高二上学期数学练习题(6)(椭圆的标准方程)有详细答案

合集下载

高二数学练习椭圆的标准方程(附详解)16

高二数学练习椭圆的标准方程(附详解)16

高二数学练习椭圆的标准方程高二数学练习椭圆的标准方程(附详解)一、选择题(本大题共8小题,共40.0分)1.已知F1(-1,0),F2(1,0)是椭圆C的两个焦点,过F2且垂直于x轴的直线交椭圆C于A,B两点,且|AB|=3,则椭圆C的方程为()A. B. C. D.2.过点且与椭圆有相同焦点的椭圆方程为A. B. C. D.3.椭圆两焦点为、,P在椭圆上,若的面积的最大值为12,则椭圆方程为()A. B. C. D.4.动点到两定点的距离之和为10,则动点的轨迹方程是A. B.C. D.5.已知是椭圆的两焦点,过点的直线交椭圆于两点.在中,若有两边之和是,则第三边的长度为( )A. 3B. 4C. 5D. 66.椭圆的方程是,其长轴长为()A. 6B. 2C. 4D. 37.椭圆的焦点坐标为()A. B. C.D.8.椭圆上一点P到右焦点的距离()A. 最大值为5,最小值为4.B. 最大值为10,最小值为8.C. 最大值为10,最小值为6.D. 最大值为9,最小值为1.二、填空题(本大题共6小题,共30.0分)9.椭圆的焦距为.10.已知椭圆+的左、右焦点分别为,过作直线交椭圆于、两点,则的周长为.11.若焦点在轴上的椭圆的焦距为2,则的值是 .12.椭圆的焦点坐标是__________13.设P椭圆上的点,、是椭圆的两个焦点,则=______.14.若椭圆+的焦距为6,则的值为__________.三、解答题(本大题共4小题,共48.0分)15.椭圆C:(a>b>0)的长轴长是短轴长的倍,点P(,)在椭圆C上.(1)求椭圆C的标准方程;(2)点M是直线x=1上的动点,过点M作直线交椭圆于两点A、B,且M为线段AB的中点,过M作直线l⊥AB,证明直线l过定点,并求出定点坐标.高二数学练习椭圆的标准方程16.在平面直角坐标系xOy中,已知椭圆C过点(0,2),其焦点为F1(-,0),F2(,0).(1)求椭圆C的标准方程;(2)已知点P在椭圆C上,且PF1=4,求PF1F2的面积.17.已知椭圆的两个焦点分别是F1(0,-1),F2(0,1),P为椭圆上一点.若|F1F2|是|PF1|与|PF2|的等差中项,求椭圆的标准方程.18.已知椭圆上一点P(3,4),且PF1⊥PF2(F1,F2为椭圆的两个焦点),试求椭圆的标准方程.高二数学练习椭圆的标准方程答案和解析1.【答案】C【解析】【分析】本题主要考查了椭圆标准方程的求解,属于基础题.根据题意得到c值,设出椭圆的方程,进而建立关于a的方程求解即可.【解答】解:由题意知,椭圆焦点在x轴上,且c=1,可设椭圆C的方程为+(a>1),又椭圆C由过F2且垂直于x轴的直线截得的弦长|AB|=3,知点(1,)必在椭圆上,代入椭圆方程化简得4a4-17a2+4=0,所以a2=4或(舍去).故椭圆C的方程为+.2.【答案】C【解析】【分析】求出椭圆的焦点坐标,设出方程利用椭圆经过的点,求解即可.本题考查椭圆的简单性质以及椭圆方程的求法,考查计算能力.【解答】解:椭圆3x2+8y2=24的焦点(,0),可得c=,设椭圆的方程为:,可得:,a2-b2=5,解得a=,b=,所求的椭圆方程为:.故选C.3.【答案】B【解析】【分析】由题意,当点P在短轴端点时,PF1F2的面积的最大值为12,此时可得,解得b,再求出a值,即可写出椭圆方程.本题考查椭圆的性质,判断出当点P在短轴端点时PF1F2的面积为最大值,从而建立方程求b,是解答的关键.【解答】解:由题意,可得,解得b=3,又c=4,故a=5,故椭圆的方程为+=1.故选B.4.【答案】C高二数学练习椭圆的标准方程【解析】【分析】本题考查了椭圆的概念与方程,属基础题.因为,|PF1|+|PF2|=10,可知动点P到定点F1、F2两点的距离和为10>|F1F2|=6,所以P点运动轨迹为椭圆,其中c=3,a=5,b=4,从而得出结果.【解答】解:因为,|PF1|+|PF2|=10,可知动点P到定点F1、F2两点的距离和为10>|F1F2|=6,∴M点运动轨迹为椭圆,其中c=3,a=5,b=4,∴轨迹方程为,故选C.5.【答案】D【解析】【分析】本题主要考查应用椭圆定义求三角形的周长,做题时尽量数形结合.利用椭圆定义,椭圆上的点到两焦点距离之和等于2a,可求出在AF1B的周长,则第三边的长度等于周长减另两边的和.【解答】解:∵A,B两点在椭圆+=1上,∴|AF1|+|AF2|=8,|BF1|+|BF2|=8∴|AF1|+|AF2|+|BF1|+|BF2|=16∴|AF1|+|BF1|+|AB|=16∵在AF1B中,有两边之和是10,∴第三边的长度为16-10=6故选D.6.【答案】A【解析】【分析】本题主要考查了椭圆的概念及标准方程和椭圆的性质及几何意义,属于基础题.利用椭圆的标准方程及其几何性质可得,,从而得到椭圆的长轴长.【解答】解: 因为椭圆的标准方程是所以可得,,所以,因此该椭圆的长轴长为.高二数学练习椭圆的标准方程故选A.7.【答案】A【解析】【分析】直接由椭圆的标准方程求得a2,b2的值,再由a、b、c之间的关系求得c,得答案.【解答】解:由椭圆的标准方程,得a2=25,b2=9,∴c2=a2-b2=25-9=16,则c=4,∴椭圆的焦点坐标为(4,0),(-4,0).故选A.8.【答案】D【解析】【分析】本题考查了椭圆的方程以及几何意义,根据椭圆方程利用焦半径公式求解.【解答】解:∵e=,∴由焦半径公式得|PF2|=5-x0,∵-5≤x0≤5,∴当x0=5时,|PF2|min=1;当x0=-5时,|PF2|max=9.故选D.9.【答案】6【解析】【分析】本题考查椭圆的方程和性质,掌握椭圆的a,b,c的关系是解题关键,属于容易题.【解答】解:椭圆中a=5,b=4所以=3椭圆的焦距为6故答案为:6.10.【答案】4【解析】【分析】本题考查了椭圆的定义和椭圆的标准方程,是个基础题,记住椭圆的定义和椭圆的标准方程即可解答.高二数学练习椭圆的标准方程【解答】解:由椭圆C的标准方程知:a=1,根据椭圆的定义知,三角形的周长为:,故答案为4.11.【答案】5【解析】【分析】本题考查了椭圆的标准方程,是基础题,由题意易得m的值.【解答】解:由题意:a2=m,b2=4,2c=2,由a2=b2+c2可得m=5.故答案为5.12.【答案】【解析】【分析】本题主要考查椭圆的焦点的计算,属于基础题. 【解答】解:由题可知a=5,b=3,所以,所以椭圆+的焦点坐标是,故答案为.13.【答案】10【解析】【分析】本题考查椭圆的定义,由方程得a,然后利用定义即可求解.【解答】解: 由椭圆方程得a=5,所以.故答案为10.14.【答案】7或25【解析】【分析】本题给出椭圆方程,在已知焦距的情况下求参数m的值.着重考查了椭圆的标准方程与简单几何性质等知识,属于基础题.分椭圆的焦点在x轴、y轴两种情况加以讨论,结合椭圆基本量的平方关系解关于m的方程,即可得到实数m的值.【解答】解:∵椭圆的焦距为6,∴c=3,当椭圆的焦点在x轴上时,a2=m,b2=16,∴c==3,解得m=25;当椭圆的焦点在y轴上时,a2=16,b2=m,∴c==3,解得k=7.。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆的中心在原点、焦点在轴上,抛物线的顶点在原点、焦点在轴上.小明从曲线、上各取若干个点(每条曲线上至少取两个点),并记录其坐标(.由于记录失误,使得其中恰有一个点既不在椭圆上,也不在抛物线上,小明的记录如下:据此,可推断抛物线的方程为_____________.【答案】【解析】:由题意可知:点是椭圆的短轴的一个端点,或点是椭圆的长轴的一个端点.以下分两种情况讨论:①假设点是椭圆的短轴的一个端点,则可以写成经验证可得:若点在上,代入求得,即,剩下的4个点中也在此椭圆上.假设抛物线的方程为,把点代入求得p=2,∴,则只剩下一个点既不在椭圆上,也不在抛物线上满足条件.假设抛物线的方程为y2=-2px,经验证不符合题意.②假设点是椭圆的长轴的一个端点,则可以写成,经验证不满足条件,应舍去.综上可知:可推断椭圆的方程为.【考点】椭圆、抛物线的标准方程及其性质和分类讨论的思想方法是解题的关键.2.已知椭圆的一个顶点为,焦点在轴上,若右焦点到直线的距离为.(Ⅰ)求椭圆的方程;(Ⅱ)是否存在斜率为,且过定点的直线,使与椭圆交于两个不同的点,且?若存在,求出直线的方程;若不存在,请说明理由.【答案】(1)(2)不存在【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(I)依题意可设椭圆方程为,则右焦点,由题设:,解得:,故所求椭圆的方程为.(II)设存在直线符合题意,直线方程为,代入椭圆方程得:,设,为弦的中点,则由韦达定理得:,,因为不符合,所以不存在直线符合题意.【考点】(1)椭圆的方程;(2)直线与椭圆的综合问题.3.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.4.已知椭圆经过点,离心率为,过点的直线与椭圆交于不同的两点.(1)求椭圆的方程;(2)求的取值范围.【答案】(1);(2).【解析】(1)利用题干中的两个条件,和椭圆本身的性质,得然后求解,代入即可;(2)由题干“过点的直线与椭圆交于不同的两点”.设直线的方程为,由得,设,的坐标分别为,,然后利用根与系数的关系,代换出,注意:k的范围.试题解析:(1)由题意得解得,.椭圆的方程为.(2)由题意显然直线的斜率存在,设直线的方程为,由得. 直线与椭圆交于不同的两点,,,解得.设,的坐标分别为,,则,,,.的范围为.【考点】椭圆定义,转化与化归思想,舍而不求思想的运用.5.已知椭圆的对称中心为原点,焦点在轴上,左右焦点分别为和,且||=2,离心率. (1)求椭圆的方程;(2)过的直线与椭圆相交于A,B两点,若的面积为,求直线的方程.【答案】(1);(2)或.【解析】(1)设椭圆的方程,用待定系数法求出的值;(2)解决直线和椭圆的综合问题时注意:第一步:根据题意设直线方程,有的题设条件已知点,而斜率未知;有的题设条件已知斜率,点不定,可由点斜式设直线方程.第二步:联立方程:把所设直线方程与椭圆的方程联立,消去一个元,得到一个一元二次方程.第三步:求解判别式:计算一元二次方程根.第四步:写出根与系数的关系.第五步:根据题设条件求解问题中结论.试题解析:(1)椭圆C的方程是 4分(2)当直线轴时,可得的面积为3,不合题意。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆:的左焦点,离心率为,函数,(Ⅰ)求椭圆的标准方程;(Ⅱ)设,,过的直线交椭圆于两点,求的最小值,并求此时的的值.【答案】(Ⅰ);(Ⅱ)的最小值为,此时.【解析】(Ⅰ)利用左焦点F(-1,0),离心率为,及求出几何量,即可求椭圆C的标准方程;(Ⅱ)分类讨论,设直线l的方程来:y=k(x-t)代入抛物线方程,利用韦达定理,结合向量的数量积公式,即可求的最小值,并求此时的t的值.试题解析:(Ⅰ),由得,椭圆方程为(Ⅱ)若直线斜率不存在,则=若直线斜率存在,设直线,由得所以故故的最小值为,此时.【考点】直线与圆锥曲线的综合问题.2.设分别是椭圆的左,右焦点.(1)若是椭圆在第一象限上一点,且,求点坐标;(5分)(2)设过定点的直线与椭圆交于不同两点,且为锐角(其中为原点),求直线的斜率的取值范围.(7分)【答案】(1);(2).【解析】(1)设,求点坐标,即要构建关于的两个方程,第一个方程可根据点在曲线上,点的坐标必须适合曲线的方程得到,即有,第二个方程可由通过坐标化得到,即有,联立方程组,可解得点坐标;(2)求直线的斜率的取值范围,即要构建关于的不等式,可通过为锐角,转化为不等关系,进而转化为关于的不等式,解出的取值范围.注意不要忽略,这是解析几何中常犯的错误.试题解析:(1)依题意有,所以,设,则由得:,即,又,解得,因为是椭圆在第一象限上一点,所以. 5分(2)设直线与椭圆交于不同两点的坐标为、,将直线:代入,整理得:(),则,,因为为锐角,所以,从而整理得:,即,解得,且()方程必须满足:,解得,因此有,所以直线的斜率的取值范围为. 12分【考点】1.直线与椭圆的位置关系;2.方程与不等式思想,3.设而不求的思想与等价转化思想.3.双曲线与椭圆的离心率互为倒数,则()A.B.C.D.【答案】B.【解析】由双曲线与椭圆的离心率的定义知,双曲线的离心率和椭圆的离心率分别为、,然后由题意得,即,将其两边平方化简即可得出结论.【考点】双曲线的几何性质;椭圆的几何性质.4.已知双曲线的渐近线方程为,则以它的顶点为焦点,焦点为顶点的椭圆的离心率等于()A.B.C.D.1【答案】A【解析】双曲线的焦点在轴上,又渐近线方程为,可设,则,由题意知在椭圆中,所以该椭圆的离心率等于。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆C:+=1(a>b>0)的离心率是,且点P(1,)在椭圆上.(1)求椭圆的方程;(2)若过点D(0,2)的直线l与椭圆C交于不同的两点E,F,试求△OEF面积的取值范围(O为坐标原点).【答案】(1);(2)【解析】⑴由得,椭圆方程为,又点在椭圆上,所以解得因此椭圆方程为;(2)由题意知直线的斜率存在,设的方程为 ,代入得:,由,解得设,,则,令,则,,所以 .试题解析:⑴,∵∴∴∵点在椭圆上,∴∴∴(2)由题意知直线的斜率存在,设的方程为 ,代入得:由,解得设,,则令,所以所以【考点】1.椭圆的方程;2.用代数法研究直线与椭圆相交;3.基本不等式2.椭圆的焦距是()A.3B.6C.8D.10【答案】B【解析】由椭圆的方程知,∵a2=25,b2=16,∴c=∴的焦距2c=6.故选B.【考点】椭圆的性质.3.已知椭圆的两个焦点坐标分别是,,并且经过点,求它的标准方程.【答案】.【解析】解题思路:根据条件设出椭圆的标准方程,再代点求系数即可.规律总结:求圆锥曲线的标准方程通常用待定系数法,即先根据条件设出合适的标准方程,再根据题意得到关于系数的方程或方程组,解之积得.试题解析:因为椭圆的焦点在x轴上,所以设它的标准方程为,由椭圆的定义知,所以.又因为,所以,所以椭圆的标准方程为.【考点】椭圆的标准方程.4.如图,F是中心在原点、焦点在x轴上的椭圆C的右焦点,直线l:x=4是椭圆C的右准线,F到直线l的距离等于3.(1)求椭圆C的方程;(2)点P是椭圆C上动点,PM⊥l,垂足为M.是否存在点P,使得△FPM为等腰三角形?若存在,求出点P的坐标;若不存在,请说明理由.【答案】(1);(2)P(,±).【解析】(1)求椭圆标准方程,一般利用待定系数法,利用两个独立条件确定a,b的值. 设椭圆C的方程为,由已知,得,∴∴b=.所以椭圆C的方程为.(2)等腰三角形这个条件,是不确定的,首先需要确定腰. 由=e=,得PF=PM.∴PF≠PM.若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF 不可能与FM相等.因此只有FM=PM,然后结合点在椭圆上条件进行列方程求解:设P(x,y)(x≠±2),则M(4,y).∴=4-x,∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2,∴x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=.∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.试题解析:解:(1)设椭圆C的方程为由已知,得,∴,∴b=.所以椭圆C的方程为(2)由=e=,得PF=PM.∴PF≠PM.①若PF=FM,则PF+FM=PM,与“三角形两边之和大于第三边”矛盾,∴PF不可能与FM 相等.②若FM=PM,设P(x,y)(x≠±2),则M(4,y).∴=4-x,∴9+y2=16-8x+x2,又由,得y2=3-x2.∴9+3-x2=16-8x+x2,∴x2-8x+4=0.∴7x2-32x+16=0.∴x=或x=4.∵x∈(-2,2),∴x=.∴P(,±).综上,存在点P(,±),使得△PFM为等腰三角形.【考点】椭圆方程,椭圆第二定义5.已知椭圆的离心率为,为椭圆在轴正半轴上的焦点,、两点在椭圆上,且,定点.(1)求证:当时;(2)若当时有,求椭圆的方程;(3)在(2)的椭圆中,当、两点在椭圆上运动时,试判断是否有最大值,若存在,求出最大值,并求出这时、两点所在直线方程,若不存在,给出理由.【答案】(1)详见解析;(2)(3)存在,最大值为,直线方程为,或【解析】(1)设,从而可得各向量的坐标。

高二数学椭圆及其标准方程练习题及答案

高二数学椭圆及其标准方程练习题及答案

高二数学 椭圆及其标准方程练习题及答案姓名:_________班级:________ 得分:______一、课前练习:1.判断下列各椭圆的焦点位置,并说出焦点坐标、焦距。

(1)14322=+y x (2)1422=+y x (3)1422=+y x 2.求适合下列条件的椭圆标准方程:两个焦点的坐标分别为)0,4(),0,4(-,椭圆上一点P 到两焦点距离的和等于10。

3.方程221||12x y m +=-表示焦点在y 轴的椭圆时,实数m 的取值范围是____________ 二、典例:例1 已知椭圆两个焦点的坐标分别是()2,0-,()2,0,并且经过点53,22⎛⎫-⎪⎝⎭,求它的标准方程.变式练习1:与椭圆x 2+4y 2=16有相同焦点,且过点()6,5-的椭圆方程是 . 例2 如图,在圆224x y +=上任取一点P ,过点P 作x 轴的垂线段PD ,D 为垂足.当点P 在圆上运动时,线段PD 的中点M 的轨迹是什么?例3如图,设A ,B 的坐标分别为()5,0-,()5,0.直线AM ,BM 相交于点M ,且它们的斜率之积为49-,求点M 的轨迹方程.变式练习2:已知定圆x 2+y 2-6x -55=0,动圆M 和已知圆内切且过点P (-3,0),求圆心M 的轨迹及其方程.三、巩固练习:1.平面内有两定点A 、B 及动点P ,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P 的轨迹是以A .B 为焦点的椭圆”,那么( )A .甲是乙成立的充分不必要条件B .甲是乙成立的必要不充分条件C .甲是乙成立的充要条件D .甲是乙成立的非充分非必要条件 2.椭圆2255x ky -=的一个焦点是(0,2),那么k 等于( )A. 1-B. 1C. 5D. 53.椭圆191622=+y x 的焦距是 ,焦点坐标为 ;若CD 为过左焦点1F 的弦,则CD F 2∆的周长为4.若方程x 2+ky 2=2表示焦点在y 轴上的椭圆,则实数k 的取值范围为 ( D )A .(0,+∞)B .(0,2)C .(1,+∞)D .(0,1)5.设定点F 1(0,-3)、F 2(0,3),动点P 满足条件)0(921>+=+a aa PF PF ,则点P 的轨迹是 ( A )A .椭圆B .线段C .不存在D .椭圆或线段6.椭圆12222=+b y a x 和k by a x =+2222()0>k 具有 ( A ) A .相同的离心率 B .相同的焦点 C .相同的顶点 D .相同的长、短轴7.已知:△ABC 的一边长BC =6,周长为16,求顶点A 的轨迹方程.答案:课前练习:1.(1)(0,1),(0,-1)焦距:2。

高二数学椭圆练习题及答案

高二数学椭圆练习题及答案

高二数学椭圆练习题及答案一:选择题 1.已知方程表示焦点在x轴上的椭圆,则m的取值范围是2.已知椭圆,长轴在y轴上、若焦距为4,则m等于 4.已知点F1、F2分别是椭圆+=1的左、右焦点,弦AB过点F1,若△ABF26.方程=10,化简的结果是7.设θ是三角形的一个内角,且,则方程xsinθ﹣ycosθ=1表示的曲线221、22129.从椭圆上一点P向x轴作垂线,垂足恰为左焦点F1,A是椭圆与x轴正半轴的交点,B是椭圆与y轴正半轴的交点,且AB∥OP,则该椭10.若点O和点F分别为椭圆的中心和左焦点,点P 为椭圆上的任意一点,则的最大值为11.如图,点F为椭圆=1的一个焦点,若椭圆上存在一点P,满足以椭圆短轴为直径的圆与线段PF相切于线段PF的中点,则该椭圆的离心率为12.椭圆顶点A,B,若右焦点F到直线AB的距离等于,则椭圆的离心率e=高二数学周测一、选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项是满足题目要求的。

1.平面内有两定点A、B及动点P,设命题甲是:“|PA|+|PB|是定值”,命题乙是:“点P的轨迹是以A.B 为焦点的椭圆”,那么 A.甲是乙成立的充分不必要条件B.甲是乙成立的必要不充分条件C.甲是乙成立的充要条件D.甲是乙成立的非充分非必要条件.若椭圆2kx?ky?1的一个焦点是,则k的是 A.2211B.C. D.3228D.3x2-y2=363.双曲线与椭圆4x2+y2=64有公共的焦点,它们的离心率互为倒数,则双曲线方程为 A.y2-3x2=36B.x2-3y2=36C.3y2-x2=364.已知F1、F2是椭圆的两个焦点,过F1且与椭圆长轴垂直的直线交椭圆于A、B两点,若△ABF2是正三角形,则这个椭圆的离心率是 A.23B.33C.22D.2x2y25.椭圆2?2?1的两个焦点F1,F2三等分它的两条准线间的距离,那么它的离心率abA.B. C. D.336x2y26.已知是直线l被椭圆??1所截得的线段的中点,则l 的方程为369A.x?2y?0B. x?2y?4?0C.x?3y?4?0D. x?2y?8?0x2y27.设F1,F2分别是椭圆2?2?1的左、右焦点,若在其右准线上存在P,ab使线段PF1的中垂线过点F2,则椭圆离心率的取值范围是?A.?0 ?2???B.?01?C.?1?D.? ??x2y28.在椭圆,F为椭圆右焦点,在椭圆上有一点M,使|MP|+2|MF|??1内有一点P43的值最小,则这一最小值是 A.D.457B. 2C.3二、填空题.双曲线3mx2-my2=3的一个焦点是,则m的值是x2y210.已知方程??1表示椭圆,则k的取值范围是____________.3?k2?kx2y211.设F1、F2是椭圆C:+=1的焦点,在曲线C上满足PF1?PF2=0的点P的个数124为________x2y2?12. 已知椭圆+=1的两个焦点为F1、F2,P为椭圆上一点,满足∠F1PF2=,则△F1PF2433的面积为_________________.13.已知椭圆C的焦点F1和F2,长轴长6,设直线y?x?2交椭圆C于A、B两点,则线段AB的中点坐标 .14. 已知圆A:?x?2??y?16,圆B:?x?2??y?14.动圆C与圆A内切,且222与圆B外切.则动圆圆心的轨迹方程为.三、解答题 x2y215. 求以椭圆+1的两个顶点为焦点,以椭圆的焦点为顶点的169双曲线方程,并求此双曲线的实轴长、虚轴长、离心率及渐近线方程.16. 从双曲线C:x?y?1上一点Q引直线l:x?y?2的垂线,垂足为N,求线段QN的中点P的轨迹方程.17. 已知动点P与平面上两定点A,对应的准线方程为y??且离心率e为和42时,求直线l的方程.92,4234的等比中项.平分?2求椭圆方程,是否存在直线l与椭圆交于不同的两点M、N,且线段MN恰为直线x??若存在,求出直线l的斜率的取值范围,若不存在,请说明理由.x219. 设F1、F2分别是椭圆?y2?1的左、右焦点.4若P是该椭圆上的一个动点,求PF1?PF2的最大值和最小值;设过定点M的直线l与椭圆交于不同的两点A、B,且∠AOB为锐角,求直线l的斜率k的取值范围.x2y220. 知椭圆2??1的左、右焦点分别为F1、F2,离心ab率e?x?2。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.若,则方程表示的曲线只可能是()A. B. C. D.【答案】C【解析】由得或依次验证各选项中两图形能否同时成立,如A中若直线成立则,就表示双曲线,验证可得C正确【考点】直线椭圆图像点评:通过观察两图像在坐标系下的位置判定系数是否同时成立,若能同时成立则图像可能正确,考查学生的视图能力,较难2.若抛物线的焦点与椭圆的右焦点重合,则的值为________.【答案】4【解析】易知椭圆的右焦点为,因为抛物线的焦点与椭圆的右焦点重合,所以。

【考点】抛物线的简单性质;椭圆的简单性质。

点评:注意椭圆中关系式与双曲线中的不同。

3.已知椭圆的离心率,它的一个焦点与抛物线的焦点重合,过椭圆右焦点作与坐标轴不垂直的直线,交椭圆于两点.(1)求椭圆标准方程;(2)设点,且,求直线方程.【答案】(1)(2)【解析】本试题主要是考查了椭圆方程的求解,以及直线与椭圆的位置关系的综合运用。

(1)结合抛物线的定义和性质得到参数a,b,c的关系式得到结论。

(2)利用直线与椭圆方程联立方程组,得到二次方程,结合韦达定理和向量的关系式得到直线的求解。

解:(1)抛物线焦点为(2,0)椭圆方程为:………………5分(2)设与联立得设 AB中点………………9分均满足方程:…………14分4.(本小题满分12分)已知直线与椭圆相交于、两点,是线段上的一点,,且点M在直线上,(1)求椭圆的离心率;(2)若椭圆的右焦点关于直线的对称点在单位圆上,求椭圆的方程.【答案】解:设、两点的坐标分别为( I);(II)【解析】本试题主要是考查了椭圆的方程的求解,以及直线与椭圆的位置关系的运用。

(1)结合已知中直线方程与椭圆方程联立,和设出点A,B的坐标,然后得到关于系数a,b的关系式,然后得到椭圆的方程中比例关系,进而研究其性质。

(2)由上可知,椭圆中b,c关系,然后利用对称性,设出点的坐标,借助于坐标关系式得到椭圆的方程。

解:设、两点的坐标分别为( I)由得:…………2分由知是的中点,点的坐标为………………………4分又点在直线上:…………………6分(II)由(1)知,设椭圆的右焦点坐标为,设关于直线的对称点为,则有解得:……………10分由已知,,. ………11分所求的椭圆的方程为……………12分5.已知椭圆上的一点到椭圆一个焦点的距离为,则到另一焦点距离为A.B.C.D.【答案】D【解析】点到椭圆的两个焦点的距离之和为6.已知椭圆的焦点在轴上,点在上,且的离心率,则的方程是()A.B.C.D.【答案】C【解析】的方程是,应选C.7.已知动点到两定点、的距离之和为定值.(1)求的轨迹方程;(2)若倾斜角为的直线经过点,且与的轨迹相交于两点、,求弦长.【答案】(1).(2)的方程是..【解析】(1)由椭圆的定义可得,,∴.即得到P的轨迹方程;(2)写出直线方程与(1)中的椭圆方程联立,利用两点间的距离公式和韦达定理可求得弦长.解:(1)依题意可知的轨迹是以、为焦点的椭圆,设其方程为,则有,,∴,故的轨迹方程是.……7分(2)的方程是.设,,由消去得,故弦长.……14分8.椭圆上有一点P到左焦点的距离是4,则点P到右焦点的距离是A.3B.4C.5D.6【答案】D【解析】解:利用椭圆的定义可知,椭圆上有一点P到左焦点的距离是4,则点P到右焦点的距离是10-4=6,因此选择D.9.如图,已知椭圆的离心率为,且经过点平行于的直线在轴上的截距为,与椭圆有A、B两个不同的交点(Ⅰ)求椭圆的方程;(Ⅱ) 求的取值范围;(III)求证:直线、与轴始终围成一个等腰三角形.【解析】本小题主要考查椭圆的标准方程,直线与椭圆的位置关系,考查转化与化归的思想方法,以及学生的运算能力.解:(Ⅰ)设椭圆方程为………1分离心率为所以,可得由经过点,解得,…………………………3分∴椭圆方程为……………………………4分(Ⅱ)∵直线平行于,且在轴上的截距为又……………………………………………………5分由……………………………………6分∵直线l与椭圆交于A、B两个不同点,(III)设直线MA、MB的斜率分别为k1,k2,只需证明k1+k2=0即可…………9分设则由……………………………………………………10分而故直线MA、MB与x轴始终围成一个等腰三角形.……………………14分10.已知A(m,0),|m|≤2,椭圆,点P在椭圆上运动,求|PA|的最小值.【答案】见解析.【解析】本试题主要研究椭圆上点到定点距离的最值问题。

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析

高二数学椭圆试题答案及解析1.已知椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上.(Ⅰ)求椭圆C的方程;(Ⅱ)过的直线与椭圆C相交于A,B两点,若A B的面积为,求以为圆心且与直线相切的圆方程.【答案】(1)(2)【解析】解:(Ⅰ)根据题意,由于椭圆C的对称中心为原点O,焦点在x轴上,左右焦点分别为和,且||=2,点(1,)在该椭圆上,2c=2,利用定义可知椭圆C的方程为(Ⅱ)①当直线⊥x轴时,可得A(-1,-),B(-1,),A B的面积为3,不符合题意.②当直线与x轴不垂直时,设直线的方程为y=k(x+1).代入椭圆方程得:,显然>0成立,设A,B,则,,可得|AB|=又圆的半径r=,∴A B的面积=|AB| r==,化简得:17+-18=0,得k=±1,∴r =,圆的方程为【考点】直线与椭圆的位置关系点评:主要是考查了直线与椭圆的位置关系,属于中档题。

2.椭圆=1上一点M到左焦点F的距离为2, N是MF的中点,则=( )A.2B.4C.6D.【答案】B【解析】解:∵椭圆方程为,∴椭圆的a=5,长轴2a=10,可得椭圆上任意一点到两个焦点F1、F2距离之和等于10.∴|MF1|+|MF2|=10,∵点M到左焦点F1的距离为2,即|MF1|=2,∴|MF2|=10-2=8,∵△MF1F2中,N、O分别是MF1、F1F2中点,∴|ON|= |MF2|=4.故选B.【考点】三角形中位线定理和椭圆的定义点评:本题考查了三角形中位线定理和椭圆的定义等知识点,考查学生的计算能力,属于基础题3.过椭圆+=1内一点M(2,1)引一条弦,使弦被M点平分,求此弦所在直线方程。

【答案】x+2y-4=0,【解析】解:设直线与椭圆的交点为A(x1,y1)、B(x2,y2),∵M(2,1)为AB的中点,∴x1+x2=4,y1+y2=2,∵又A、B两点在椭圆上,则x12+4y12=16,x22+4y22=16,两式相减得(x12-x 22)+4(y12-y22)=0,于是(x1+x2)(x1-x2)+4(y1+y2)(y1-y2)=0,故所求直线的方程为y-1=-(x-2),即x+2y-4=0.【考点】直线与椭圆的位置关系点评:本题考查直线与椭圆的位置关系,考查点差法的运用,考查学生的计算能力,属于中档题.4.设分别为椭圆的左、右焦点,点A,B在椭圆上,若,则点A的坐标是()A.B.C.D.【答案】D【解析】设,由椭圆可知点的坐标代入得,将A,B代入椭圆得关于的方程组,解得【考点】椭圆方程及性质,向量运算点评:圆锥曲线题目中出现的向量关系式常化为坐标表示,本题将所求A点设出,利用向量求得B点,两点在椭圆上即可代入5.已知椭圆的离心率为,右焦点为(,0),斜率为1的直线与椭圆G交与A、B两点,以AB为底边作等腰三角形,顶点为P(-3,2).(I)求椭圆G的方程;(II)求的面积.【答案】(I)(II)【解析】(Ⅰ)由已知得解得,又所以椭圆G的方程为(3分)(Ⅱ)设直线l的方程为( 4分)由得 5分设A、B的坐标分别为AB中点为E,则;(7分)因为AB是等腰△PAB的底边,所以PE⊥AB.所以PE的斜率解得m=2。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高二上学期数学练习题(6)(椭圆的标准方程)班级 姓名 学号一 .选择填空题1. 设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于 ( ).A .4B .5C .8D .102. 已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是 ( ).A .椭圆B .直线C .圆D .线段3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是 ( ).A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2 4.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|那么动点Q 的轨迹是 ( ) A .圆 B .椭圆 C .双曲线的一支 D .抛物线5.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1 6. 设F 1,F 2是椭圆x 225+y 29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为 ( )A .16B .18C .20D .不确定 7. 焦点在坐标轴上,且a 2=13,c 2=12的椭圆的标准方程为( )A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 8. 已知两椭圆ax 2+y 2=8与9x 2+25y 2=100的焦距相等,则a 的值为( ) A .9或917 B.34或32 C .9或34D.917或329. 椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于A.32B. 3C.72D .4 ( )10. 已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是( )A .圆B .椭圆C .线段D .直线 11. 曲线x 225+y 29=1与x 29-k +y 225-k=1 (0<k <9)的关系是( )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不相等的焦距,不同的焦点D .以上都不对12. 直线)(01R k kx y ∈=--与椭圆1522=+by x 恒有公共点,则b 的取值范围是( )A .(0,1)B .(0,5)C .),5()5,1[+∞D .),1(+∞二.填空题13.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为14.已知椭圆x 220+y 2k=1的焦距为6,则k 的值为________ .15.若α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是________.16.椭圆x 212+y 23=1的两个焦点为F 1和F 2,点P 在椭圆上,线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的___ 倍.17.已知椭圆两焦点为F 1、F 2,a =32,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为______.18.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是________.19.△ABC 的三边a ,b ,c 成等差数列,且a >b >c ,A ,C 的坐标分别为(-1,0),(1,0),求顶点B 的轨迹方程 为20.设F 1、F 2分别是椭圆x 216+y 27=1的左、右焦点,若点P 在椭圆上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=________.三.解答题21.求经过两点P 1⎝⎛⎭⎫13,13,P 2⎝⎛⎭⎫0,-12的椭圆的标准方程.22.求适合下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)焦距是10,且椭圆上一点到两焦点的距离的和为26.23.已知椭圆的中心在原点,两焦点F1,F2在x轴上,且过点A(-4,3).若F1A⊥F2A,求椭圆的标准方程.24.在圆C:(x+1)2+y2=25内有一点A(1,0),Q为圆C上一点,AQ的垂直平分线与C,Q的连线交于点M,求点M的轨迹方程.25.已知椭圆y 2a 2+x2b2=1 (a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值.26.如图,已知椭圆的方程为x 24+y 23=1,P 点是椭圆上的一点,且∠F 1PF 2=60°,求△PF 1F 2的面积.高二上学期数学练习题(6)(椭圆的标准方程)参考答案班级 姓名 学号一 .选择填空题1. 设P 是椭圆x 225+y 216=1上的点,若F 1,F 2是椭圆的两个焦点,则|PF 1|+|PF 2|等于 ( ).A .4B .5C .8D .10解析 由椭圆的标准方程得a 2=25,a =5.由椭圆的定义知|PF 1|+|PF 2|=2a =10. 答案 D 2. 已知F 1,F 2是定点,|F 1F 2|=8,动点M 满足|MF 1|+|MF 2|=8,则动点M 的轨迹是 ( ).A .椭圆B .直线C .圆D .线段 解析 ∵|MF 1|+|MF 2|=8=|F 1F 2|,∴点M 的轨迹是线段F 1F 2,故选D.答案 D3.如果方程x 2a 2+y 2a +6=1表示焦点在x 轴上的椭圆,则实数a 的取值范围是 ( ).A .a >3B .a <-2C .a >3或a <-2D .a >3或-6<a <-2解析 由于椭圆焦点在x 轴上,∴⎩⎪⎨⎪⎧a 2>a +6,a +6>0,即⎩⎪⎨⎪⎧(a +2)(a -3)>0,a >-6.⇔a >3或-6<a <-2.故选D.答案D4.已知椭圆的焦点是F 1,F 2,P 是椭圆上的一动点,如果延长F 1P 到Q ,使得|PQ |=|PF 2|,那么动点Q 的轨迹是 ( ).A .圆B .椭圆C .双曲线的一支D 解析 如图,依题意:|PF 1|+|PF 2|=2a (a >0是常数). 又∵|PQ |=|PF 2|,∴|PF 1|+|PQ |=2a ,即|QF 1|=2a .∴动点Q 的轨迹是以F 1为圆心,2a 为半径的圆,故选A.答案 A5.设F 1,F 2是椭圆x 29+y 24=1的两个焦点,P 是椭圆上的点,且|PF 1|∶|PF 2|=2∶1,则△F 1PF 2的面积等于( )A .5B .4C .3D .1解析 由椭圆方程,得a =3,b =2,c =5,∴|PF 1|+|PF 2|=2a =6,又|PF 1|∶|PF 2|=2∶1, ∴|PF 1|=4,|PF 2|=2,由22+42=(25)2可知△F 1PF 2是直角三角形且1290F PF ∠=︒, 故△F 1PF 2的面积为12|PF 1|·|PF 2|=12×2×4=4,故选B.答案 B6. 设F 1,F 2是椭圆x 225+y29=1的焦点,P 为椭圆上一点,则△PF 1F 2的周长为 ( B )A .16B .18C .20D .不确定 7. 焦点在坐标轴上,且a 2=13,c 2=12的椭圆的标准方程为( D )A.x 213+y 212=1B.x 213+y 225=1或x 225+y 213=1C.x 213+y 2=1D.x 213+y 2=1或x 2+y 213=1 8. 已知两椭圆ax 2+y 2=8与9x 2+25y 2=100的焦距相等,则a 的值为( A )A .9或917 B.34或32 C .9或34D.917或329. 椭圆x 24+y 2=1的两个焦点为F 1、F 2,过F 1作垂直于x 轴的直线与椭圆相交,一个交点为P ,则|PF 2|等于A.32B. 3C.72D .4 ( C )10. 已知椭圆x 2a 2+y 2b 2=1 (a >b >0),M 为椭圆上一动点,F 1为椭圆的左焦点,则线段MF 1的中点P 的轨迹是A .圆B .椭圆C .线段D .直线 ( B ) 11. 曲线x 225+y 29=1与x 29-k +y 225-k=1 (0<k <9)的关系是( B )A .有相等的焦距,相同的焦点B .有相等的焦距,不同的焦点C .有不相等的焦距,不同的焦点D .以上都不对12. 直线)(01R k kx y ∈=--与椭圆1522=+by x 恒有公共点,则b 的取值范围是( C )A .(0,1)B .(0,5)C .),5()5,1[+∞D .),1(+∞二.填空题13.已知椭圆的焦点在y 轴上,其上任意一点到两焦点的距离和为8,焦距为215,则此椭圆的标准方程为解析 由已知2a =8,2c =215,∴a =4,c =15,∴b 2=a 2-c 2=16-15=1, ∴椭圆标准方程为y 216+x 2=1.答案 y 216+x 2=114.已知椭圆x 220+y 2k=1的焦距为6,则k 的值为________ .解析 由已知2c =6,∴c =3,而c 2=9,∴20-k =9或k -20=9,∴k =11或k =29.答案 11或29 15.若α∈(0,π2),方程x 2sin α+y 2cos α=1表示焦点在y 轴上的椭圆,则α的取值范围是________.解析 方程x 2sin α+y 2cos α=1可化为x 21sin α+y 21cos α=1.∵椭圆的焦点在y 轴上,∴1cos α>1sin α>0.又∵α∈(0,π2),∴sin α>cos α>0,∴π4<α<π2.答案 (π4,π2)16.椭圆x 212+y 23=1的两个焦点为F 1和F 2,点P 在椭圆上,线段PF 1的中点在y 轴上,那么|PF 1|是|PF 2|的___ 倍.解析 依题意,不妨设椭圆两个焦点的坐标分别为F 1(-3,0),F 2(3,0),设P 点的坐 标为(x 1,y 1),由线段PF 1的中点的横坐标为0,知x 1-32=0,∴x 1=3.把x 1=3代入椭圆方程x 212+y 23=1,得y 1=±32,即P 点的坐标为(3,±32),∴|PF 2|=|y 1|=32.由椭圆的定义知|PF 1|+|PF 2|=43,∴|PF 1|=43-|PF 2|=43-32=732,即|PF 1|=7|PF 2|.答案:717.已知椭圆两焦点为F 1、F 2,a =32,过F 1作直线交椭圆于A 、B 两点,则△ABF 2的周长为__6____.18.已知椭圆x 225+y 29=1上的点M 到该椭圆一个焦点F 的距离为2,N 是MF 的中点,O 为坐标原点,那么线段ON 的长是____4____.19.△ABC 的三边a ,b ,c 成等差数列,且a >b >c ,A ,C 的坐标分别为(-1,0),(1,0),求顶点B 的轨迹方程 为解 由已知得b =2,又a ,b ,c 成等差数列,∴a +c =2b =4,即|AB |+|BC |=4, ∴点B 到定点A 、C 的距离之和为定值4,由椭圆定义知B 点的轨迹为椭圆的一部分, 其中a ′=2,c ′=1.∴b ′2=3.又a >b >c ,∴顶点B 的轨迹方程为x 24+y 23=1 (-2<x <0).20.设F 1、F 2分别是椭圆x 216+y 27=1的左、右焦点,若点P 在椭圆上,且PF 1→·PF 2→=0,则|PF 1→+PF 2→|=___6_____.三.解答题21.求经过两点P 1⎝⎛⎭⎫13,13,P 2⎝⎛⎭⎫0,-12的椭圆的标准方程. 解:依题意可设所求椭圆的方程为Ax 2+By 2=1 (A >0,B >0). ∵点P 1⎝ ⎛⎭⎪⎫13,13,P 2⎝⎛⎭⎪⎫0,-12在所求椭圆上,∴⎩⎨⎧A ⎝⎛⎭⎫132+B ⎝⎛⎭⎫132=1,B ⎝⎛⎭⎫-122=1,解之得⎩⎪⎨⎪⎧A =5,B =4.,∴所求椭圆的标准方程为x 215+y 214=1.22.求适合下列条件的椭圆的标准方程:(1)焦点在y 轴上,焦距是4,且经过点M (3,2); (2)焦距是10,且椭圆上一点到两焦点的距离的和为26. 解:(1)依题意所求椭圆的焦点在y 轴上,且24c =,∴c =2,∴所求椭圆的两焦点分别为1F (0,-2),2F (0,2).由椭圆的定义知2a =12MF MF +=32+(2+2)2+32+(2-2)2=8,∴a =4,∴b 2=a 2-c 2=16-4=12,∴所求椭圆的标准方程为y 216+x 212=1.(2)依题意2c =10,2a =26,∴c =5,a =13,∴b 2=a 2-c 2=132-52=144,∵所求椭圆的焦点所在的坐标轴不确定,∴所求椭圆的标准方程为x 2169+y 2144=1或y 2169+x 2144=1.23.已知椭圆的中心在原点,两焦点F 1,F 2在x 轴上,且过点A (-4,3).若F 1A ⊥F 2A ,求椭圆的标准方程. 解:依题意可设所求椭圆的标准方程为x 2a 2+y 2b2=1(a >b >0).设所求椭圆的两焦点分别为F 1(-c ,0),F 2(c ,0)(c >0).∵F 1A ⊥F 2A ,∴ 120FA FA = ,∵ 1(4,3)F A c =-+2(4,3)F A c =--,∴(-4+c )·(-4-c )+32=0,∴c 2=25,即c =5. ∴F 1(-5,0),F 2(5,0).∴2a =|AF 1|+|AF 2|=(-4+5)2+32+(-4-5)2+32=10+90=410.∴a =210,∴b 2=a 2-c 2=(210)2-52=15.∴所求椭圆的标准方程为x 240+y 215=1.24.在圆C :(x +1)2+y 2=25内有一点A (1,0),Q 为圆C 上一点,AQ 的垂直平分线与C ,Q 的连线交于点M ,求点M 的轨迹方程.解:依题意园C 的圆心为(1,0)C -,半径5r =,又由题意知点M 在线段CQ 上,∴有|CQ |=|MQ |+|MC |=5r =∵点M 在线段AQ 的垂直平分线上,∴|MA |=|MQ |,∴|MA |+|MC |=|CQ |=5OA >∴由椭圆的定义可知点M 的轨迹是以A (1,0),C (-1,0) 为焦点的椭圆, ∵2a =5,∴a =52,又∵c =1,∴b 2=a 2-c 2=254-1=214.∴所求点M 的轨迹方程为x 2254+y 2214=1.25.已知椭圆y 2a 2+x 2b2=1 (a >b >0)的焦点分别是F 1(0,-1),F 2(0,1),且3a 2=4b 2.(1)求椭圆的方程;(2)设点P 在这个椭圆上,且|PF 1|-|PF 2|=1,求∠F 1PF 2的余弦值. 解:(1)依题意知所求椭圆的焦点在y 轴上且c =1,∴a 2-b 2= c 2=1,∵3a 2=4b 2,解方程组2222134a b a b⎧-=⎨=⎩可得a 2=4,b 2=3,∴所求椭圆的标准方程为 y 24+x 23=1. (2)∵点P 在椭圆上,∴由椭圆的定义可知|PF 1|+|PF 2|=2a =2×2=4……①, 又∵|PF 1|-|PF 2|=1……②,∴将①②联立方程组解之得|PF 1|=52,|PF 2|=32,又∵|F 1F 2|=2c =2,∴在12PF F ∆中由余弦定理可得 cos ∠F 1PF 2=|PF 1|2+|PF 2|2-|F 1F 2|22·|PF 1|·|PF 2|=⎝⎛⎭⎫522+⎝⎛⎭⎫322-222×52×32=35,即∠F 1PF 2的余弦值等于35。

相关文档
最新文档