[39.97,39.99)200.2010[39.99,40.01)500.5025[40.01,40.03]200.2010合计100 1频率分布直方图如图.(2)误差不超过0.03 mm,即直径落在[39.97,40.03]X围内的概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).19.(本小题总分值12分)在如下图的程序框图中,记所有的x的值组成的集合为A,由输出的数据y 组成的集合为B .(1)分别写出集合A ,B ;(2)在集合A 中任取一个元素a ,在集合B 中任取一个元素b ,求所得的两数满足a >b 的概率.解:(1)由程序框图可知A ={6,8,10,12,14},B ={5,7,9,11,13}. (2)基本事件的总数为5×5=25, 设“两数满足a >b 〞为事件E , 当a =6时,b =5; 当a =8时,b =5,7; 当a =10时,b =5,7,9; 当a =12时,b =5,7,9,11;当a =14时,b =5,7,9,11,13,事件E 包含的基本事件数为15,故P (E )=1525=35.20.(本小题总分值12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如下图.(1)计算甲班的样本方差;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解:(1)甲班的平均身高为x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为s 2=110[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(2)设“身高为176 cm 的同学被抽中〞的事件为A ,用(x ,y )表示从乙班10名同学中抽取两名身高不低于173 cm 的同学的身高,那么所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A 含有(181,176),(179,176),(178,176),(176,173),共4个基本事件, 故P (A )=410=25.21.(本小题总分值12分)某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:零件的个数x (个) 2 3 4 5 加工的时间y (小时)2.5344.5(1)在给定的坐标系中画出表中数据的散点图;(2)求出y 关于x 的线性回归方程; (3)试预测加工10个零件需要多少时间?注:b ^=∑i =1nx i y i -n x y∑i =1nx 2i -n x 2,a ^=y ^-b ^x .解:(1)散点图如下图. (2)由表中数据得:∑i =14x i y i =52.5,x =3.5,y =3.5,∑i =14x 2i =54.∴b ^=52.5-4×3.5254-4×3.52=0.7,∴a ^=3.5-0.7×3.5=1.05, ∴y ^=0.7x +1.05.(3)将x =10代入回归直线方程, 得y ^=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.22.(本小题总分值12分)(全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.图①B 地区用户满意度评分的频数分布表 满意度评分分组 [50,60)[60,70)[70,80)[80,90)[90,100]频数2814106(1)在图②中作出B 地区用户满意度评分的频率分布直方图,并通过直方图比较两地区满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分70分到89分不低于90分满意度等级不满意满意非常满意估计哪个地区用户的满意度等级为不满意的概率大?说明理由.解:(1)如下图.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意〞;C B表示事件:“B地区用户的满意度等级为不满意〞.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.。
人教B版高中数学必修三课件:模块复习课3 概率

专题归纳
高考体验
自主预习
专题整合
变式训练2有A,B,C,D四位贵宾,应分别坐在a,b,c,d四个席位上,现在 这四人均未留意,在四个席位上随便坐下时求:
(1)这四人恰好都坐在自己的席位上的概率; (2)这四人恰好都没坐在自己的席位上的概率; (3)这四人恰有1位坐在自己的席位上的概率.
自主预习
即 S1+S3+S2+S3=πa2.② 由①-②得 S3=S4.
又由图可知 S3=S 扇形 EOD+S 扇形 COD-S 正方形 OEDC=12πa2-a2,
∴S 阴影=πa2-2a2.
故由几何概型概率公式可得, 所求概率 P=������扇������阴 形影������������������ = π������π2���-���22������2=1-π2,故选 A.
(5)由(4)的分析知,事件E“一种报也不订”只是事件C的一种可能, 事件C与事件E有可能同时发生,故C与E不互斥.
自主预习
专题整合
专题归纳
高考体验
反思感悟1.互斥事件与对立事件的联系与区别: (1)不可能同时发生的两个事件称为互斥事件. (2)对立事件则要同时满足两个条件:一是不可能同时发生;二是 必有一个发生. (3)在一次试验中,两个互斥事件有可能都不发生,也可能只有一 个发生,而两个对立事件则必有一个发生且不可能同时发生. (4)对立事件一定是互斥事件,而互斥事件不一定是对立事件. 2.互斥事件与对立事件的概率计算: (1)若事件A1,A2,…,An彼此互斥,则 P(A1∪A2∪…∪An)=P(A1)+P(A2)+…+P(An).
是(500-x)m,则该物品能被找到的概率为550000-������,所以有550000-������ = 45,解得 x=100.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
复习课(三) 概 率 古典概型对立事件结合在一起考查.也有时与抽样方法交汇命题.主要以选择题、填空题为主.有时也出解答题,属中低档题.[考点精要]1.互斥事件与对立事件的概率(1)互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.(2)当事件A 与B 互斥时,P (A +B )=P (A )+P (B ),当事件A 与B 对立时,P (A +B )=P (A )+P (B )=1,即P (A )=1-P (B ).(3)求复杂事件的概率通常有两种方法:①将所求事件转化成彼此互斥的事件的和;②先求其对立事件的概率,然后再应用公式P (A )=1-P (A )求解.2.古典概型的求法 对于古典概型概率的计算,关键是分清基本事件的总数n 与事件A 包含的基本事件的个数m ,有时需用列举法把基本事件一一列举出来,再利用公式P (A )=m n 求出事件发生的概率,这是一个形象、直观的好方法,但列举时必须按照某种顺序,以保证不重复、不遗漏.[典例] 甲、乙两校各有3名教师报名支教,其中甲校2男1女,乙校1男2女.(1)若从甲校和乙校报名的教师中各任选1名,写出所有可能的结果,并求选出的2名教师性别相同的概率;(2)若从报名的6名教师中任选2名,写出所有可能的结果,并求选出的2名教师来自同一学校的概率.[解] 甲校两名男教师分别用A ,B 表示,女教师用C 表示;乙校男教师用D 表示,两名女教师分别用E ,F 表示.(1)从甲校和乙校报名的教师中各任选1名的所有可能的结果为:(A ,D ),(A ,E ),(A ,F ),(B ,D ),(B ,E ),(B ,F ),(C ,D ),(C ,E ),(C ,F ),共9种.从中选出的2名教师性别相同的结果有:(A ,D ),(B ,D ),(C ,E ),(C ,F ),共4种,所以选出的2名教师性别相同的概率为P =49. (2)从甲校和乙校报名的教师中任选2名的所有可能的结果为:(A ,B ),(A ,C ),(A ,D),(A,E),(A,F),(B,C),(B,D),(B,E),(B,F),(C,D),(C,E),(C,F),(D,E),(D,F),(E,F),共15种.从中选出的2名教师来自同一学校的结果有:(A,B),(A,C),(B,C),(D,E),(D,F),(E,F),共6种.所以,选出的2名教师来自同一学校的概率为P=615=25.[类题通法]解决与古典概型问题时,把相关的知识转化为事件,列举基本事件,求出基本事件和随机事件的个数,然后利用古典概型的概率计算公式进行计算.[题组训练]1.某导演先从2个金鸡奖和3个百花奖的5位演员名单中挑选2名演主角,后又从剩下的演员中挑选1名演配角.这位导演挑选出2个金鸡奖演员和1个百花奖演员的概率为( )A.13B.110C.25D.310解析:选D 设2个金鸡奖演员编号为1,2,3个百花奖演员编号为3,4,5.从编号为1,2,3,4,5的演员中任选3名有10种挑选方法:(1,2,3),(1,2,4),(1,2,5),(1,3,4),(1,3,5),(1,4,5),(2,3,4),(2,3,5),(2,4,5),(3,4,5),共10种.其中挑选出2名金鸡奖和1名百花奖的有3种:(1,2,3),(1,2,4),(1,2,5),故所求的概率为P=310.2.随着经济的发展,人们生活水平的提高,中学生的营养与健康问题越来越得到学校与家长的重视.从学生体检评价报告单了解到我校3 000名学生的体重发育评价情况,得下表:0.15.(1)求x的值;(2)若用分层抽样的方法,从这批学生中随机抽取60名,问应在肥胖学生中抽多少名?(3)已知y≥243,z≥243,求肥胖学生中男生不少于女生的概率.解:(1)由题意得,从这批学生中随机抽取1名学生,抽到偏痩男生的概率为0.15,可知x3 000=0.15,所以x=450.(2)由题意,可知肥胖学生人数为y +z =500(人).设应在肥胖学生中抽取m 人,则m 500=603 000.所以m =10. 即应在肥胖学生中抽10名.(3)由题意,可知y +z =500,且y ≥243,z ≥243,满足条件的基本事件如下:(243,257),(244,256),…,(257,243),共有15组.设事件A :“肥胖学生中男生不少于女生”,即y ≤z ,满足条件的(y ,z )的基本事件有:(243,257),(244,256),…,(250,250),共有8组,所以P (A )=815. 所以肥胖学生中男生不少于女生的概率为815. 几何概型题型多为选择题和填空题,主要涉及长度型、面积型以及体积型的几何概率模型.属低档题.[考点精要](1)几何概型满足的两个特点:①等可能性;②无限性.(2)几何概型的概率求法公式 P (A )=构成事件A 的区域长度面积、体积试验的全部结果长度面积、体积. [典例] (1)已知平面区域D 1=⎩⎨⎧⎭⎬⎫x ,y | ⎩⎪⎨⎪⎧ |x |<2,|y |<2,D 2={}x ,y |x -22+y -22<4.在区域D 1内随机选取一点P ,则点P 恰好取自区域D 2的概率是( )A.14B.π4C.π16D.π32(2)把一根均匀木棒随机地按任意点折成两段,则“其中一段长度大于另一段长度2倍”的概率为________.[解析] (1)因区域D 1和D 2的公共部分是一个半径为2的圆的14,从而所求概率P =14×22π42=π16,故选C. (2)将木棒折成两段的折点应位于距木棒两端点小于13木棒长度的区域内,故所求概率为2×13=23. [答案] (1)C (2)23[类题通法]几何概型问题的解题方法(1)由于基本事件的个数和结果的无限性,其概率就不能应用P (A )=m n 求解,因此需转化为几何度量(如长度、面积、体积等)的比值求解.(2)在解题时要准确把握,要把实际问题作合理的转化;要注意古典概型和几何概型的区别,正确地选用几何概型的类型解题.[题组训练]1.如图,两个正方形的边长均为2a ,左边正方形内四个半径为a2的圆依次相切,右边正方形内有一个半径为a 的内切圆,在这两个图形上各随机撒一粒黄豆,落在阴影内的概率分别为P 1,P 2,则P 1,P 2的大小关系是( )A .P 1=P 2B .P 1>P 2C .P 1<P 2D .无法比较解析:选A 由题意知正方形的边长为2a .左图中圆的半径为正方形边长的14,故四个圆的面积和为πa 2,右图中圆的半径为正方形边长的一半,圆的面积也为πa 2,故P 1=P 2.2.已知区域E ={(x ,y )|0≤x ≤3,0≤y ≤2},F ={(x ,y )|0≤x ≤3,0≤y ≤2,x ≥y },若向区域E 内随机投掷一点,则该点落入区域F 内的概率为________.解析:依区域E 和区域F 的对应图形如图所示.其中区域E 的面积为3×2=6,区域F 的面积为12×(1+3)×2=4,所以向区域E 内随机投掷一点,该点落入区域F 内的概率为P =46=23. 答案:233.在区间[0,2]上随机地取一个数x ,则事件“-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1”发生的概率为()A.34B.23C.13D.14解析:选A 不等式-1≤log 12⎝ ⎛⎭⎪⎫x +12≤1可化为log 122≤log 12⎝ ⎛⎭⎪⎫x +12≤log 1212,即12≤x +12≤2,解得0≤x ≤32,故由几何概型的概率公式得P =32-02-0=34.1.同时掷3枚质地均匀的骰子,记录3枚骰子的点数之和,则该试验的基本事件总数是( )A .15B .16C .17D .18解析:选B 点数之和可以为3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,共16个基本事件.2.某娱乐栏目中的“百宝箱”互动环节是一种竞猜游戏,游戏规则如下:在20个商标中,有5个商标的背面注明了一定的奖金额,其余商标的背面是一张苦脸,若翻到带苦脸的商标就不获奖.参加这个游戏的观众有三次翻商标的机会.某观众前两次翻商标均获若干奖金,如果翻过的商标不能再翻,那么这位观众第三次翻商标获奖的概率是( )A.14B.16C.15D.320解析:选B 该观众翻两次商标后,还有18个商标,其中有3个含奖金,所以第三次翻商标获奖的概率为P =318=16. 3.欧阳修在《卖油翁》中写道:(翁)乃取一葫芦置于地,以钱覆其口,徐以杓酌油沥之,自钱孔入,而钱不湿.可见“行行出状元”,卖油翁的技艺让人叹为观止.已知铜钱是直径为3 cm 的圆,中间有边长为1 cm 的正方形孔.若你随机向铜钱上滴一滴油,则这滴油(油滴的大小忽略不计)正好落入孔中的概率是( )A.9π4B.94πC.4π9D.49π解析:选D 本题显然是几何概型,用A 表示事件“这滴油正好落入孔中”,可得P (A )=正方形的面积圆的面积=12⎝ ⎛⎭⎪⎫322π=49π. 4.掷一枚质地均匀的硬币两次,事件M ={一次正面向上,一次反面向上},事件N ={至少一次正面向上}.则下列结果正确的是( )A .P (M )=13,P (N )=12B .P (M )=12,P (N )=34C .P (M )=13,P (N )=34D .P (M )=12,P (N )=12解析:选B 掷一枚质地均匀的硬币两次,所有基本事件为(正,正),(正,反),(反,正),(反,反),所以P (M )=24=12,P (N )=34. 5.在全运会火炬传递活动中,有编号为1,2,3,4,5的5名火炬手.若从中任选3人,则选出的火炬手的编号相连的概率为( )A.310 B.58 C.710 D.25 解析:选A 从1,2,3,4,5中任取三个数的结果有10种,其中选出的火炬手的编号相连的事件有:(1,2,3),(2,3,4),(3,4,5),所以选出的火炬手的编号相连的概率为P =310. 6.任意抛掷两颗骰子,得到的点数分别为a ,b ,则点P (a ,b )落在区域|x |+|y |≤3中的概率为( )A.2536B.16C.14D.112 解析:选D 基本事件为6×6=36,P (a ,b )落在区域|x |+|y |≤3中的有(1,1),(1,2),(2,1),所以P =36×6=112. 7.为了调查新疆阿克苏野生动物保护区内鹅喉羚的数量,调查人员逮到这种动物400只做过标记后放回.一个月后,调查人员再次逮到该种动物800只,其中做过标记的有2只,估算该保护区共有鹅喉羚________只.解析:设保护区内共有鹅喉羚x 只,每只鹅喉羚被逮到的概率是相同的,所以400x ≈2800,解得x ≈160 000.答案:160 0008.甲、乙两人玩猜数字游戏,先由甲在心中任想一个数字,记为a ,再由乙猜甲刚才所想的数字,把乙猜的数字记为b ,且a ,b ∈{}0,1,2,…,9.若|a -b |≤1,则称甲、乙“心有灵犀”.现任意找两人玩这个游戏,则他们“心有灵犀”的概率为________.解析:当a 为0时,b 只能取0,1两个数;当a 为9时,b 只能取8,9两个数;当a 取其他数时,b 都可以取3个数,所以他们“心有灵犀”的情况共有28种,又基本事件总数为100,所以所求的概率为28100=0.28. 答案:0.289.在一棱长为6 cm 的密闭的正方体容器内,自由飘浮着一气泡(大小忽略不计),则该气泡距正方体的顶点不小于1 cm 的概率为________.解析:距离顶点小于1 cm 的所有点对应的区域可构成一个半径为1 cm 的球,其体积为4π3,正方体的体积为216,故该气泡距正方体的顶点不小于1 cm 的概率为1-π162. 答案:1-π16210.一颗骰子抛掷2次,观察出现的点数,并记第一次出现的点数为a ,第二次出现的点数为b ,则a +b 能被3整除的概率.解:把一颗骰子抛掷2次,共有36个基本事件.设“a +b 能被3整除”为事件A ,有(1,2),(1,5),(2,1),(2,4),(3,3),(3,6),(4,2),(4,5),(5,1),(5,4),(6,3),(6,6),共12个.P (A )=1236=13.11.设关于x 的一元二次方程x 2+2ax +b 2=0.若a 是从0,1,2,3四个数中任取的一个数,b 是从0,1,2三个数中任取的一个数,求上述方程有实根的概率.解:设事件A 为“方程x 2+2ax +b 2=0有实根”,当a ≥0,b ≥0时,此方程有实根的条件是a ≥b .从两组数中各取数一个数的所有的基本事件有(0,0),(0,1),(0,2),(1,0),(1,1),(1,2),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共12个(其中第一个数表示a 的取值,第二个数表示b 的取值),事件A 包含的基本事件有(0,0),(1,0),(1,1),(2,0),(2,1),(2,2),(3,0),(3,1),(3,2),共9个.故P (A )=912=34. 12.如图,从A 1(1,0,0),A 2(2,0,0),B 1(0,1,0),B 2(0,2,0),C 1(0,0,1),C 2(0,0,2)这6个点中随机选取3个点.(1)求这3点与原点O 恰好是正三棱锥的四个顶点的概率;(2)求这3点与原点O 共面的概率.解:从这6个点中随机选取3个点的所有可能结果是:x 轴上取2个点的有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,共4种;y 轴上取2个点的有B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,共4种;z 轴上取2个点的有C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共4种.所选取的3个点在不同坐标轴上有A 1B 1C 1,A 1B 1C 2,A 1B 2C 1,A 1B 2C 2,A 2B 1C 1,A 2B 1C 2,A 2B 2C 1,A 2B 2C 2,共8种.因此,从这6个点中随机选取3个点的所有可能结果共4+4+4+8=20种.(1)选取的这3个点与原点O 恰好是正三棱锥的四个顶点的所有可能结果有A 1B 1C 1,A 2B 2C 2,共2种,因此,这3个点与原点O 恰好是正三棱锥的四个顶点的概率为P 1=220=110.(2)选取的这3个点与原点O 共面的所有可能结果有A 1A 2B 1,A 1A 2B 2,A 1A 2C 1,A 1A 2C 2,B 1B 2A 1,B 1B 2A 2,B 1B 2C 1,B 1B 2C 2,C 1C 2A 1,C 1C 2A 2,C 1C 2B 1,C 1C 2B 2,共12种,因此,这3个点与原点O 共面的概率为P 2=1220=35.(时间120分钟 满分160分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.某产品共有三个等级,分别为一等品、二等品和不合格品.从一箱产品中随机抽取1件进行检测,设“抽到一等品”的概率为0.65,“抽到二等品”的概率为0.3,则“抽到不合格品”的概率为( )A .0.95B .0.7C .0.35D .0.05解析:选D “抽到一等品”与“抽到二等品”是互斥事件,所以“抽到一等品或二等品”的概率为0.65+0.3=0.95,“抽到不合格品”与“抽到一等品或二等品”是对立事件,故其概率为1-0.95=0.05.2.某校对高三年级的学生进行体检,现将高三男生的体重(单位:kg)数据进行整理后分为五组,并绘制频率分布直方图(如图所示).根据一般标准,高三男生的体重超过65 kg 属于偏胖,低于55 kg 属于偏瘦.已知图中从左到右第一、第三、第四、第五小组的纵坐标分别为0.05,0.04,0.02,0.01,第二小组的频数为400,则该校高三年级的男生总数和体重正常的频率分别为( )A .1 000,0.50B .800,0.50C .800,0.60D .1 000,0.60解析:选D 第二小组的频率为0.40,所以该校高三年级的男生总数为4000.40=1 000(人);体重正常的频率为0.40+0.20=0.60.3.执行如图所示的程序框图,输出的S 值为( )A .2B .4C .8D .16解析:选C 执行程序S =1,k =0;S =1,k =1;S =2,k =2;S =8,k =3,输出S =8.4.现有甲、乙两颗骰子,从1点到6点出现的概率都是16,掷甲、乙两颗骰子,设分别出现的点数为a ,b 时,则满足a <|b 2-2a |<10a的概率为( ) A.118 B.112C.19D.16解析:选B ∵试验发生包含的总的基本事件有36种,满足条件的事件需要进行讨论. 若a =1时,b =2或3;若a =2时,b =1;∴共有3种情况满足条件,∴概率为P =336=112. 5.为积极倡导“学生每天锻炼一小时”的活动,某学校举办了一次以班级为单位的广播操比赛,9位评委给高三(1)班打出的分数如茎叶图所示,统计员在去掉一个最高分和一个最低分后,算得平均分为91,复核员在复核时,发现有一个数字(茎叶图中的x )无法看清,若记分员计算无误,则数字x 应该是( )评委给高三(1)班打出的分数A.2B .3C .4D .5解析:选A ∵由题意知记分员在去掉一个最高分94和一个最低分87后,余下的7个数字的平均数是91,即 89+88+92+90+x +93+92+917=91. ∴635+x =91×7=637,∴x =2.6.为了在运行下面的程序之后输出16,键盘输入的x 应该是( ) x =input ”x=”;if x<0y =x +1*x +1;else y =x -1*x -1;endprint %io 2,y ;endA .3或-3B .-5C .5或-3D .5或-5解析:选D 该程序先对x 进行判断,当x <0时,执行y =(x +1)×(x +1)计算语句,要使输出值为16,则输入的x 为-5.当x >0时,执行y =(x -1)×(x -1)计算语句,要使输出值为16,则输入的x 为5.7.点P 在边长为1的正方形ABCD 内运动,则动点P 到定点A 的距离|PA |<1的概率为( )A.14B.12C.π4 D .π解析:选C 如图所示,动点P 在阴影部分满足|PA |<1,该阴影是半径为1,圆心角为直角的扇形,其面积为S ′=π4,又正方形的面积是S =1,则动点P 到定点A 的距离|PA |<1的概率为S ′S =π4. 8.甲、乙两名选手参加歌手大赛时,5名评委打的分数用茎叶图表示(如右图).s 1,s 2分别表示甲、乙选手分数的标准差,则s 1与s 2的关系是( )A .s 1>s 2B .s 1=s 2C .s 1<s 2D .不确定解析:选C 由茎叶图可知:甲得分为78,81,84,85,92;乙得分为76,77,80,94,93.则x 甲=84,x 乙=84,则s 1=15[78-842+…+92-842]=22,同理s 2=62,故s 1<s 2,所以选C.9.在一个袋子中装有分别标注数字1,2,3,4,5的五个小球,这些小球除标注的数字外完全相同.现从中随机取出2个小球,则取出的小球标注的数字之和为3或6的概率是( )A.310 B.15 C.110D.112解析:选A 随机取出2个小球得到的结果数有10种,取出的小球标注的数字之和为3或6的结果为{}1,2,{}1,5,{}2,4,共3种,故所求概率为310.10.用系统抽样法从160名学生中抽取容量为20的样本,将160名学生随机地从1~160编号,按编号顺序平均分成20组(1~8,9~16,…,153~160),若第16组得到的号码为126,则第1组中用抽签的方法确定的号码是( )A .8B .6C .4D .2解析:选B ∵16020=8,∴抽样间隔为8,∴第1组中号码为126-15×8=6.11.对一位运动员的心脏跳动检测了8次,得到如下表所示的数据:检测次数 1 2 3 4 5 6 7 8 检测数据a i (次/分钟)3940424243454647对上述数据的统计分析中,一部分计算见如下图所示的程序框图(其中a 是这8个数据的平均数),该程序框图输出的值是( )A .6B .7C .8D .56解析:选B 该程序框图的功能是输出这8个数据的方差,因为这8个数据的平均数a =39+40+42+42+43+45+46+478=43,故其方差为18×[(39-43)2+(40-43)2+(42-43)2+(42-43)2+(43-43)2+(45-43)2+(46-43)2+(47-43)2]=7,所以输出的s 的值为7.故选B.12.某公司共有职工8 000名,从中随机抽取了100名,调查上、下班乘车所用时间,得下表: 所用时间 (分钟) [0,20) [20,40) [40,60) [60,80) [80,100]人数25501555钟)的关系是y =200+40⎣⎢⎡⎦⎥⎤t 20,其中⎣⎢⎡⎦⎥⎤t 20表示不超过t20的最大整数.以样本频率为概率,则公司一名职工每月用于路途补贴不超过300元的概率为( )A .0.5B .0.7C .0.8D .0.9解析:选D 由题意知y ≤300, 即200+40⎣⎢⎡⎦⎥⎤t 20≤300,即⎣⎢⎡⎦⎥⎤t 20≤2.5,解得0≤t <60, 由表可知t ∈[0,60)的人数为90人,故所求概率为90100=0.9.二、填空题(本大题共4个小题,每小题5分,共20分.把答案填在题中的横线上) 13.将参加数学竞赛的1 000名学生编号如下:0 001,0 002,…,1 000,打算从中抽取一个容量为50的样本,按系统抽样的方法分成50个部分,从第一部分随机抽取一个号码为0 015,则第40个号码为________.解析:根据系统抽样方法的定义,得第40个号码对应15+39×20=795,即得第40个号码为0 795.答案:0 79514.有一根长为1米的细绳子,随机从中间将细绳剪断,则使两截的长度都大于18米的概率为________.解析:如图,将细绳八等分,C ,D 分别是第一个和最后一个等分点,则在线段CD 的任意位置剪断此绳得到的两截细绳长度都大于18米.由几何概型的概率计算公式可得,两截的长度都大于18米的概率为P =681=34.答案:3415.盒子中装有编号为1,2,3,4,5,6,7的七个球,从中任意取出两个,则这两个球的编号之积为偶数的概率是________(结果用最简分数表示).解析:从中任意取出两个的所有基本事件有(1,2),(1,3),(1,4),…,(2,3),(2,4),…,(6,7)共21个.而这两个球编号之积为偶数的有(1,2),(1,4),(1,6),(2,3),(2,4),(2,5),(2,6),(2,7),(3,4),(3,6),(4,5),(4,6),(4,7),(5,6),(6,7)共15个.故所求的概率P =1521=57.答案:5716.某工厂对某产品的产量与成本的资料分析后有如下数据:产量x (千件) 2 3 5 6 成本y (万元)78912由表中数据得到的线性回归方程y =b x +a 中b =1.1,预测当产量为9千件时,成本约为________万元.解析:由表中数据得x =4,y =9,代入回归直线方程得a ^=4.6,∴当x =9时,y ^=1.1×9+4.6=14.5.答案:14.5三、解答题(本大题共6个小题,共70分,解答时应写出必要的文字说明、证明过程或演算步骤)17.(本小题满分10分)某校夏令营有3名男同学A ,B ,C 和3名女同学X ,Y ,Z ,其年级情况如下表:现从这6). (1)用表中字母列举出所有可能的结果;(2)设M 为事件“选出的2人来自不同年级且恰有1名男同学和1名女同学”,求事件M 发生的概率.解:(1)从6名同学中随机选出2人参加知识竞赛的所有可能结果为{A ,B },{A ,C },{A ,X },{A ,Y },{A ,Z },{B ,C },{B ,X },{B ,Y },{B ,Z },{C ,X },{C ,Y },{C ,Z },{X ,Y },{X ,Z },{Y ,Z },共15种.(2)选出的2人来自不同年级且恰有1名男同学和1名女同学的所有可能结果为{A ,Y },{A ,Z },{B ,X },{B ,Z },{C ,X },{C ,Y },共6种.因此,事件M 发生的概率P (M )=615=25.18.(本小题满分12分)某制造商3月生产了一批乒乓球,随机抽样100个进行检查,测得每个球的直径(单位:mm),将数据分组如下:(1)请在上表中补充完成频率分布表(结果保留两位小数),并在图中画出频率分布直方图;(2)若以上述频率作为概率,已知标准乒乓球的直径为40.00 mm,试求这批球的直径误差不超过0.03 mm的概率;(3)统计方法中,同一组数据经常用该组区间的中点值(例如区间[39.99,40.01)的中点值是40.00)作为代表.据此估计这批乒乓球直径的平均值(结果保留两位小数).解:(1)频率分布表如下:分组频数频率频率组距[39.95,39.97)100.10 5[39.97,39.99)200.2010[39.99,40.01)500.5025[40.01,40.03]200.2010合计100 1(2)误差不超过0.03 mm,即直径落在[39.97,40.03]范围内的概率为0.2+0.5+0.2=0.9.(3)整体数据的平均值约为39.96×0.10+39.98×0.20+40.00×0.50+40.02×0.20≈40.00(mm).19.(本小题满分12分)在如图所示的程序框图中,记所有的x的值组成的集合为A,由输出的数据y组成的集合为B.(1)分别写出集合A ,B ;(2)在集合A 中任取一个元素a ,在集合B 中任取一个元素b ,求所得的两数满足a >b 的概率.解:(1)由程序框图可知A ={6,8,10,12,14},B ={5,7,9,11,13}. (2)基本事件的总数为5×5=25, 设“两数满足a >b ”为事件E , 当a =6时,b =5; 当a =8时,b =5,7; 当a =10时,b =5,7,9; 当a =12时,b =5,7,9,11;当a =14时,b =5,7,9,11,13,事件E 包含的基本事件数为15,故P (E )=1525=35.20.(本小题满分12分)随机抽取某中学甲、乙两班各10名同学,测量他们的身高(单位:cm),获得身高数据的茎叶图如图所示.(1)计算甲班的样本方差;(2)现从乙班这10名同学中随机抽取两名身高不低于173 cm 的同学,求身高为176 cm 的同学被抽中的概率.解:(1)甲班的平均身高为x =110(158+162+163+168+168+170+171+179+179+182)=170,甲班的样本方差为s2=1 10[(158-170)2+(162-170)2+(163-170)2+(168-170)2+(168-170)2+(170-170)2+(171-170)2+(179-170)2+(179-170)2+(182-170)2]=57.2.(2)设“身高为176 cm的同学被抽中”的事件为A,用(x,y)表示从乙班10名同学中抽取两名身高不低于173 cm的同学的身高,则所有的基本事件有(181,173),(181,176),(181,178),(181,179),(179,173),(179,176),(179,178),(178,173),(178,176),(176,173),共10个基本事件,而事件A含有(181,176),(179,176),(178,176),(176,173),共4个基本事件,故P(A)=410=25.21.(本小题满分12分)某车间为了规定工时定额,需要确定加工某零件所花费的时间,为此作了四次实验,得到的数据如下:零件的个数x(个)234 5加工的时间y(小时) 2.534 4.5(1)(2)求出y关于x的线性回归方程;(3)试预测加工10个零件需要多少时间?注:b^=∑i=1nx i y i-n x y∑i=1nx2i-n x2,a^=y^-b^x.解:(1)散点图如图所示.(2)由表中数据得:∑i=14x i y i=52.5,x=3.5,y=3.5,∑i=14x2i=54.∴b ^=52.5-4×3.5254-4×3.52=0.7,∴a ^=3.5-0.7×3.5=1.05, ∴y ^=0.7x +1.05.(3)将x =10代入回归直线方程, 得y ^=0.7×10+1.05=8.05(小时). ∴预测加工10个零件需要8.05小时.22.(本小题满分12分)(全国卷Ⅱ)某公司为了解用户对其产品的满意度,从A ,B 两地区分别随机调查了40个用户,根据用户对产品的满意度评分,得到A 地区用户满意度评分的频率分布直方图和B 地区用户满意度评分的频数分布表.图①B 地区用户满意度评分的频数分布表 满意度评分分组 [50,60) [60,70) [70,80) [80,90) [90,100]频数2814106满意度评分的平均值及分散程度(不要求计算出具体值,给出结论即可).图②(2)根据用户满意度评分,将用户的满意度分为三个等级:满意度评分低于70分 70分到89分 不低于90分满意度等级不满意满意非常满意解:(1)如图所示.通过两地区用户满意度评分的频率分布直方图可以看出,B地区用户满意度评分的平均值高于A地区用户满意度评分的平均值;B地区用户满意度评分比较集中,而A地区用户满意度评分比较分散.(2)A地区用户的满意度等级为不满意的概率大.记C A表示事件:“A地区用户的满意度等级为不满意”;C B表示事件:“B地区用户的满意度等级为不满意”.由直方图得P(C A)的估计值为(0.01+0.02+0.03)×10=0.6,P(C B)的估计值为(0.005+0.02)×10=0.25.所以A地区用户的满意度等级为不满意的概率大.。