北京市海淀区2016届高三查漏补缺数学试题Word版含答案
北京市海淀区2014届高三下学期查漏补缺数学(文理)试题 Word版含答案

海淀区高三年级第二学期查漏补缺题数 学 2014.5【容易题】{要重视基础性题目的知识覆盖度,决不能有疏漏,不能满足四套试题的题目,而是要全面温习每一个知识条目下的各个知识点} 1.已知集合{|}M x x a =≤,{2,0,1}N =-,若{2,0}MN =-,则a 的取值范围( )A.0a >B.0a ≥C.01a ≤<D. 01a ≤≤ 2.已知R b a ∈、,i a b +是虚数的充分必要条件是( )A.0ab ≠B.0a ≠C.0b ≠D. 0a =且0b ≠ 3.极坐标方程(1)0(0)ρθρ-=≥表示的曲线是( )A.圆B.直线C.圆和直线D. 圆和射线 4.参数方程⎩⎨⎧+==θθcos 1cos y x (θ为参数)表示的曲线是( )A.圆B.直线C.线段D.射线【中等题】{本组试题主要是针对四套试题考点题目,补充一些可能呈现的方式,或者是缺少的知识条目考查,请学生注意关注}5.已知(,0),(0,),(1,2)OA a OB a OC ===,其中0a ≠,若C B A 、、三点共线,则a = .6.已知点(1,0)A ,点P 在圆:C ⎩⎨⎧-==θθsin 21cos 2y x (θ为参数)上,则圆C 的半径为 ,||PA 最小值为 .7.如图,圆O 与圆'O 相交于B A 、两点,AD 与AC 分别是圆O 与 圆'O 的A 点处的切线.若22==BC BD ,则AB = , 若30CAB ∠=,则COB ∠= .8. 如图,BE CD 、是ABC ∆的高,且相交于点F .若BF FE =, 且44FC FD ==,则FE = ,A ∠= .9.已知盒子里有大小质地相同的红、黄、白球各一个,从中有放回的抽取9次,每次抽一个球,则抽到黄球的次数的期望n = ,估计抽到黄球次数恰好为n 次的概率 50%(填大于或小于)10.三个同学玩出拳游戏(锤子、剪刀、布),那么“其中两人同时赢了第三个人”的结果有 种.11. 函数()f x =的值域为 ________ . 12.在ABC ∆中,1cos 3A =,则sin(45)A += . 13.在ABC ∆中,若120A B +=且cos cos A B >,则B 的范围是 . 14.已知R b a ∈、 ,“a b <”是“23a b <”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件 15.已知1232a b ==,则11a b-= . 16.若函数(1),0()(),0ax x x f x x a x x +≥⎧=⎨-<⎩为奇函数,则满足(1)(2)f t f t -<的实数t 的取值范围是17.已知数列{}n a 的前n 项和为n S ,且满足21n n S a =+,则n a =_______.18.已知数列{}n a 的前n 项和121n n S a +=-,且12a =,则2=S _________,n a =__________.【难题】{7,8,13,14位置的题目,供大家在本校最后的模拟练习中选用,基础一般的学校可忽略本组试题}19.已知(1,0)A ,曲线:C e ax y =恒过点B ,则点B 的坐标为(0,1),若P 是曲线C 上的动点,且AB AP ⋅的最小值为2,则a = .20.对于函数()y f x =,若在其定义域内存在0x ,使得00()1x f x =成立,则称函数()f x 具有性质P.(1)下列函数中具有性质P 的有①()2f x x =-+②()sin f x x =([0,2])x π∈ ③1()f x x x=+,((0,))x ∈+∞ (2)若函数()ln f x a x =具有性质P ,则实数a 的取值范围是 .【理】21.已知函数2()sin f x x x =,各项均不相等的有限项数列{}n x 的各项i x 满足||1i x ≤.令11()()n ni i i i F n x f x ===⋅∑∑,3n ≥且n ∈N ,例如:123123(3)()(()()())F x x x f x f x f x =++⋅++.下列给出的结论中:① 存在数列{}n x 使得()0F n =;② 如果数列{}n x 是等差数列,则()0F n >;③ 如果数列{}n x 是等比数列,则()0F n >;正确结论的序号是____.22.已知三棱锥P ABC -的侧面PAC ⊥底面ABC , 侧棱PA AB ⊥,且4PA PC AC AB ====. 如图AB ⊂平面α,以直线AB 为轴旋转三棱锥, 记该三棱锥在平面α上的俯视图面积为S , 则S 的最小值是 ,S 的最大值是 .23.已知点G F E 、、分别是正方体1111ABCD A B C D -的棱111DD CC AA 、、的中点,点P Q N M 、、、分别在 线段11B C BE AG DF 、、、上. 以P Q N M 、、、为顶点 的三棱锥P MNQ -的俯视图不可能是( )A B C D【解答题】{本组题主要是针对常规题目求解过程,突出操作背后的道理的理解,在模拟题讲评后再次演练落实模拟试题体现的解决过程中的“灵活与变通”} 1.【理】如图,三角形ABC 和梯形ACEF 所在的平面互相垂直, AB BC ⊥,//,2AF AC AF CE ⊥,G 是线段BF 上一点,2AB AF BC ===.(Ⅰ)当GB GF =时,求证://EG 平面ABC ;(Ⅱ)求二面角E BF A --的余弦值;(Ⅲ)是否存在点G 满足BF ⊥平面AEG ?并说明理由. 2.已知曲线:C 2()2e 1ax f x x ax =--. (Ⅰ)求函数()f x 在(0,(0))f 处的切线;(Ⅱ)当1a =-时,求曲线C 与直线21y x =-的交点个数; (Ⅲ)若0a >,求证:函数()f x 在(0,)+∞上单调递增.1D3.【理】已知椭圆C 的方程为221416x y +=. (Ⅰ)求椭圆C 的长轴长及离心率;(Ⅱ)已知直线l 过(1,0),与椭圆C 交于A ,B 两点,M 为椭圆C 的左顶点.是否存在直线l 使得60AMB ∠=︒?如果有,求出直线l 的方程;如果没有,请说明理由.【文】(Ⅱ)已知M 为椭圆C 的左顶点,直线l 过(1,0)且与椭圆C 交于A ,B 两点(不与M 重合).求证:90AMB ∠>(或者证明AM B ∆是钝角三角形)4.【文】已知椭圆C 的右焦点F ,直线l :1y kx =-恒过椭圆短轴一个顶点B . (Ⅰ)求椭圆C 的标准方程;(Ⅱ)若(0,1)A 关于直线:l 1y kx =-的对称点P (不同于点A )在椭圆上,求出l 的方程.5.【理】已知椭圆:C 22221(0)x y a b a b +=>>的焦距为31(,)22A .(Ⅰ)求椭圆的方程; (Ⅱ)已知:1l y kx =-,是否存在k 使得点A 关于l 的对称点B (不同于点A )在椭圆C 上? 若存在求出此时直线l 的方程,若不存在说明理由.海淀区高三年级第二学期查漏补缺题参考答案 2014.51.C2.C3.D4.C5. 36. 2 ,7.608. 2 ,609. 3 , 小于 10. 9 11.13.60120B << 14. D 15.答案: 2 . 分析:由 1232a b== 得 11122,32ab==,所以2211log 12,log 3a b==, 所以22211log 12log 3log 42a b-=-==. 16.答案:1t >- .分析:由函数()f x 是奇函数,可得 (1)(1)0f f +-=,得1a =(经检验符合奇函数),画图可知()f x 单调递增,所以 (1)(2)121f t f t t t t -<⇔-<⇔>-. 17.答案:12n --分析:由 21n n S a =+ 可得 1121a a =+,解得 11a =-,又1n >时,1122n n n n S S a a ---=-,即12n n a a -=,所以12n n a -=-.18.答案:72,12,1,3(),12n n n a n -=⎧⎪=⎨>⎪⎩分析:由121n n S a +=-可得1221a a =-,解得232a =,237222S =+=.又1n >时,1122n n n n S S a a -+-=-,即132n n a a +=,所以12,1,3(),12n n n a n -=⎧⎪=⎨>⎪⎩. 【偏难题】19.答案: 1 .分析:因为 0e 1= 所以(0,1)B ;考察AB AP ⋅的几何意义,因为||2AB =,所以AB AP ⋅ 取得最小时, 点P 在AB,所以,P B 重合,这说明曲线:C e ax y =在点(0,1)B 处的切线与AB 垂直,所以0'e 1axx x y a a =====.20.答案(1) ① ② ,(2)0a a e >≤-或 . 分析:(1)在 0x ≠时1()f x x=有解即函数具有性质P , ①解方程12x x-+,有一个非0 实根;② 作图可知;③ 作图或解方程均可.(2)()ln f x a x =具有性质P ,显然0a ≠,方程 1ln x x a=有根, 因为()ln g x x x = 的值域为1[,)e -+∞,所以 11a e≥-, 解之可得 0a > 或 a e ≤-.【理】21.答案:__① ③__.分析:可得2()sin f x x x =是奇函数,只需考查01x <≤时的性质,此时2,sin y x y x ==都是增函数,可得2()sin f x x x =在[0,1]上递增,所以2()sin f x x x =在[1,1]-上单调递增。
北京市海淀区2016届高三上学期期末考试数学(理)试题【含答案】

EA BCD输出输入开始结束北京市海淀区2015-2016学年度第一学期高三期末理科数学2016.1一、选择题共8小题,每小题5分,共40分。
在每小题列出的四个选项中,选出符合题目要求的一项。
1.已知()()11bi i i b R +=-+∈,则b 的值为( )A .1B .1-C .iD .i - 2.抛物线24x y =的准线与y 轴的交点的坐标为( ) A .10,2⎛⎫-⎪⎝⎭B .()0,1-C .()0,2-D .()0,4- 3.如图,正方形ABCD 中,E 为DC 的中点,若AD AC AE =+λμ,则-λμ的值为( ) A .3 B .2 C .1 D .3-4.某程序框图如图所示,执行该程序,若输入的a 值为1,则输出的a 值为( ) A .1 B .2 C .3 D .5 5.已知数列12345:,,,,A a a a a a ,其中{}1,0,1,1,2,3,4,5i a i ∈-=, 则满足123453a a a a a ++++=的不同数列A 一共有( )A .15个B .25个C .30个D .356.已知圆()22:24C x y -+=,直线1:l y =,2:1l y kx =-若12l l ,被圆C 所截得的弦的长度之比为1:2,则k 的值为( ) A B.1 C .12D7.若x y ,满足+20400x y x y y -≥⎧⎪+-≤⎨⎪≥⎩,则2||z y x =-的最大值为( )A .8-B .4-C .1D .28.已知正方体''''ABCD A B C D -,记过点A 与三条直线'AB AD AA 、、所成角都相等的直线条数为m ,过点A 与三个平面..''AB AC AD 、、所成角都相等的直线的条数为n ,则下面结论正确的是( ) A .11m n ==, B .41m n ==, C .34m n ==, D .44m n ==,主视图左视图俯视图二、填空题共6小题,每小题5分,共30分。
2016届高三海淀一模理科数学试卷·与答案解析-无水印

11.在三个数
1 1 , 2 2 , log 3 2 中,最小的数是_______. 2
12.已知双曲线 C :
π x2 y 2 2 1 的一条渐近线 l 的倾斜角为 ,且 C 的一个焦点到 l 的距离 2 3 a b
为 3 ,则 C 的方程为_______.
13.如图,在三角形三条边上的 6 个不同的圆内分别填入数字 1,2,3 中的一个.
【解 解析】因为 f x 为偶函数 数,则 f 2 π f 2 π , 即 cos 2 π b sin n 2 π a ,
π s a , 则 cos b sin a cos 2
即b a 则a
π 3π 2kπ k Z 或 b a 2kπ k Z , 2 2
3 2 sin 60
① ②
又 C 的一个焦点到 的 到 l 的距离为 3 ,如图知 知c 由①② ②及 a 2 b2 c 2 知 a 1 , b 3 , y2 1. 故双曲 曲线 C 的方程 程为 x 2 3
渐渐渐
A O c F
13. 4,6 【解 解析】⑴因为 为每条边上的 的三个数字之和 和为 4,这三 三个数只能从 从 1,2,3 中 中取 ∴这 这三个数只可 可能为 1,1,2 则不 不同的填法有 有
π π , b 满足 满 . 6 3
8.B 【解 解析】理论上 上 5 台机器各自 自效益最大时 时,效益总值 值达到最大 17+23+14+11 但由于 1 1+15=80,但 甲、乙 乙、戊之间最 最大效益的工 工作安排会相互 互冲突,所以 以 5 台机器 器无法达到最 最大值 80.这样 17+2 22+14+11+15=79. 样最大值最大 大可取 79, 并且 且我们给出唯 唯一一个 79 的构造: 此时, ,答案选 B 9. 3
2016年北京市海淀区高三数学理科二模试题(含官方参考答案及评分标准)

海淀区高三年级第二学期期末练习参考答案数学(理科) 2016.5阅卷须知:1.评分参考中所注分数,表示考生正确做到此步应得的累加分数。
2.其它正确解法可以参照评分标准按相应步骤给分。
一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分,共30分)三、解答题(本大题共6小题,共80分)15.解:(Ⅰ)因为()2sin cos2f x x x =--所以 πππ()2sin cos2444f =--⋅=…………………2分 πππ3()2sin cos26662f =--⋅=- …………………4分 因为 32>-,所以 ππ()()46f f >…………………6分 (Ⅱ)因为 2()2sin (12sin )f x x x =--- …………………9分 22sin 2sin 1x x =--2132(sin )22x =-- 令 sin ,[1,1]t x t =∈-, 所以2132()22yt =--, …………………11分 因为对称轴12t =, 根据二次函数性质知,当 1t =-时,函数取得最大值3 …………………13分16解: (I) A 型空调前三周的平均销售量111015125x ++==台 …………………2分 (Ⅱ)因为C 型空调平均周销售量为10台,所以451051581215c c +=⨯---= …………………4分 又222222451[(1510)(810)(1210)(10)(10)]5s c c =-+-+-+-+- 化简得到22411591[2()]522s c =-+…………………5分 因为4c ∈N ,所以当47c =或48c =时,2s 取得最小值所以当4578c c =⎧⎨=⎩ 或4587c c =⎧⎨=⎩时,2s 取得最小值 …………………7分 (Ⅲ)依题意,随机变量X 的可能取值为0,1,2, …………………8分 20255(0)304012P X ==⋅=, 1025201511(1)+=3040304024P X ==⋅⋅, 10151(2)30408P X ==⋅=, …………………11分 随机变量X 的分布列为随机变量X 的期望511117()0121224824E X =⨯+⨯+⨯=. …………………13分17解:(Ⅰ)证明:连结NG NE ,.在MCD ∆中,因为,N G 分别是所在边的中点,所以1CD 2NG , …………………1分 又1CD 2EH , 所以 NG EH , …………………2分 所以NEHG 是平行四边形,所以EN GH , …………………3分 又EN ⊂平面DEM ,GH ⊄平面DEM ,…………………4分 所以GH 平面DEM .…………………5分 (Ⅱ)证明:方法一:在平面EFCD 内,过点H 作DE 的平行线HP ,因为,,DE EM DE EF ⊥⊥,EM EF E = 所以DE ⊥平面EFM ,所以HP ⊥平面EFM ,所以HP ⊥EF .又在EMF ∆中,因为EM M F EF ==,所以M H EF ⊥.以H 为原点,,,HM HF HP 分别为,,x y z 轴建立空间直角坐标系…………………6分所以1(0,1,0),(0,1,2),,1)2E M C N --…………………7分所以3,1)2EM CN ==-- ,…………………8分 所以0EM CN ⋅= ,所以EM CN ⊥.…………………9分 方法二:取EM 中点K ,连接,NK FK .又NK 为EMD ∆的中位线,所以NK DE又DE CF ,所以NK CF ,所以NKFC 在一个平面中.…………………6分 因为EMF ∆是等边三角形,所以EM FK ⊥,又DE EM ⊥,所以NK EM ⊥,…………………7分 且NK FK K = ,所以EM ⊥平面NKFC ,…………………8分 而CN ⊂平面NKFC ,所以EM CN ⊥.…………………9分 (Ⅲ)因为(0,0,2)CF =- , 所以0EM CF ⋅= , 即EM CF ⊥,又 CF CN C = , 所以EM ⊥平面NFC ,所以EM 就是平面NFC 的法向量. …………………11分又1,1)2HG = ,设GH 与平面NFC 所成的角为θ,则有31sin |cos ,|||||HG EM HG EM HG EM θ+⋅=<>== …………………13分 所以GH 与平面NFC 所成的角为π4. …………………14分18解: (Ⅰ)函数()f x 的定义域为R .当1a =时, '()e (2)(1)x f x x x =++ …………………2分 当x 变化时,'()f x ,()f x 的变化情况如下表:…………………4分函数()f x 的单调递增区间为(,2)-∞-,(1)-+∞,,函数()f x 的单调递减区间为(2,1)--. …………………5分 (Ⅱ)解:因为()e a f x ≤在区间[,)a +∞上有解,所以 ()f x 在区间[,)a +∞上的最小值小于等于e a .因为'()e (2)()x f x x x a =++, 令'()0f x =,得122,x x a =-=-. …………………6分 当2a -≤-时,即2a ≥时,因为'()0f x >对[,)x a ∈+∞成立,所以()f x 在[,)a +∞上单调递增,此时()f x 在[,)a +∞上的最小值为(),f a所以22()e ()e a a f a a a a =++≤,解得112a -≤≤,所以此种情形不成立, ………………… 8分 当2a ->-,即2a <时,若0a ≥, 则'()0f x >对[,)x a ∈+∞成立,所以()f x 在[,)a +∞上单调递增, 此时()f x 在[,)a +∞上的最小值为(),f a 所以22()e ()e a a f a a a a =++≤, 解得112a -≤≤,所以102a ≤≤ . …………………9分 若0a <,则'()0f x <对(,)x a a ∈-成立,'()0f x >对 [,)x a ∈-+∞成立.则()f x 在(,)a a -上单调递减,在[,)a -+∞上单调递增,此时()f x 在[,)a +∞上的最小值为(),f a -而22()e ()e 0e a a a f a a a a a -=-+=<≤,所以0a <. …………………11分 综上,a 的取值范围是 1(,]2-∞ …………………12分 法二:因为()e a f x ≤在区间[,)a +∞上有解,所以()f x 在区间[,)a +∞上的最小值小于等于e a ,当0a ≤时,显然0[,)a ∈+∞,而(0)0e a f a =≤≤成立, …………………8分 当0a >时,'()0f x >对[,)x a ∈+∞成立,所以()f x 在[,)a +∞上单调递增,此时()f x 在[,)a +∞上的最小值为()f a ,所以有22()e ()e a a f a a a a =++≤, 解得112a -≤≤,所以102a ≤≤. …………………11分 综上,1(,]2a ∈-∞. …………………12分 (Ⅲ)a 的取值范围是2a ≠. …………………14分19解:(Ⅰ)因为(1,0)B ,所以1(1,),A y代入24y x =,得到12y =, …………………1分 又||2BC =,所以212x x -=,所以23x =, …………………2分 代入24y x =,得到1y = …………………3分所以21211AD y y k x x -===-. …………………5分(Ⅱ)法一:设直线AD 的方程为y kx m =+. 则1211|()|||.2OMD OMA S S S m x x m ∆∆=-=-=…………………7分由24y kx m y x=+⎧⎨=⎩, 得222(24)0k x km x m +-+=, 所以 2221222122(24)41616042km k m km km x x k m x x k ⎧⎪∆=--=->⎪-⎪+=⎨⎪⎪=⎪⎩…………………9分 又21221121214()()2S y y x x y y kx m kx m k=+-=+=+++=, …………………11分 又注意到1204km y y =>,所以0,0k m >>, 所以12124S m km S y y ==+, …………………12分 因为16160km ∆=->,所以01km <<, 所以12144S km S =<. …………………13分 法二:设直线AD 的方程为y kx m =+ .由24y kx m y x=+⎧⎨=⎩, 得222(24)0k x km x m +-+=, 所以2221222122(24)41616042km k m km km x x k m x x k ⎧⎪∆=--=->⎪-⎪+=⎨⎪⎪=⎪⎩…………………7分1212|||||AD x x x x =-=-= …………………8分 点O 到直线AD的距离为d =, 所以11||||||2S AD d m m =⋅==………………9分 又21221121214()()2S y y x x y y kx m kx m k =+-=+=+++=, …………………11分 又注意到1204km y y =>,所以0,0k m >>, 所以1212=4S m km S y y ==+, …………………12分因为16160km ∆=->,所以01km <<,所以12144S km S =<. …………………13分 法三:直线OD 的方程为22y y x x = , …………………6分 所以点A 到直线OD的距离为d = …………………7分又||OD = …………………8分 所以1122111||||22S OD d x y x y ==- 又21221121()()2S y y x x y y =+-=+, …………………9分 所以122111*********||||2()2()x y x y S x y x y S y y y y --==++22122112121212||||442()8()y y y y y y y y y y y y --==++ …………………10分 因为21122244y x y x ⎧=⎪⎨=⎪⎩, 所以2221214()8y y x x -=-= …………………11分 代入得到,22112121212221212||||8()8()S y y y y y y y y S y y y y --==++12212()y y y y =+ …………………12分因为12y y +≥ 当且仅当12y y =时取等号, 所以112212144S y y S y y <=. …………………13分20解:(Ⅰ)(1,0,0),(1,1,1)Z W == …………………2分 (Ⅱ)对于X n ⊆Ω,考虑元素'X =)1,,1,,1,1(21n i x x x x ---- , 显然,'n X ∈Ω,',,X Y X ∀,对于任意的{}n i ,,2,1 ∈,i i i x y x -1,,不可能都为1,可得,'X X 不可能都在好子集S 中 …………………4分 又因为取定X ,则'X 一定存在且唯一,而且'X X ≠,且由X 的定义知道,,n X Y ∀∈Ω,''X Y X Y =⇔=, …………………6分 这样,集合S 中元素的个数一定小于或等于集合n Ω中元素个数的一半,而集合n Ω中元素个数为2n ,所以S 中元素个数不超过12n -; …………………8分 (Ⅲ)121(,,,,)n n X x x x x -∀= ,121(,,,,)n n n Y y y y y -=∈Ω定义元素,X Y 的乘积为:112211(,,,,)n n n n XY x y x y x y x y --= ,显然n XY ∈Ω. 我们证明:“对任意的121(,,,,)n n X x x x x S -=∈ ,121(,,,,)n n Y y y y y S -=∈ ,都有XY S ∈.” 假设存在,X Y S ∈, 使得XY S ∉,则由(Ⅱ)知,112211()'(1,1,,1,1)n n n n XY x y x y x y x y S --=----∈此时,对于任意的{1,2,...,}k n ∈,,,1k k k k x y x y -不可能同时为1, 矛盾,所以XY S ∈.因为 S 中只有12n -个元素,我们记 121(,,,,)n n Z z z z z -= 为S 中所有元素的乘积, 根据上面的结论,我们知道121(,,,,)n n Z z z z z S -=∈ ,显然这个元素的坐标分量不能都为0,不妨设1k z =,根据Z 的定义,可以知道S 中所有元素的k 坐标分量都为1 …………………11分 下面再证明k 的唯一性:若还有1t z =, 即S 中所有元素的t 坐标分量都为1,所以此时集合S 中元素个数至多为22n -个,矛盾.所以结论成立 …………………13分。
2016年北京市海淀区高三一模理科数学试卷含答案

海淀区高三年级2015-2016 学年度第二学期期中练习数学试卷(理科) 2016.4本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每小题5 分,共40 分.在每小题列出的四个选项中,选出符合题目 要求的一项.1.函数()21x f x =-的定义域为( ) A .[0,+∞)B .[1,+∞)C .(-∞,0]D .(-∞,1]2.某程序的框图如图所示,若输入的z =i (其中i 为虚数单位),则输出的S 值为( )A .-1B .1C .-ID .i3.若x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为( )A .52 B .3 C .72D .4 4.某三棱锥的三视图如图所示,则其体积为( )A 3B 323 D 265.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的( ) A .充分不必要条件 B .必要不充分条件C .充分必要条件D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=( ) A .1 B 2 C 3 D . 2 7.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则下列结论可能成立的是( )A .,44a b ππ==-B .2,36a b ππ==C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.若每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则下列叙述正确的是( )A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每小题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,若a b ,则t = _______. 10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个.(ⅰ)当每条边上的三个数字之和为4 时,不同的填法有_______种; (ⅱ)当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,若存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H (t ). (ⅰ)当 ()f x =2x 时,H (0)=_______.(ⅱ)当()f x 2x =且t [1,2]∈时,函数H (t )的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程.15.(本小题满分13 分) 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β. (Ⅰ)求证:sin 3sin AC BC βα=; (Ⅱ)若,,1962AB ππαβ===BC 的长.16.(本小题满分13 分)2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的贡献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行对比试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量(单位:克)如下表所示:(Ⅰ)根据样本数据,试估计山下试验田青蒿素的总产量;(Ⅱ)记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据,试估计21s 与22s 的大小关系(只需写出结论);(Ⅲ)从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.17.(本小题满分14 分)如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB .(Ⅰ)求证: BC ⊥平面PAB ;(Ⅱ)求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内; (Ⅲ)当PA =AB =2,二面角C -AN -D 的大小为3π时,求PN 的长.18.(本小题满分13 分) 已知函数f (x) =ln x +1x -1,1()ln x g x x-= (Ⅰ)求函数 f (x)的最小值;(Ⅱ)求函数g(x)的单调区间;(Ⅲ)求证:直线 y =x 不是曲线 y =g(x)的切线。
2016届高三海淀一模文科数学试卷与答案解析-无水印

5 分,有两空 本大题共 6 小题,每小题 小 空的小题,第 第一空 3 分,第二空 2 分, 分 二、填空题(本
3 分) 共 30 9. [1, ) 12.
10 0. 2 13 3. [
x2 y 2 11. ( 2 ,0) , 1 2 2
1 2
5π π kπ , kπ],k Z 12 12
2.已 已知向量 a 1,t , b 3 ,9 ,若 若 a∥b ,则 t
A.1 B .2 C.3 D.4
,则输出的 3.某 某程序的框图 图如图所示,若输入的 z i (其中 i 为虚数单位) 的 S 值为
开开 开 输输 输z n=1
n>5 > 否 S=zn
2016 高三 三一模
海淀区高三年 年级 2015~2016 学年度第二 二学期期中 中练习 数学试卷 卷(文科)
2016.4
本试卷共 4 页,150 分. .考试时长 120 1 分钟.考 考生务必将答 答案答在答题 题卡上,在试 试卷上 作答 答无效.考试 试结束后,将 将本试卷和答题卡一并交回 回. 一、选择题共 8 小题,每小 小题 5 分,共 40 分.在每 每小题列出的 的四个选项中 中,选出符合题目 求的一项. 要求 1.已 已知集合 A x Z | 2 ≤ x 3 , B x | 2 ≤ x 1 ,则 A B= A. 2 , 1,0 B. 2 , 1,0 , 1 C. x | 2 x 1 D. x | 2 ≤ x 1
A
(1 分)
A
14 2π B 6 3 C
D
(13 分) )
3 2π B 6 3 C 1 D
因为 为 ACB 又因 因为 SABC 即3 3
2016年北京市海淀区高三一模理科数学试卷含答案

海淀区高三年级2015-2016 学年度第二学期期中练习数学试卷〔理科〕本试卷共4 页,150 分.考试时长120 分钟.考生务必将答案答在答题卡上,在试卷上 作答无效.考试结束后,将本试卷和答题卡一并交回.一、选择题共8 小题,每题5 分,共40 分.在每题列出的四个选项中,选出符合题目要求的一项.1.函数()21x f x =-的定义域为〔 〕A .[0,+∞〕B .[1,+∞〕C .〔-∞,0]D .〔-∞,1]2.某程序的框图如下图,假设输入的z =i 〔其中i 为虚数单位〕,则输出的S 值为〔 〕A .-1B .1C .-ID .i3.假设x ,y 满足20400x y x y y -+≥⎧⎪+-≤⎨⎪≥⎩,则12z x y =+的最大值为〔 〕A .52B .3C .72D .44.某三棱锥的三视图如下图,则其体积为〔 〕A .33 B .32 C .233 D .2635.已知数列{}n a 的前n 项和为S n ,则“ {}n a 为常数列”是“*,n n n N S na ∀∈=”的〔 〕 A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件6.在极坐标系中,圆C 1 :2cos ρθ=与圆C 2:2sin ρθ=相交于 A ,B 两点,则|AB |=〔 〕A .1BCD . 27.已知函数sin(),0()cos(),0x a x f x x b x +≤⎧=⎨+>⎩是偶函数,则以下结论可能成立的是〔 〕A .,44a b ππ==- B .2,36a b ππ== C .,36a b ππ==D .52,63a b ππ==8.某生产基地有五台机器,现有五项工作待完成,每台机器完成每项工作后获得的效益值如表所示.假设每台机器只完成一项工作,且完成五项工作后获得的效益值总和最大,则以下表达正确的选项是〔 〕A .甲只能承担第四项工作B .乙不能承担第二项工作C .丙可以不承担第三项工作D .丁可以承担第三项工作二、填空题共6 小题,每题5 分,共30 分.9.已知向量(1,),(,9)a t b t ==,假设a b ,则t = _______.10.在等比数列{}n a 中,a 2=2,且131154a a +=,则13a a +的值为_______. 11.在三个数1231,2.log 22-中,最小的数是_______.12.已知双曲线C :22221x y a b -=的一条渐近线l 的倾斜角为3π,且C 的一个焦点到l 的距离为3,则C 的方程为_______.13.如图,在三角形三条边上的6个不同的圆内分别填入数字1,2,3 中的一个. 〔ⅰ〕当每条边上的三个数字之和为4 时,不同的填法有_______种; 〔ⅱ〕当同一条边上的三个数字都不同时,不同的填法有_______种.14.已知函数()f x ,对于实数t ,假设存在a >0,b >0 ,满足:[,]x t a t b ∀∈-+,使得|()()|f x f t -≤2,则记a +b 的最大值为H 〔t 〕.〔ⅰ〕当 ()f x =2x 时,H 〔0〕=_______.〔ⅱ〕当()f x 2x =且t [1,2]∈时,函数H 〔t 〕的值域为_______.三、解答题共6 小题,共80 分.解答应写出文字说明、演算步骤或证明过程. 15.〔本小题总分值13 分〕 如图,在△ABC 中,点D 在边 AB 上,且13AD DB =.记∠ACD =α ,∠BCD =β.〔Ⅰ〕求证:sin 3sin AC BC βα=;〔Ⅱ〕假设,,62AB ππαβ===BC 的长.16.〔本小题总分值13 分〕2004 年世界卫生组织、联合国儿童基金会等机构将青蒿素作为一线抗疟药品推广.2015 年12 月10 日,我国科学家屠呦呦教授由于在发现青蒿素和治疗疟疾的疗法上的奉献获得诺贝尔医学奖.目前,国内青蒿人工种植发展迅速.某农科所为了深入研究海拔因素对青蒿素产量的影响,在山上和山下的试验田中分别种植了100 株青蒿进行比照试验.现在从山上和山下的试验田中各随机选取了4株青蒿作为样本,每株提取的青蒿素产量〔单位:克〕如下表所示:〔Ⅰ〕根据样本数据,试估计山下试验田青蒿素的总产量;〔Ⅱ〕记山上与山下两块试验田单株青蒿素产量的方差分别为21s ,22s ,根据样本数据,试估计21s 与22s 的大小关系〔只需写出结论〕;〔Ⅲ〕从样本中的山上与山下青蒿中各随机选取1 株,记这2 株的产量总和为ξ,求随机变量ξ的分布列和数学期望.17.〔本小题总分值14 分〕如图,在四棱锥P -ABCD 中,PA ⊥平面ABCD ,四边形ABCD 为正方形,点M ,N 分别为线段PB ,PC 上的点,MN ⊥PB . 〔Ⅰ〕求证: BC ⊥平面PAB ;〔Ⅱ〕求证:当点M 不与点P ,B 重合时,M ,N ,D , A 四个点在同一个平面内;〔Ⅲ〕当PA =AB =2,二面角C -AN -D 的大小为3时,求PN 的长.18.〔本小题总分值13 分〕 已知函数f (x) =ln x +1x -1,1()ln x g x x-=〔Ⅰ〕求函数 f (x)的最小值; 〔Ⅱ〕求函数g(x)的单调区间;〔Ⅲ〕求证:直线 y =x 不是曲线 y =g(x)的切线。
2016北京市海淀区高三二模文科数学word版含答案

海淀区高三年级第二学期期末练习数 学(文科)2013.5本试卷共4页,150分.考试时长120分钟.考生务必将答案答在答题卡上,在试卷上作 答无效.考试结束后,将本试卷和答题卡一并交回.—、选择题:本大题共8小题,每小题5分,共40分.在每小题列出的四个选项中,选出 符合题目要求的一项.1. 集合{}|(1)(2)0A x x x =-+≤,B ={}0x x <,则A B =A .(,0]-∞B .(,1]-∞C .[1,2]D .[1,)+∞ 2 已知a =ln21,b=sin 21,c=212-,则a,b ,c 的大小关系为A. a < b < cB. a <c <bC.b <a<cD. b <c < a3. 如图,在边长为a 的正方形内有不规则图形Ω. 向正方形内随机撒豆子,若 撒在图形Ω内和正方形内的豆子数分别为,m n ,则图形Ω面积的估计值为A.ma nB.na mC. 2ma nD. 2na m4.某空间几何体的三视图如右图所示,则该几何体的表面积为 A.180 B.240 C.276 D.3005 下列函数中,为偶函数且有最小值的是A.f(x) =x 2 +xB.f(x) = |lnx|C.f(x) =xsinxD.f(x) =e x +e -x6 在四边形ABCD 中,“λ∃∈R ,使得,AB DC AD BC λλ==”是“四边形ABCD 为平行四边形”的A. 充分而不必要条件B. 必要而不充分条件C. 充分必要条件D. 既不充分也不必要条件7.双曲线C 的左右焦点分别为12,F F ,且2F 恰为抛物线24y x =的焦点,设双曲线C 与该抛物线的一个交点为A ,若12AF F ∆是以1AF 为底边的等腰三角形,则双曲线C 的离心率为B.11D.2俯视图8. 若数列{}n a 满足:存在正整数T ,对于任意正整数n 都有n T n a a +=成立,则称数列{}n a 为周期数列,周期为T . 已知数列{}n a 满足1(0)a m m =>,11, 1=1, 0 1.n n n n na a a a a +->⎧⎪⎨<≤⎪⎩,则下列结论中错误..的是 A. 若m=54,则a 5=3 B 若a 3=2,则m 可以取3个不同的值 C.若m ={}n a 是周期为3的数列 D.Q m ∃∈且2m ≥,数列{}n a 是周期数列二、填空题:本大题共6小题,每小题5分,共30分. 9 复数ii-12=______ 10 甲、乙两名运动员在8场篮球比赛中得分的数据统计 如右图,则甲乙两人发挥较为稳定的是_____.11 已知数列{a n }是等比数列,且a 1 .a3 =4,a 4=8,a 3的值为____. 12 直线y= x+1被圆x 2-2x +y 2-3 =0所截得的弦长为_____ 13 已知函数f(x)=sin()10)(62<<-ωπωx 的图象经过点[0, π]上的单调递增区间为________14 设变量x,y 满足约束条件⎪⎩⎪⎨⎧-≤-≤-+≥-)1(10401x k y y x y 其中k 0,>∈k R(I)当k=1时的最大值为______; (II)若2x y的最大值为1,则实数a 的取值范围是_____. 三、解答题:本大题共6小题,共80分.解答应写出文字说明,演算步骤或证明过程. 15 (本小题满分13分)已知等差数列{a n }的前n 项和为 S n (I)若a 1=1,S 10= 100,求{a n }的通项公式; (II)若S n =n 2-6n ,解关于n 的不等式S n +a n >2n 16 (本小题满分13分)已知点 D 为ΔABC 的边 BC 上一点.且 BD =2DC, ADB ∠=750,ACB ∠=30°,AD =2.(I)求CD 的长; (II)求ΔABC 的面积 17 (本小题满分14分)如图1,在直角梯形ABCD 中,AD//BC, ADC ∠=900,BA=BC 把ΔBAC 沿AC 折起到PAC ∆的位置,使得点P 在平面ADC 上的正投影O 恰好落在线段AC 上,如图2所示,点,E F 分别为线段PC ,CD 的中点.(I) 求证:平面OEF//平面APD ; (II)求直线CD 与平面POF(III)在棱PC 上是否存在一点M ,使得M 到点P,O,C,F 四点的距离相等?请说明理由. 18 (本小题满分13分) 已知函数f(x) =lnx g(x) =-)0(>a ax(1)当a=1时,若曲线y=f(x)在点M (x 0,f(x 0))处的切线与曲线y=g(x)在点P (x 0, g(x 0))处的切线平行,求实数x 0的值;(II)若∈∀x (0,e],都有f(x)≥g(x) 23,求实数a 的取值范围. 19 (本小题满分丨4分)已知椭圆C:22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60的菱形的四个顶点.(I)求椭圆C 的方程;(II)若直线y =kx 交椭圆C 于A ,B 两点,在直线l:x+y-3=0上存在点P,使得 ΔPAB 为等边三角形,求k 的值.20 (本小题满分13分)设A 是由m n ⨯个实数组成的m 行n 列的数表,如果某一行(或某一列)各数之和为负数,则改变该行(或该列)中所有数的符号,称为一次“操作”. (Ⅰ) 数表A 如表1所示,若经过两次“操作”,使得到的数表每行的各数之和与每列的各数之和均为非负实数,请写出每次“操作”后所得的数表(写出一种方法即可);表1(Ⅱ) 数表A 如表2所示,若必须经过两次“操作”,才可使得到的数表每行的各数之和与每列的各数之和均为非负整数,求整数..a 的所有可能值; (Ⅲ)对由m n ⨯个实数组成的m 行n 列的任意一个数表A ,能否经过有限次“操作”以后,使得到的数表每行的各数之表2 和与每列的各数之和均为非负整数?请说明理由.数 学 (文科)参考答案及评分标准 2013.5说明: 合理答案均可酌情给分,但不得超过原题分数. 一、选择题(本大题共8小题,每小题5分,共40分)二、填空题(本大题共6小题,每小题5分, 有两空的小题,第一空3分,第二空2分, 共30分)注:11题少写一个,扣两分,错写不给分 13题开闭区间都对三、解答题(本大题共6小题,共80分) 15.(本小题满分13分) 解:(I )设{}n a 的公差为d因为11a =,1910101002a a S +=⨯= ……………………2分 所以1101,19a a == ……………………4分22221212a a a a a a a a ------所以2d =所以 21n a n =- ……………………6分(II )因为26n S n n =-当2n ≥时,21(1)6(1)n S n n -=---所以27n a n =-,2n ≥ ……………………9分又1n =时,11527a S ==-=-所以 27n a n =- ……………………10分所以247n n S a n n +=--所以2472n n n -->,即2670n n --> 所以7n >或1n <-,所以7n >,N n ∈ ……………………13分16. 解:(I )因为75ADB ∠=,所以45DAC ∠=在ACD ∆中,AD = 根据正弦定理有sin45sin30CD AD= ……………………4分所以2CD = ……………………6分 (II )所以4BD = ……………………7分 又在ABD ∆中,75ADB ∠=,6sin75sin(4530)+=+= ……………………9分 所以1sin75312ADB S AD BD ∆=⋅⋅= ……………………12分所以32ABC ABD S S ∆∆==……………………13分 同理,根据根据正弦定理有sin105sin30AC AD=而 6sin105sin(4560)+=+=……………………8分所以1AC ……………………10分 又4BD =,6BC = ……………………11分 所以 ……………………13分17.解:(I )因为点P 在平面ADC 上的正投影O 恰好落在线段AC 上所以PO ⊥平面ABC ,所以PO ⊥AC …………………2分因为AB BC =,所以O 是AC 中点, …………………3分所以//OE PA …………………4分 同理//OF AD 又,OEOF O PA AD A ==所以平面//OEF 平面PDA …………………6分 (II )因为//OF AD ,AD CD ⊥所以OF CD ⊥ …………………7分 又PO ⊥平面ADC ,CD ⊂平面ADC所以PO ⊥CD …………………8分 又OFPO O =所以CD ⊥平面POF …………………10分 (III)存在,事实上记点E 为M 即可 …………………11分 因为CD ⊥平面POF ,PF ⊂平面POF 所以CD PF ⊥又E 为PC 中点,所以 12EF PC =…………………12分 同理,在直角三角形POC 中,12EP EC OE PC ===, …………………13分所以点E 到四个点,,,P O C F 的距离相等 …………………14分18.解:(I )当因为1a =, 211'(),()f x g x x x== …………………2分 若函数()f x 在点00(,())M x f x 处的切线与函数()g x 在点00(,())P x g x处的切线平行, 所以20011x x =,解得01x = 此时()f x 在点(1,0)M 处的切线为1y x =-()g x 在点(1,1)P - 处的切线为2y x =-所以01x = …………………4分(II )若(0,e]x ∀∈,都有3()()2f xg x ≥+ 记33()()()ln 22a F x f x g x x x =--=+-, 只要()F x 在(0,e]上的最小值大于等于0221'()a x aF x x x x-=-= …………………6分 则'(),()F x F x 随x 的变化情况如下表:…………………8分 当e a ≥时,函数()F x 在(0,e)上单调递减,(e)F 为最小值所以3(e)102a F e =+-≥,得e 2a ≥ 所以e a ≥ …………………10分 当e a <时,函数()F x 在(0,)a 上单调递减,在(,e)a 上单调递增 ,()F a为最小值,所以3()ln 02a F a a a =+-≥,得a ≥e a < ………………12分a ………………13分19.解:(I)因为椭圆:C 22221(0)x y a b a b+=>>的四个顶点恰好是一边长为2,一内角为60 的菱形的四个顶点,所以,1a b ==,椭圆C 的方程为2213x y += ………………4分 (II)设11(,),A x y 则11(,),B x y --当直线AB 的斜率为0时,AB 的垂直平分线就是y 轴,y 轴与直线:30l x y +-=的交点为(0,3)P ,又因为|||3AB PO ==,所以60PAO ∠=,所以PAB ∆是等边三角形,所以直线AB 的方程为0y = ………………6分 当直线AB 的斜率存在且不为0时,设AB 的方程为y kx =所以2213x y y kx ⎧+=⎪⎨⎪=⎩,化简得22(31)3k x +=所以1||x =||AO ==………………8分 设AB 的垂直平分线为1y x k=-,它与直线:30l x y +-=的交点记为00(,)P x y所以31y x y x k =-+⎧⎪⎨=-⎪⎩,解得003131k x k y k ⎧=⎪⎪-⎨-⎪=⎪-⎩,则||PO =………………10分 因为PAB ∆为等边三角形,所以应有|||PO AO =代入得到=0k =(舍),1k =-……………13分 此时直线AB 的方程为y x =-综上,直线AB 的方程为y x =-或0y = ………………14分20.解:(I )法1:42123712371237210121012101-−−−−−→−−−−−→----改变第列改变第行法2:24123712371237210121012101--−−−−−→−−−−−→----改变第行改变第列法3:14123712371237210121012101----−−−−−→−−−−−→--改变第列改变第列(写出一种即可) …………………3分(II) 每一列所有数之和分别为2,0,2-,0,每一行所有数之和分别为1-,1; ①如果操作第三列,则22221212a a a a a a a a -----则第一行之和为21a -,第二行之和为52a -,210520a a -≥⎧⎨-≥⎩,解得1,2a a ==. …………………6分② 如果操作第一行22221212a a a a a a a a -----则每一列之和分别为22a -,222a -,22a -,22a解得1a = …………………9分综上1a = …………………10分 (III) 证明:按要求对某行(或某列)操作一次时,则该行的行和(或该列的列和) 由负整数变为正整数,都会引起该行的行和(或该列的列和)增大,从而也就使得 数阵中mn 个数之和增加,且增加的幅度大于等于1(1)2--=,但是每次操作都只 是改变数表中某行(或某列)各数的符号,而不改变其绝对值,显然,数表中mn 个数之和必然小于等于11||mnij i j a ==∑∑,可见其增加的趋势必在有限次之后终止,终止之时必然所有的行和与所有的列和均为非负整数,故结论成立 …………………13分。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2016年北京市海淀区高三数学查漏补缺题说明: 个别题目有难度 ,个别题目方向有偏差,请谨慎选用!1、 提供的题目并非一组试卷,小题(选、填)主要针对以前没有考到的知识点,或者在试题的呈现形式上没有用过的试题。
2、 教师要根据自己学校的学生情况,有针对性地选择使用,也可以不用。
3、 后期教师要根据自己学校情况, 注意做好保温练习,合理安排学生时间。
4、 因为是按照中心组教师的建议和一些教师的建议匆匆赶制而成,难免出错,希望老师们及时指出问题,以便及时改正。
简易逻辑部分 :1.已知实数a ,直线1:10l ax y ++=,2:2(1)30l x a y +++=,则“1a =”是“1l //2l ”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 答案:B2.已知曲线C 的方程为221x y a b+=,则“a b >”是“曲线C 为焦点在x 轴上的椭圆”的( )A .充分必要条件B .充分不必要条件C .必要不充分条件D .既不充分也不必要条件 答案:C3.设集合*{},,241n A n n ∈⋯≥=N ,,,若,X A ⊆且2()2Card X n ≤≤-,(Card (X )表示集合X 中的元素个数)令X a 表示X 中最大数与最小数之和,则 (1)当n=5时,集合X 的个数为 20 (2)所有X a 的平均值为 n+1 解答(2),对所有的X 进行配对, 当()2Card X =时,令12{,}X x x =,/{1|}i i X n x x X =+-∈,必有/X A ⊆不妨设12x x <,则12X a x x =+,/12121122()X a n x n x n x x =+-++-=+-+.如果/X X ≠则有/22X X a a n +=+,如果/X X =则1X a n =+。
同理,当()(22)Card X k k n =<≤-时令12{,,...}k X x x x =,/{1|}i i X n x x X =+-∈必有/X A ⊆,不妨设12...k x x x <<<,则1X k a x x =+,/122()k X a n x x =+-+。
如果/X X ≠则有/22X X a a n +=+,如果/X X =则1X a n =+。
所以,在每一组元素个数相同的子集中,X a 的平均值为n+1. 综上,所有X a 的算术平均值为n+1三角函数部分1.若角α的终边过点(1,2)-,则sin 2_____α=45-解:1,2,x y r ==-==sinαα∴== 4sin 22sin cos 2(5ααα∴==⨯=-2.把函数sin(2)4y x π=-向右平移8π个单位,然后把横坐标变为原来的2倍,则所得到的函数的解析式为________________解:函数sin(2)4y x π=-向右平移8π个单位,得sin[2()]cos248y x x ππ=--=,把横坐标变为原来的2倍,得cos y x =3.设函数()sin()cos(),(0,)2f x x x πωϕωϕωϕ><=+++的最小正周期为π,且()()f x f x -=,则:A .()f x 在(0,)2π上单调递减 B.()f x 在3(,)44ππ上单调递减C .()f x 在(0,)2π上单调递增 D.()f x 在3(,)44ππ上单调递增 解:()sin()cos())4f x x x x πωϕωϕωϕ++=+++,由最小正周期得2ω=,又由于()()f x f x -=,可知函数为偶函数,因此()42k k ππϕπ∈Z +=+,又因为2πϕ<,可得4πϕ=,所以()f x x ,在(0,)2π上单调递减。
所以选A4. 已知函数()|sin ||cos |f x x x =+,现有如下几个命题: ①该函数为偶函数; ②该函数最小正周期为π;③该函数值域为; ④该函数单调递增区间为[,]242k k πππ+k Z ∈. 其中正确命题为. 解:答案:①③④先分析函数奇偶性为偶函数,从而只用考虑y 轴一侧的图像,如右侧.然后由诱导公式或者π(I )求角B 的取值范围; (II )若3A C π-=,求sin B ;解:(I )22222222()3322cos 228a c a c a c ba c ac B acac ac++-+-+-===62182ac ac ac -≥=又0B π<<, (0,]3B π∴∈(II )(2)2a c b +=sin sin 2sin A C B ∴+=1111sin sin sin sin()sin )222326B A C C C C ππ∴=+=++=+sin sin[()]sin()sin(2)3B AC A C C ππ∴=-+=+=+sin(2))36C C ππ∴+=+2sin()cos())6626C C C πππ∴++=+cos()64C π∴+=,sin()64C π∴+=sin )26248B C π∴=+== 6. 已知函数⎪⎭⎫⎝⎛+=4cos sin 22)(πx x x f 。
(I) 若在B A f AB BC ABC 的角,求使,中,△0)4(22=-==π.(II)求)(x f 在区间⎥⎦⎤⎢⎣⎡2417,2ππ上的取值范围;解:(I )()cos 044f A A A ππ⎛⎫-=-= ⎪⎝⎭sin 0cos 04A A π⎛⎫∴-== ⎪⎝⎭或,.42A ππ∴=在三角形中,得或;24A B ππ∴==当时,时,由正弦定理得,(II)2()2sin cos2sinf x x x x x x x⎫==-⎪⎝⎭sin2cos21121224x x x x xπ⎫⎛⎫=+-=+-=+-⎪ ⎪⎝⎭⎭1755,2,224443x xπππππ≤≤∴≤+≤21,4xπ⎛⎫+≤-⎪⎝⎭由正弦函数的性质可知,352()1428x x f xπππ+==当,即时,取最小值;52() 2.442x x f xπππ+==-当,即时,取最大值所以)(xf在区间⎥⎦⎤⎢⎣⎡2417,2ππ上的取值范围是12⎡⎤-⎣⎦,.7.如图,在直角坐标系xOy中,点P是单位圆上的动点,过点P作x轴的垂线与射线(0)y x=≥交于点Q,与x轴交于点M.记MOPα∠=,且ππ(,)22α∈-.(Ⅰ)若1sin3α=,求cos POQ∠;(Ⅱ)求OPQ∆面积的最大值.解:﹙Ⅰ﹚因为1sin3α=,且ππ(,)22α∈-,所以cosα=M所以πππcos cos()cos cos sin sin 3336POQ ααα∠=-=+=.(Ⅱ)由三角函数定义,得(cos ,sin )P αα,从而(cos )Q αα所以 1|cos sin |2POQ S ααα∆=-21sin cos |2ααα=-111πsin2|sin(2)|2223αα=+=-111|22≤+=+ 因为ππ(,)22α∈-,所以当π12α=-时,等号成立所以OPQ ∆12.立体几何部分:1. 已知,m n 为异面直线,m ⊥平面α,n ⊥平面β,直线l 满足,,,l m l n l l αβ⊥⊥⊄⊄,则()A .//αβ,且//l β B .αβ⊥,且l β⊥C .α与β相交,且交线垂直于lD .α与β相交,且交线平行于l答案D2.(理科) 已知正方体1111D C B A ABCD -中,P 为直线1BC 上的动点,Q 为直线11B A 上的动点,则PQ 与面11B BCC 所成角中最大角的正弦值为_________. 解:点P 在1BC 中点,点Q 在1A 时成角最大,最大成角的正弦值为363. 如图所示几何体中,底面ABCD 是正方形,PD ⊥平面ABCD,BE //PD ,22AB PD BE ===,F 为AD 的中点.(I )证明:BF // 平面PAE ;(II) 线段PE 上是否存在一点N ,使PE ⊥平面NAC ?若存在,求PN 的长;若不存在,说明理由.解:(I )取PA 中点Q ,连QF 、QE .则QF //PD //BE ,112QF PD BE ===, 所以四边形QFBE 是平行四边形,所以//BF EQ , 又因为QE ⊂平面PAE ,BF ⊄平面PAE ,所以BF // 平面PAE .(取PD 中点M ,连FM,BM,通过面面平行证明也可)(II) 线段PE 上存在一点N ,使PE ⊥平面NAC ,2PN =.过A 做AN PE ⊥于N ,连CN ,因为PD ⊥平面ABCD ,AD,CD ⊂平面ABCD ,所以PD AD ⊥,PD CD ⊥,2AD CD PD ===,所以AP CP == 因为BE //PD ,所以BE ⊥平面ABCD ,AB,CB ⊂平面ABCD ,所以BE AB ⊥,BE CB ⊥,2,1AB CB BE ===,所以AE CE ==所以PAE 与PCE 全等,因为AN PE ⊥,所以CN PE ⊥,又因为AN CN N =,AN,CN ⊂平面NAC ,所以PE ⊥平面NAC因为PD ⊥平面ABCD ,DC ⊂平面ABCD ,所以PD DC ⊥,BE //PD , 所以3PE =,在PAE 中222cos 2PA PE AE APE PA PE +-∠===⋅所以22222cos =⨯=∠=APE PA PN4.如图,已知三棱锥BCD A -中,2===BA DC DB ,DC BD ⊥,⊥AB 平面BCD ,E 为BC 的中点.(1)求证:DE AC ⊥;(2)求二面角D AC B --的大小;(3)在棱AC 上是否存在点F ,使得AD EF ⊥? 解答:(1).证明:⊥AB 平面BCD ,⊂DE 平面BCD ,DE AB ⊥∴ 又BCD ∆ 为等腰直角三角形,E 为BC 的中点,DE BC ⊥∴B BC AB = ,⊥∴DE 平面ABC⊂AC 平面ABC , 故DE AC ⊥(2).在平面ABD 内,过点D 作BA 的平行线DP 故⊥DP 平面BCD 所以DP DC DB ,,两两垂直, 以D 为坐标原点,建立如图空间直角坐标系)0,0,0(D )2,0,2(A ,)0,0,2(B ,)0,2,0(C因为⊥DE 平面ABC ,所以)0,1,1(=为平面ABC 的一个法向量,设),,(z y x n =为平面ACD 的一个法向量,)2,0,2(),0,2,0(==DA DC ,故⎪⎩⎪⎨⎧=⋅=⋅0⇒⎩⎨⎧==+02022y z x 不妨设1=x ,则0,1=-=y z ,故)1,0,1(-=所以21,cos =>=<n DE ,所以二面角D AC B --的大小为3π.(3)假设存在点),,(c b a F 在棱AC 上,则λ=,]1,0[∈λ 即)2,2,2()2,,2(λλλ--=--c b a所以)22,2,22(λλλ--F ,则)22,21,21(λλλ-+--=,)2,0,2(=,有04442=-+-=⋅λλDA EF ,即43=λ, 即存在点)21,23,21(F 为AC 的靠近点C 的四等分点使得AD EF ⊥5. 已知一几何体的三视图如图所示, 则该几何体的体积为___ ; 表面积为____.参考答案:4,12V S ==+ 概率:1. 在一个盒中放置6张分别标有号码1,2,…,6的卡片,现从盒中随机抽出一张,设卡片编号为a .调整盒中卡片,保留所有号码大于a 的卡片,然后第二次从盒中再次抽出一张,则第一次抽出奇数号卡片,第二次抽出偶数号卡片的概率值为. 解:设“第一次抽出奇数号卡片,第二次抽出偶数号卡片”为事件A.则()13121132171(1)6563665345P A =⋅+⋅+⋅=++=. 所以第一次抽出奇数号卡片,第二次抽出偶数号卡片的概率为1745.2.袋中装有大小相同的2个白球和3个黑球.(Ⅰ)采取放回抽样方式,从中依次摸出两个球,求两球颜色不同的概率;(Ⅱ)采取不放回抽样方式,从中依次摸出两个球,记ξ为摸出两球中白球的个数,求ξ的期望和方差.解:(Ⅰ)记 “摸出一球,放回后再摸出一个球,两球颜色不同”为事件A ,摸出一球得白球的概率为25, 摸出一球得黑球的概率为35,所以P (A )=25×35+35×25=12.25答:两球颜色不同的概率是12.25(Ⅱ)由题知ξ可取0,1,2,依题意得323(0),5410P ξ==⨯=32233(1),54545P ξ==⨯+⨯=211(2)5410P ξ==⨯=则3314012105105E ξ=⨯+⨯+⨯=, 22243434190125105551025.D ξ=-⨯+-⨯+-⨯=⎛⎫⎛⎫⎛⎫ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭答: 摸出白球个数ξ的期望和方差分别是45,925.解析几何1.已知圆C :22(2)1x y ++=,若椭圆M 以圆心C 及(2,0)为左、右焦点,且圆C 与椭圆M 没有公共点,则椭圆M 的离心率的取值范围是. 解: 203e <<2. 双曲线E :22221yx a b-=的左、右顶点分别为A 1、A 2,点P 是线段OA 2的中垂线与双曲线E的渐近线的交点(O 为双曲线中心),若PA 1⊥PA 2,则双曲线E 的离心率e =_________. 解:23. 曲线C 是平面内与三个定点12(10)F F (-1,0),,和3(0,1)F ,的距离的和等于轨迹.给出下列四个结论: ①曲线C 关于x 轴、y 轴均对称②曲线C 上存在一点P ,使得3||PF =③若点P 在曲线C 上,则△F 1PF 2的面积最大值是1○4三角形23PF F 其中所有真命题的序号是3,命题意图:定义一个新曲线,考察学生即时学习的能力,培养学生创新意识。