DPSK和NRZ调制信号对透明光_省略_大功率串扰攻击容忍度研究_英文_黄琼
光通信中基于码型NRZ,RZ50,RZ33,CSRZ的OOK,DPSK调制

30
40
Frequency/GHz
OOK-CSRZ功率谱
0
Nomorlized power/dB
Nomorlized power/dB
-20
-20
-40
-40
-60
-60
-80
-80
-100
-100
-120 -40
-30
-20
-10
0
10
20
30
40
-120 -40
-30
-20
-10
0
10
20
30
40
������������������������������ ������ 2
= ������������������ ������ ������������������
������ ������ 2������������
������
功率传递函数: ������������������������ ������ = ������������������ ������
Frequency/GHz
Frequency/GHz
DPSK-NRZ
1.5
Eyediagram(DPSK-NRZ)
1.5 1
1
0.5
Power
0.5
Power
0
-0.5
0
-1
-0.5
0
100
200
300
400
500
600
700
800
900
1000
-1.5 -100
-50
0
50
100
1 1 0
Time/ps 0 1 1 1
DPSK调制信号在光传输链路PMD和PLD中的性能分析

DPSK调制信号在光传输链路PMD和PLD中的性能分析李翰辉*,徐坤,周光焘,吴建,林金彤光通信与光波技术教育部重点实验室北京邮电学院,北京,100876,中国摘要极化效应如偏振模色散(PMD)和偏振相关损耗(PLD)已成为长距离高比特率光传输的重要限制因素。
本文使用波片模型来模拟PMD和PDL在40Gbit的光学系统的光链路统计性能,以及三种DPSK调制方式对PMD和PDL的兼容性对比。
33%的RZ-DPSK优于其他两个DPSK方式,50%的RZ-DPSk和CSRZ-DPSK信号,仅在PMD 中他们的占空比才为67%。
在PDL的情况下,随着PDL的增加,三种DPSK方式并不会有明显的变化。
此外,两个RZ-DPSK调制方式,其占空比分别为33%和50%,性能优于CSRZ-DPSK。
这表明,窄脉冲宽度调制方式对PMD和PDL拥有更高的兼容性,因此相对于其他两种DPSK方式,CSRZ-DPSK方式表现出了较差的性能。
关键字:差分相移键控PMD PDL 光纤通信1.简介随着光传输系统的容量的要求越来越高,极化效应如偏振模色散(PMD)和偏振相关损耗(PDL)已经成长距离高比特率光传输的重要限制因素,可能会导致高速长距离光传输系统性能的显著退化[1-2],所以对PMD或PDL的研究就投入了更多的关注[3-8]。
此外,一些更为复杂的调制方式[9-11],提出的40G系统就可以获得更高的频谱效率。
这些先进的相位调制方式,例如RZ-DPSK和CSRZ-DPSK,可以成功地扩大超长距离大容量光传输系统的覆盖范围和容量[12],因为使用增益为3dB的平衡接收机在接收端和DPSK调制信号对色散的高抗性和非线性效应相似。
因此,对DPSK调制方式的光传输PMD或PDL系统的效率评估是40Gbit/s系统最重要的一个应用[13-14]。
在本文中,使用数值模拟研究三种DPSK信号在光传输链路的PMD和PDL调制方式的传输性能。
原子干涉仪中激光频率和光强控制系统的设计

原子干涉仪中激光频率和光强控制系统的设计胡朝晖;杨婷;亓鲁【摘要】为了对铯原子外态干涉仪的激光束精密控制,设计了一套适用于多种需求的激光频率和光强控制系统。
该系统基于声光调制器,并集成了激光移频、光强稳定和光强调制等功能。
首先,根据原子干涉仪的原理,提出对激光的要求和指标。
接着,按照提出的要求设计了集成锁相频率合成器等硬件电路系统和LabVIEW软件控制系统。
最后,对所开发的系统进行了实验测试。
实验结果表明:系统的移频范围可控制在100~200 MHz;光强稳定性好,采用稳光系统后输出光强的波动减小为2%。
设计的这套系统功能齐全,可靠有效,实现预期目标,满足原子干涉仪对光学系统的要求。
另外此系统还可以应用到其他需要系统中,比如原子钟、原子干涉重力梯度仪等。
%In order to control laser beams precisely in a caesium atom interferometer,a laser frequency and power con-trol system which is suitable for various demands is designed. Based on an acousto-optical modulator,the system in-tegrates the functions of frequencyshift,power stabilization and modulation. Firstly,based on the principle of the at-om interferometer,the requirement of the optical part in the system is proposed. Secondly,the hardware circuit sys-tem including a phase-locked loop frequency synthesizer and the LabVIEW software control system are designed. Fi-nally,the developed system is tested. The experimental results show that the frequency shift range of the laser beam through the acousto-optical modulator is 100~200MHz;and the power fluctuation of the laser decrease to 2% using the power stabilization system. The designed system has multi-functions,achieves the desired aimsand satisfies the requirements of atom transition,matter wave interference and other processes to laser beams. In addition,the de-signed system could be applied to other systems which need to adjust and control laser beam precisely,such as atomic clock,atom interferometer gravity gradiometer and so on.【期刊名称】《激光与红外》【年(卷),期】2014(000)006【总页数】5页(P614-618)【关键词】声光调制器;原子干涉;频率合成器;频率偏移;光强控制【作者】胡朝晖;杨婷;亓鲁【作者单位】北京航空航天大学惯性技术重点实验室,北京 100191; 北京航空航天大学新型惯性仪表与导航系统技术国防重点学科实验室,北京 100191;北京航空航天大学惯性技术重点实验室,北京 100191; 北京航空航天大学新型惯性仪表与导航系统技术国防重点学科实验室,北京 100191;北京航空航天大学惯性技术重点实验室,北京 100191; 北京航空航天大学新型惯性仪表与导航系统技术国防重点学科实验室,北京 100191【正文语种】中文【中图分类】TP212.11 引言由于和中子、光子一样具有波粒二象性,原子可以实现类似光学干涉仪的原子干涉仪。
自由空间光通信中DPSK和DQPSK研究和比较

自由空间光通信中DPSK和DQPSK研究和比较张慧颖【摘要】对自由空间光通信(FSO)中两种调制格式DPSK(差分相移键控)和DQPSK(差分正交相移键控)进行研究比较,并且提出采用马赫增德尔调制器(MZM)和马赫增德尔延迟干涉仪(MZDI)搭建光DPSK和DQPSK系统.在新型光学仿真软件Optisystem平台上完成对系统的仿真.【期刊名称】《光通信技术》【年(卷),期】2015(039)012【总页数】3页(P55-57)【关键词】FSO;DPSK;DQPSK;调制性能【作者】张慧颖【作者单位】吉林化工学院信息与控制工程学院,吉林132022;长春理工大学空间光通信研究所,长春130000【正文语种】中文【中图分类】TN914.3自由空间光通信(FSO)起初以OOK调制格式为主,但是随着新型调制格式的出现,越来越多的学者开始关注DPSK调制格式[1]。
在接收机的光信噪比上,DPSK调制格式比OOK调制格式高出3dB,由于DPSK利用干涉原理的相干探测技术在解调信息时可以抑制大气湍流影响,因此DPSK调制格式是现在FSO的首选调制格式。
本文在光DPSK调制格式的基础上,研究和讨论了光DQPSK调制格式的调制和解调方式,且在新型光学仿真软件Optisystem平台下搭建了基于光DPSK和DQPSK的自由空间光通信系统模型。
典型的光相位DPSK调制与解调系统由光相位调制/解调器和3dB耦合器组成,该系统是基于马赫增德尔调制器(MZM)和马赫增德尔延迟干涉仪(MZI)进行设计。
该系统将传输的信息包含在前后相邻码元之间的相位差Δφ中,若Δφ=0表示传输信息码为“1”,则前后相邻的两个码元相同;Δφ=180°(或)时表示码“0”。
光DPSK调制解调方式可以避免“倒π”现象的发生,在抗噪声方面也很优越。
本文采用两个MZM串联形式产生光DPSK信号。
MZM1调制器用于波形切割,即在时钟信号的驱动下产生脉冲包络;MZM2调制器实现相位编码调制。
CONTROLLING METHOD FOR HIGH FREQUENCY POWER SOURCE

专利名称:CONTROLLING METHOD FOR HIGHFREQUENCY POWER SOURCE发明人:HAMADA SATOSHI,KOMURO YOSHIAKI 申请号:JP19736982申请日:19821108公开号:JPH0245438B2公开日:19901009专利内容由知识产权出版社提供摘要:PURPOSE:To prevent the damage of a control element due to a reverse recovery current by always delaying the phase of the output current of a high frequency power source which flows a load from the phase of the output voltage of the power source. CONSTITUTION:The current and the voltage of a load Z are respectively detected by a current detector Tc and a voltage detector Tp, and the detected outputs are respectively inputted to a comparator G through a phase regulator Pr, a waveform shaper Wi and a waveform shaper Wv. The output of the comparator G is inputted to a voltage/frequency converter V/F through a low pass filter Lf, the output is applied through a pulse amplifier Pa to control elements Q1, Q2, thereby controlling the ON and OFF thereof. In this manner, the phase of the output current is regulated and controlled to be delayed in the prescribed amount from the phase of the output voltage.申请人:SANSHA ELECTRIC MFG CO LTD更多信息请下载全文后查看。
孔径接收对强海洋湍流DPSK调制的水下光通信系统误码率影响研究

文章编号:1003-0530(2019)09-1607-06
信号处理 JournalofSignalProcessing
Vol.35 No.9 Sep.2019
孔径接收对强海洋湍流 DPSK调制的水下 光通信系统误码率影响研究
傅玉青 黄诚惕
(华侨大学工学院,福建泉州 362021)
引用格式:傅玉青,黄诚惕.孔径接收对强海洋湍流 DPSK调制的水下光通信系统误码率影响研究[J].信号处 理,2019,35(9):16071612.DOI:10.16798/j.issn.10030530.2019.09.019. Referenceformat:FuYuqing,HuangChengti.EffectofApertureAveragingonBitErrorRateforDPSK Modulated UWOCSystem OverStrongOceanicTurbulence[J].JournalofSignalProcessing,2019,35(9):16071612.DOI:10. 16798/j.issn.10030530.2019.09.019.
Abstract:Underwaterwirelessopticalcommunication(UWOC)systemsreceivegrowingattentionasanalternativetechnolo gytomeetthehighspeedandlargedatarequirementinvariousunderwaterapplicationsduetotheirhigherbandwidth,lower attention,lowertimelatency,lowerpowerloss,bettersecurityandhighercommunicationratecomparedtoacousticcommuni cationaswellasunderwaterradiofrequencycommunication.Despitealltheseadvantages,expectabsorptionandscattering effects,theturbulenceeffectunderwater,willalsocauselossandfadingonthereceivedopticalsignal,andlimittheviable communicationrangeofUWOCsystems.Inmoderatetostrongoceanicturbulence,adifferentialphaseshiftkeying(DPSK) modulatedunderwaterwirelessopticalcommunication(UWOC)systemwithanaperturereceiverispresented.Theanalytical expressionsforbiterrorrate(BER)ofUWOCsystemovermoderatetostrongoceanicturbulencearederivedbasedonGam maGammachannelmodelbythehelpoftheWhittakerfunction.ThevariationsofBERareinvestigatedversusmodulation methods,beamtypes,aperturediametersaswellasfouroceanicturbulenceparameters,ie,therateofdissipationofkinet icenergyperunitmassoffluid,therateofdissipationofmeansquaredtemperature,theratiooftemperaturetosalinitycontri butionstotherefractiveindexspectrumandthekineticviscosity.Thesimulatedresultsshowthattheperformanceimproveswhen
基于OFDM和Nyquist单载波调制的可见光性能比较

Pe r f o r ma n c e Co mp a r i s o n o f OFDM a n d Ny q u i s t ・ - s ha pe d S i n g l e — - Ca r r i e r i n Vi s i b l e Li g ht Co mmu ni c a t i o n S y s t e m
1 i mi t e d mo d u l a t i o n b a n d wi d t h o f VL C s y s t e m.Two me t h o d s wi t h h i g h S p e c t r u m Ef f i c i e n c y( S E)i S p r o p o s e d t o ma k e f u l l u s e o f t h e l i mi t e d b a n d wi d t h i n VL C s y s t e m . Th e p a p e r t h e n i n t r o d u c e t WO mo d u l a t i o n t e c h n i q u e s f o r i t s r e a l i z a t i o n:Or t h o g o n a l Fr e q u e n c y Di v i s i o n Mu l t i p l e x i n g( OFDM )a n d Ny q u i s t — s h a p e d S i n g l e - C a r r i e r( N- s h a p e d S C)a n d t h e i r p r i n c i p l e s .W e s i mu l a t e a n d c o mp a r e t h e p e r f o r ma n c e s o f 0F DM a n d N— s h a p e d S C i n VLC s y s t e m.Th e B i t Er r o r Ra t e( B ER)p e r f o r ma n c e a n d S E o f t h e t WO s y s t e ms a r e a n a l y z e d a n d c o mp a r e d .I t i S s h o wn t h a t b o t h o f t h e 0F DM — b a s e d VLC a n d N— s h a p e d S C- b a s e d VL C h a v e h i g h S E.b u t N— s h a p e d S C i S mo r e r o b u s t a n d s u i t a b l e t O t h e i mp l e me n t a t i o n o f t h e VLC s y s t e m.
未知相位信道下 Turbo码编码DPSK信号的联合迭代解调解码

未知相位信道下 Turbo码编码DPSK信号的联合迭代解调解
码
吴晓富;凌聪;吕晶
【期刊名称】《电子学报》
【年(卷),期】2002(030)001
【摘要】本文提出了未知相位信道下Turbo码编码DPSK信号的联合迭代解调解码算法.推导了未知相位信道的最大后验概率(MAP)算法,推导表明该MAP算法同样可用前向、后向递推方程来有效实现.其次,采用等效信道的方法将未知相位信道的Turbo码解码问题化为AWGN信道下Turbo码的解码问题.最后,引进了联合迭代解调解码算法,可用于Turbo码的解调解码.模拟表明本文算法可有效用于未知相位信道Turbo码的解码.
【总页数】5页(P97-101)
【作者】吴晓富;凌聪;吕晶
【作者单位】南京通信工程学院卫星通信重点实验室,江苏,南京,210016,北京大学电子学系,北京,100871;南京通信工程学院卫星通信重点实验室,江苏,南京,210016;南京通信工程学院卫星通信重点实验室,江苏,南京,210016
【正文语种】中文
【中图分类】TN919
【相关文献】
1.基于Turbo码的联合迭代解调译码 [J], 周辉;王永丰;喻文芳
2.衰落信道下基于线性预测的迭代解调及译码技术:Turbo DPSK [J], 伍一;周世东;姚彦
3.在未知信道条件下基于MUSIC算法的Turbo码解码 [J], 黄忠虎;沈连丰
4.Turbo编码GMSK信号准相干解调时的迭代信道估计和译码研究 [J], 吴团锋;杨喜根
5.比特交织编码调制迭代译码联合迭代载波相位和信道估计算法 [J], 崔鹏辉;杨育红;曾祥峰
因版权原因,仅展示原文概要,查看原文内容请购买。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
network technique offering highdatarates information delivery without complicated opticalelectricaloptical conversion,and will getting increasingly popular in future several years. However,the ubiquitous transpar-
.
In this model, highpowered signal ( Attacker ) will leak power to legitimate signal ( User_1 ) through intrachannel crosstalk, and such significant leakage will heavily destroy User_1 and also enable it the attack capability. The attack capability in User _1 will in turn affect User_2 in the next switch; therefore,more stachannel ges of switches will be affected [3-7]. This intraattack effect will cause severe damages to optical networks and due to the propagation effect,it is difficult to complement attack monitoring and localization [5-7].
( Key Laboratory of Mobile Communication Technology,Chongqing University of Posts and Telecommunications,Chongqing 400065 ,P. R. China)
Abstract: Transparent optical network is now becoming increasingly attractive, but transparency will induce security threats,such as intrachannel crosstalk attack in optical networks. Differential phaseshiftkeying ( DPSK ) attracted more attention due to its high tolerance in intrachannel crosstalk. In this paper,DPSK is employed to mitigate highpowered inan optical communication system is simulated to detect the BER penalty trachannel crosstalk attack. Via VPItransMaker TM , of DPSK modulated signals. The results indicate that DPSK has about 9dB tolerance of intrachannel crosstalk attack than nonreturnzero( NRZ) ,which makes DPSK have more advantages to affront potential highpowered crosstalk attack in TON. Key words:intrachannel crosstalk attack; differential phaseshiftkeying( DPSK) ; transparent optical network CLC number: TN929. 11 Document code: A Article ID:1673825X( 2012 ) 02014404
Fig. 1
Model of intrachannel crosstalk attack propagation
at rate of 10 Gbit / s and modulated on wavelength at 193. 10 THz. Noiseless EDFAs ( AmpSysOpt ) is employed as optical amplifiers which are set to fix output average power at 0 dBm. Switch crosstalk intensity is set to - 25 dB [4] at 2 × 2 optical switches ( SwitchDos _Y_Two ) . RX_OOK_BER is set to estimate BER for NRZ signal and RX_DPSK_BER with balanced detection is for DPSK. In this simulation, in order to simplified the system and focus on intrachannel crosstalk attack, the system impairment, including attenuation and dispersion in fiber,ASE in EDFA and insertion loss in optical component,are all approximated to be gauss white noise and NoiseWhiteGaussOpt component is employed as noise source with 192. 10 THz center frequency and 3. 4e15 W / Hz power density. System impairment and crosstalk are respectively treated as gauss distribution at the receivers to achieve a conservative
Received date: 20120229 Modification date: 20120309 Foundation Items: The National Natural Science Foundation of China ( 60972070 ) ; The Science and Technology Research Project of Chongqing Municipal Education Commission of China( KJ100514 ) .
DPSK 和 NRZ 调制信号对透明光网络中的 大功率串扰攻击容忍度研究
黄 琼, 尹鹏飞, 孙泽宇
( 重庆邮电大学 移动通信技术重点实验室 , 重庆 400035 )
摘
要:透明光网络受到越来越多的关注 , 已成为未来网络发展的一大趋势 。然而, 网络的透明性也带来了光层攻
击的隐患, 例如大功率的攻击信号可以利用带内串扰效应对网络实施攻击行为 。 由于差分移相键控 ( differential DPSK) 对带内串扰具有较好的容忍度 , phaseshiftkeying, 因此对它能否抵抗大功率带内串扰攻击进行了探讨 。 通 过在 VPI 仿真软件上搭建光通信系统 , 并检测信号的 BER, 发现 DPSK 对带内串扰攻击的容忍度比不归零码 ( nonreturnzero, NRZ) 高 9 dB, 可见其具有更强的抗攻击能力 。 关键词:带内串扰攻击; 差分移相键控( DPSK) ; 透明光网络
DOI: 10. 3979 / j. issn. 1673825X. 2012. 02. 004
ห้องสมุดไป่ตู้
Tolerance in high-powered crosstalk attack of DPSK and NRZ in transparent optical networks
HUANG Qiong, YIN Pengfei, SUN Zeyu
1
Introduction
Transparent optical network( TON) is an attractive
ency will introduce attack threats to TON,e. g. malicious users can gain more chances to access to the net, and then inject a beam of light at high power being 20 dB or even 30 dB higher than normal one,which will result in crosstalk attack on normal signals[1-7]. Especially,in the optical switch architectures such as optical cross connect ( OXC ) ,highpowered attack signal
[ 1, 37 ]
decision threshold to determine whether the received bit is a mark or space. Due to the power leakage from unintended channel in the optical switch,the main signal channel and crosstalk channel will result in a beat term at the receiver which reduces the photo power and dominates the BER penalty [9]. At the attack scenario, if only one interference source is considered,the input photo power of photodiode can be described as[9] P in = P1 + P2 + 2 槡 P1 P2 cos[ ( ω1 - ω2 ) t + ( 1) 1 ( t ) - 2 ( t ) + θ1 - θ2 ] Where P1 and P2 is the power of main and crosstalk signals,ω1 and ω2 is the angle frequency,1 ( t) and 2 ( t) is the phase of the signals, θ1 and θ2 is the initial phase of the signals. The third term of the equation is the beat term between the main and crosstalk signals. The power of the beat term varies in time,but has a maximum negative value of - 2 槡 P1 P2 , which will re[ 9 ] sult in a worst decrease of system BER . At this worst case scenario,equation ( 1) can be simplified as P in = P1 + P2 - 2 槡 P1 P2 ( 2) To investigate the worst beat noise,a communication system is simulated on VPItans- Maker TM as illustrated in Fig. 2. All laser transmitters transmit signals