内阻50欧姆负载50欧姆

合集下载

阻抗匹配概念

阻抗匹配概念

阻抗匹配概念阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。

这种匹配条件称为共扼匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。

改变阻抗力把电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。

如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。

重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

调整传输线由负载点至来源点加长传输线,在图表上的圆点会沿著图中心以逆时针方向走动,直至走到电阻值为1的圆圈上,即可加电容或电感把阻抗力调整为零,完成匹配阻抗匹配则传输功率大,对于一个电源来讲,单它的内阻等于负载时,输出功率最大,此时阻抗匹配。

最大功率传输定理,如果是高频的话,就是无反射波。

对于普通的宽频放大器,输出阻抗50Ω,功率传输电路中需要考虑阻抗匹配,可是如果信号波长远远大于电缆长度,即缆长可以忽略的话,就无须考虑阻抗匹配了。

阻抗匹配是指在能量传输时,要求负载阻抗要和传输线的特征阻抗相等,此时的传输不会产生反射,这表明所有能量都被负载吸收了.反之则在传输中有能量损失。

50欧姆微带线课程设计

50欧姆微带线课程设计

50欧姆微带线课程设计一、课程目标知识目标:1. 理解微带线的基本概念、结构特点及其在射频通信中的应用;2. 掌握50欧姆微带线的电气特性,包括阻抗、传输线方程和Smith圆图分析;3. 学会计算微带线的尺寸、间距等关键参数,并了解其对传输性能的影响。

技能目标:1. 能够运用相关公式和软件工具进行微带线的设计和仿真;2. 培养实际操作能力,完成50欧姆微带线的制作和测试;3. 提高分析和解决射频电路中微带线相关问题的能力。

情感态度价值观目标:1. 培养学生对电子工程领域的兴趣,激发探索精神和创新意识;2. 增强学生的团队合作意识,培养在实践过程中积极沟通、协作的能力;3. 树立正确的价值观,认识到微带线技术在国民经济发展中的重要作用。

课程性质分析:本课程属于电子工程领域,以射频通信技术为基础,结合实际应用,强调理论与实践相结合。

学生特点分析:学生具备一定的电子线路基础知识,具有较强的逻辑思维能力和动手能力,但对微带线等射频技术了解有限。

教学要求:1. 注重知识体系的完整性,循序渐进,由浅入深地引导学生掌握微带线的设计和应用;2. 结合实际案例,加强实践操作环节,提高学生的实际动手能力;3. 关注学生的个体差异,因材施教,激发学生的学习兴趣和潜能。

二、教学内容1. 微带线基本概念:介绍微带线的定义、结构及其在射频通信系统中的应用。

- 教材章节:第3章“传输线理论”第1节“微带线概述”- 内容列举:微带线的结构、类型及其电气特性。

2. 50欧姆微带线设计原理:- 教材章节:第3章“传输线理论”第2节“微带线的电气特性”- 内容列举:传输线方程、特性阻抗、Smith圆图分析。

3. 微带线参数计算与仿真:- 教材章节:第3章“传输线理论”第3节“微带线的设计与仿真”- 内容列举:微带线尺寸、间距等参数计算,软件工具使用。

4. 微带线制作与测试:- 教材章节:第4章“微带线制作与测试”第1节“微带线的制作”- 内容列举:材料选择、工艺流程、制作技巧。

关于RFID天线设计阻抗匹配

关于RFID天线设计阻抗匹配

阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。

由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。

假设负载电阻为R,电源电动势为U,内阻为r,那么我们可以计算出流过电阻R的电流为:I=U/(R+r),可以看出,负载电阻R越小,则输出电流越大。

负载R上的电压为:Uo=IR=U*[1+(r/R)],可以看出,负载电阻R越大,则输出电压Uo越高。

再来计算一下电阻R消耗的功率为:P=I*I*R=[U/(R+r)]*[U/(R+r)]*R=U*U*R/(R*R+2*R*r+r*r)=U*U*R/[(R-r)*(R-r)+4*R*r]=U*U/{[(R-r)*(R-r)/R]+4*r}对于一个给定的信号源,其内阻r是固定的,而负载电阻R则是由我们来选择的。

注意式中[(R-r)*(R-r)/R],当R=r时,[(R-r)*(R-r)/R]可取得最小值0,这时负载电阻R 上可获得最大输出功率Pmax=U*U/(4*r)。

即,当负载电阻跟信号源内阻相等时,负载可获得最大输出功率,这就是我们常说的阻抗匹配之一。

对于纯电阻电路,此结论同样适用于低频电路及高频电路。

当交流电路中含有容性或感性阻抗时,结论有所改变,就是需要信号源与负载阻抗的的实部相等,虚部互为相反数,这叫做共厄匹配。

在低频电路中,我们一般不考虑传输线的匹配问题,只考虑信号源跟负载之间的情况,因为低频信号的波长相对于传输线来说很长,传输线可以看成是“短线”,反射可以不考虑(可以这么理解:因为线短,即使反射回来,跟原信号还是一样的)。

从以上分析我们可以得出结论:如果我们需要输出电流大,则选择小的负载R;如果我们需要输出电压大,则选择大的负载R;如果我们需要输出功率最大,则选择跟信号源内阻匹配的电阻R。

阻抗匹配基本概念以及高频阻抗匹配

阻抗匹配基本概念以及高频阻抗匹配

英文名称:impedance matching基本概念信号传输过程中负载阻抗和信源内阻抗之间的特定配合关系。

一件器材的输出阻抗和所连接的负载阻抗之间所应满足的某种关系,以免接上负载后对器材本身的工作状态产生明显的影响。

对电子设备互连来说,例如信号源连放大器,前级连后级,只要后一级的输入阻抗大于前一级的输出阻抗5-10倍以上,就可认为阻抗匹配良好;对于放大器连接音箱来说,电子管机应选用与其输出端标称阻抗相等或接近的音箱,而晶体管放大器则无此限制,可以接任何阻抗的音箱。

匹配条件①负载阻抗等于信源内阻抗,即它们的模与辐角分别相等,这时在负载阻抗上可以得到无失真的电压传输。

②负载阻抗等于信源内阻抗的共轭值,即它们的模相等而辐角之和为零。

这时在负载阻抗上可以得到最大功率。

这种匹配条件称为共轭匹配。

如果信源内阻抗和负载阻抗均为纯阻性,则两种匹配条件是等同的。

阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份绝对值相等而符号相反。

这种匹配条件称为共扼匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于传输线上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

史密夫图表上。

电容或电感与负载串联起来,即可增加或减少负载的阻抗值,在图表上的点会沿著代表实数电阻的圆圈走动。

如果把电容或电感接地,首先图表上的点会以图中心旋转180度,然后才沿电阻圈走动,再沿中心旋转180度。

重覆以上方法直至电阻值变成1,即可直接把阻抗力变为零完成匹配。

共轭匹配在信号源给定的情况下,输出功率取决于负载电阻与信号源内阻之比K,当两者相等,即K=1时,输出功率最大。

射频电路设计理论及应用题集

射频电路设计理论及应用题集

射频电路设计理论及应用题集一、选择题1. 以下关于射频信号特点的描述,错误的是()A. 射频信号具有较高的频率,通常在几百kHz到几十GHz范围内B. 射频信号在传输过程中容易受到衰减和干扰C. 射频信号的波长较长,因此其传播特性与低频信号相似D. 射频信号的能量在空间中以电磁波的形式传播答案:C2. 在射频电路中,常用的单位dBm表示()A. 功率的绝对值B. 功率的相对值,相对于1mW的功率C. 电压的绝对值D. 电压的相对值,相对于1mV的电压答案:B3. 射频传输线的特性阻抗主要取决于()A. 传输线的长度B. 传输线的材料C. 传输线的几何形状和填充介质D. 传输线上传输的信号频率答案:C4. 以下哪种射频滤波器在通带内具有最平坦的频率响应?()A. 巴特沃斯滤波器B. 切比雪夫滤波器C. 椭圆滤波器D. 贝塞尔滤波器答案:A5. 射频放大器的增益通常用以下哪种方式表示?()A. 电压增益B. 电流增益C. 功率增益D. 以上都是答案:D6. 射频电路中的噪声主要来源不包括()A. 电阻热噪声B. 晶体管散粒噪声C. 电源噪声D. 光噪声答案:D7. 对于射频混频器,以下描述正确的是()A. 实现信号的频率上变频和下变频B. 只用于将高频信号转换为低频信号C. 输入和输出信号的频率相同D. 不会引入额外的噪声答案:A8. 以下哪种射频振荡器具有较好的频率稳定性?()A. 考毕兹振荡器B. 克拉泼振荡器C. 晶体振荡器D. 哈特莱振荡器答案:C9. 射频系统中的阻抗匹配的目的是()A. 最大化信号传输功率B. 减小信号反射C. 提高系统效率D. 以上都是答案:D10. 在射频电路设计中,史密斯圆图主要用于()A. 计算电路的增益B. 分析电路的噪声性能C. 进行阻抗匹配D. 设计滤波器答案:C11. 以下哪种射频天线具有较宽的带宽?()A. 偶极子天线B. 微带天线C. 喇叭天线D. 对数周期天线答案:D12. 射频信号的波长与频率的关系是()A. 波长等于频率除以光速B. 波长等于光速乘以频率C. 波长等于光速除以频率D. 波长与频率无关答案:C13. 射频收发机中的低噪声放大器通常位于()A. 接收链路的前端B. 接收链路的后端C. 发射链路的前端D. 发射链路的后端答案:A14. 以下哪种因素会导致射频信号的衰减?()A. 自由空间传播损耗B. 障碍物阻挡C. 大气吸收D. 以上都是答案:D15. 射频功率放大器的效率主要取决于()A. 工作电压B. 工作电流C. 工作频率D. 输出功率和输入功率的比值答案:D16. 对于射频开关,以下性能指标最重要的是()A. 插入损耗B. 隔离度C. 开关速度D. 以上都是答案:D17. 以下哪种射频调制方式具有较高的频谱效率?()A. 幅度调制(AM)B. 频率调制(FM)C. 相位调制(PM)D. 正交幅度调制(QAM)答案:D18. 射频电路中的寄生电容和电感主要来源于()A. 元器件的物理结构B. 电路布线C. 电路板的材料D. 以上都是答案:D19. 以下关于射频集成电路(RFIC)的优点,错误的是()A. 尺寸小B. 成本低C. 性能高D. 设计难度小答案:D20. 射频系统中的S参数,S21表示()A. 输入端口的反射系数B. 输出端口的反射系数C. 正向传输系数D. 反向传输系数答案:C21. 以下关于射频功率分配器的描述,错误的是()A. 用于将输入功率等分为多个输出端口的功率B. 常见的有威尔金森功率分配器和定向耦合器型功率分配器C. 其性能主要取决于插入损耗和隔离度D. 不会对输入信号的频率和相位产生影响答案:D22. 在射频低通滤波器的设计中,以下哪种结构常用于实现陡峭的截止特性?()A. 集总参数元件构成的滤波器B. 微带线结构的滤波器C. 声表面波滤波器D. 腔体滤波器答案:D23. 射频压控振荡器(VCO)的输出频率通常由以下哪个因素控制?()A. 输入电压的幅度B. 输入电压的频率C. 输入电压的相位D. 输入电压的直流偏置答案:A24. 对于射频混频器,以下哪种非线性特性是其实现频率变换的关键?()A. 乘法特性B. 平方律特性C. 指数特性D. 对数特性答案:A25. 以下哪种射频放大器具有较高的输出功率和效率,但线性度较差?()A. A 类放大器B. B 类放大器C. C 类放大器D. D 类放大器答案:C26. 射频环形器的主要作用是()A. 实现信号的单向传输,提高系统的隔离度B. 对输入信号进行滤波和放大C. 改变输入信号的频率和相位D. 分配输入信号的功率到多个输出端口答案:A27. 以下关于射频衰减器的描述,正确的是()A. 用于增大输入信号的功率B. 可以通过改变电阻值来调节衰减量C. 对输入信号的频率和相位没有影响D. 以上都是答案:C28. 射频带通滤波器的中心频率和带宽主要由以下哪些元件决定?()A. 电感和电容B. 电阻和电容C. 电感和电阻D. 晶体管和电容答案:A29. 射频锁相环(PLL)中,相位比较器的作用是()A. 比较输入信号和反馈信号的相位差,并产生误差电压B. 放大输入信号的功率C. 对输入信号进行滤波D. 产生稳定的参考频率答案:A30. 以下哪种射频组件常用于实现阻抗匹配和功率分配的功能?()A. 巴伦(Balun)B. 功分器(Power Divider)C. 耦合器(Coupler)D. 以上都是答案:D31. 射频开关二极管在导通状态下,其电阻值通常为()A. 几欧姆到几十欧姆B. 几百欧姆到几千欧姆C. 几兆欧姆到几十兆欧姆D. 无穷大答案:A32. 对于射频滤波器的品质因数(Q 值),以下描述正确的是()A. Q 值越高,滤波器的选择性越好,但带宽越窄B. Q 值越低,滤波器的选择性越好,但带宽越窄C. Q 值与滤波器的选择性和带宽无关D. Q 值只影响滤波器的插入损耗答案:A33. 以下哪种射频放大器的结构适合在高频下工作,并具有较好的噪声性能?()A. 共发射极放大器B. 共基极放大器C. 共集电极放大器D. 差分放大器答案:B34. 射频电感器在高频下,其电感值通常会()A. 增大B. 减小C. 保持不变D. 先增大后减小答案:B35. 以下关于射频电容器的描述,错误的是()A. 在高频下,其电容值可能会偏离标称值B. 寄生电感会影响其在高频下的性能C. 通常使用陶瓷电容和云母电容在射频电路中D. 其耐压值在射频电路中不是重要参数答案:D36. 射频放大器的稳定性主要取决于()A. 输入输出阻抗B. 晶体管的参数和电路结构C. 电源电压和电流D. 工作温度和湿度答案:B37. 以下哪种射频组件常用于检测输入信号的功率大小?()A. 功率探测器(Power Detector)B. 低噪声放大器(LNA)C. 混频器(Mixer)D. 压控振荡器(VCO)答案:A38. 射频集成电路中的电感通常采用以下哪种实现方式?()A. 螺旋电感B. 片上变压器C. 金属氧化物半导体电感D. 以上都是答案:D39. 对于射频滤波器的插入损耗,以下描述正确的是()A. 插入损耗越小,滤波器性能越好B. 插入损耗与滤波器的带宽成正比C. 插入损耗只与滤波器的结构有关,与工作频率无关D. 插入损耗是指输入信号功率与输出信号功率的差值答案:A40. 以下哪种射频组件常用于实现信号的上变频和下变频功能?()A. 乘法器(Multiplier)B. 除法器(Divider)C. 加法器(Adder)D. 减法器(Subtractor)答案:A41. 以下关于射频双工器的描述,错误的是()A. 用于实现收发信号的同时工作B. 通常由滤波器和开关组成C. 对收发信号的隔离度要求不高D. 能有效避免收发信号之间的干扰答案:C42. 射频PIN二极管在射频电路中的主要作用不包括()A. 作为开关控制信号的通断B. 用于衰减器调整信号强度C. 构成放大器放大信号D. 进行相位调制答案:D43. 在射频放大器的设计中,为了提高线性度,可以采用()A. 负反馈技术B. 增加工作电流C. 提高工作电压D. 减少晶体管数量答案:A44. 以下哪种射频组件常用于实现不同频段信号的分离?()A. 分频器B. 合路器C. 滤波器组D. 以上都是答案:D45. 射频放大器中的增益压缩现象主要是由于()A. 输入信号过大B. 电源电压不稳定C. 晶体管的非线性特性D. 负载阻抗不匹配答案:C46. 对于射频限幅器,以下描述正确的是()A. 限制输入信号的功率在一定范围内B. 只对大信号进行限幅,小信号不受影响C. 不会引入额外的噪声D. 对信号的频率和相位没有影响答案:A47. 射频匹配网络的设计目标通常不包括()A. 实现最大功率传输B. 减小反射系数C. 增加噪声系数D. 优化电路的稳定性答案:C48. 以下哪种射频组件常用于提高信号的纯度和稳定性?()A. 锁相放大器B. 预放大器C. 选频放大器D. 以上都是答案:D49. 射频隔离器与环形器的主要区别在于()A. 隔离器是单向传输,环形器是多向传输B. 隔离器的插入损耗更低C. 环形器的工作频率范围更广D. 隔离器能完全阻止反向信号传输答案:D50. 在射频混频器的设计中,为了减少寄生响应,通常会()A. 优化电路布局B. 选择合适的晶体管C. 采用平衡结构D. 以上都是答案:D51. 射频延迟线的主要作用是()A. 调整信号的相位B. 产生定时信号C. 延迟信号的传输D. 以上都是答案:D52. 以下关于射频放大器的噪声系数,描述错误的是()A. 噪声系数越小,放大器的噪声性能越好B. 与放大器的增益无关C. 受输入信号源内阻的影响D. 是衡量放大器内部噪声大小的重要指标答案:B53. 射频检波器通常用于()A. 从射频信号中提取调制信息B. 检测信号的频率C. 放大信号的功率D. 实现阻抗匹配答案:A54. 对于射频耦合器,以下性能指标较为重要的是()A. 耦合度和方向性B. 插入损耗和隔离度C. 带宽和中心频率D. 以上都是答案:D55. 以下哪种射频组件常用于实现频率合成?()A. 直接数字频率合成器(DDS)B. 锁相环频率合成器(PLL)C. 压控振荡器(VCO)D. 以上都是答案:D56. 射频放大器的稳定性判别方法中,常用的是()A. 波特图法B. 奈奎斯特稳定判据C. S 参数法D. 以上都是答案:D57. 以下关于射频滤波器的群延迟特性,描述正确的是()A. 反映信号通过滤波器时的相位延迟B. 群延迟越平坦,信号失真越小C. 对于线性相位滤波器,群延迟为常数D. 以上都是答案:D58. 射频放大器的1dB压缩点是指()A. 输出功率比线性增益下降1dB时的输入功率B. 输出功率比线性增益下降1dB时的输出功率C. 输入功率比线性增益下降1dB时的输入功率D. 输入功率比线性增益下降1dB时的输出功率答案:A59. 以下哪种射频组件常用于实现宽带匹配?()A. T 型匹配网络B. π型匹配网络C. 渐变线匹配D. 以上都是答案:D60. 射频放大器的三阶交调截点越高,表示()A. 线性度越好B. 增益越高C. 噪声系数越小D. 带宽越大答案:A61. 以下关于传输线特性阻抗的描述,错误的是()A. 特性阻抗是传输线的固有属性,与线的长度无关B. 它取决于传输线的几何结构和填充介质的特性C. 对于同轴线,特性阻抗只与内导体和外导体的半径比有关D. 特性阻抗的值可以随着传输信号的频率变化而大幅改变62. 在均匀传输线上,行波状态下的特点是()A. 沿线电压和电流的幅值不变B. 沿线电压和电流的相位不断变化C. 存在反射波,导致信号失真D. 传输线的输入阻抗等于特性阻抗答案:A63. 传输线的输入阻抗与以下哪个因素无关?()A. 传输线的长度B. 传输线的特性阻抗C. 终端负载阻抗D. 传输线的材料答案:D64. 对于无损耗传输线,以下描述正确的是()A. 其电阻和电导都为零B. 信号在传输过程中不会有衰减C. 特性阻抗为纯电阻D. 以上都是答案:D65. 当传输线终端短路时,其输入阻抗为()A. 零B. 无穷大D. 纯电容答案:C66. 传输线的驻波比等于()A. 最大电压与最小电压之比B. 最大电流与最小电流之比C. 输入阻抗与特性阻抗之比D. 反射系数的模答案:A67. 在传输线中,反射系数的模等于()A. 终端负载阻抗与特性阻抗的差值除以它们的和B. 终端负载阻抗与特性阻抗的和除以它们的差值C. 终端负载阻抗除以特性阻抗D. 特性阻抗除以终端负载阻抗答案:A68. 以下哪种传输线常用于高频和微波领域?()A. 双绞线B. 同轴线C. 平行双线D. 微带线答案:D69. 传输线的衰减常数主要取决于()A. 传输线的电阻和电导B. 传输线的电感和电容C. 传输线的特性阻抗D. 传输信号的频率答案:A70. 对于有损传输线,以下说法错误的是()A. 信号在传输过程中会有功率损耗B. 其特性阻抗是复数C. 输入阻抗始终等于特性阻抗D. 衰减常数不为零答案:C71. 当传输线终端开路时,沿线电压和电流的分布特点是()A. 电压和电流均为驻波B. 电压为驻波,电流为行波C. 电压为行波,电流为驻波D. 电压和电流均为行波答案:A72. 传输线的相速度是指()A. 信号在传输线上的传播速度B. 等于光速除以传输线的折射率C. 与传输线的特性阻抗有关D. 以上都是答案:D73. 在传输线的匹配中,常用的匹配方法不包括()A. 串联电感或电容B. 并联电感或电容C. 改变传输线的长度D. 增加传输线的损耗答案:D74. 以下关于传输线的色散特性,描述正确的是()A. 不同频率的信号在传输线上的传播速度不同B. 只存在于有损传输线中C. 对信号的传输没有影响D. 可以通过增加传输线的长度来消除答案:A75. 传输线的特性阻抗为50 欧姆,终端负载为100 欧姆,此时的反射系数为()A. 1/3B. -1/3C. 1/2D. -1/2答案:A76. 当传输线的长度远小于信号波长时,传输线可以近似看作()A. 集总参数电路B. 分布参数电路C. 电感元件D. 电容元件答案:A77. 以下哪种情况会导致传输线上出现严重的反射?()A. 终端负载阻抗等于特性阻抗B. 终端负载阻抗为纯电阻且远大于特性阻抗C. 终端负载阻抗为纯电阻且接近特性阻抗D. 终端负载阻抗为复数且实部等于特性阻抗答案:B78. 传输线的群速度表示()A. 多个频率分量合成信号的传播速度B. 单一频率信号的传播速度C. 信号能量的传播速度D. 以上都是答案:C79. 对于微带线,以下因素对其特性阻抗影响较大的是()A. 线宽和介质厚度B. 线长和介质材料C. 工作频率和终端负载D. 以上都是答案:A80. 传输线的输入阻抗在某一频率下呈现感性,此时可以通过()来实现匹配。

50ohm特征阻抗与阻抗匹配

50ohm特征阻抗与阻抗匹配

一、50ohm特征阻抗终端电阻的应用场合:时钟,数据,地址线的终端串联,差分数据线终端并联等。

终端电阻示图B.终端电阻的作用:1、阻抗匹配,匹配信号源和传输线之间的阻抗,极少反射,避免振荡。

2、减少噪声,降低辐射,防止过冲。

在串联应用情况下,串联的终端电阻和信号线的分布电容以及后级电路的输入电容组成RC滤波器,消弱信号边沿的陡峭程度,防止过冲。

C.终端电阻取决于电缆的特性阻抗。

D.如果使用0805封装、1/10W的贴片电阻,但要防止尖峰脉冲的大电流对电阻的影响,加30PF的电容.E.有高频电路经验的人都知道阻抗匹配的重要性。

在数字电路中时钟、信号的数据传送速度快时,更需注意配线、电缆上的阻抗匹配。

高频电路、图像电路一般都用同轴电缆进行信号的传送,使用特性阻抗为Zo=150Ω、75Ω的同轴电缆。

同轴电缆的特性阻抗Zo,由电缆的内部导体和外部屏蔽内径D及绝缘体的导电率er决定:另外,处理分布常数电路时,用相当于单位长的电感L和静电容量C的比率也能计算,如忽略损耗电阻,则图1是用于测定同轴电缆RG58A/U、长度5m的输入阻抗ZIN时的电路构成。

这里研究随着终端电阻RT的值,传送线路的阻抗如何变化。

图1 同轴传送线路的终端电阻构成只有当同轴电缆的特性阻抗Zo和终端阻抗FT的值相等时,即ZIN=Zo=RT称为阻抗匹配。

Zo≠RT时随着频率f,ZIN变化。

作为一个极端的例子,当RT=0、RT=∞时可理解其性质(阻抗以,λ/4为周期起伏波动)。

图2是RT=50Ω(稍微波动的曲线)、75Ω、dOΩ时的输人阻抗特性。

当Zo≠RT时由于随着频率,特性阻抗会变化,所以传送的电缆的频率特上产生弯曲.二、怎样理解阻抗匹配?阻抗匹配是指信号源或者传输线跟负载之间的一种合适的搭配方式。

阻抗匹配分为低频和高频两种情况讨论。

我们先从直流电压源驱动一个负载入手。

由于实际的电压源,总是有内阻的(请参看输出阻抗一问),我们可以把一个实际电压源,等效成一个理想的电压源跟一个电阻r串联的模型。

阻抗匹配的原理与概念

阻抗匹配的原理与概念

阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。

这种匹配条件称为共扼匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

大体上,阻抗匹配有两种,一种是透过改变阻抗力(lumped-circuit matching),另一种则是调整传输线的波长(transmission line matching)。

要匹配一组线路,首先把负载点的阻抗值,除以传输线的特性阻抗值来归一化,然后把数值划在史密夫图表上。

右图中R为负载电阻,r为电源E的内阻,E为电压源。

由于r的存在,当R很大时,电路接近开路状态;而当R很少时接近短路状态。

显然负载在开路及短路状态都不能获得最大功率。

根据式:从上式可看出,当R=r时式中的式中分母中的(R-r)的值最小为0,此时负载所获取的功率最大。

所以,当负载电阻等于电源内阻时,负载将获得最大功率。

这就是电子电路阻抗匹配的基本原理。

阻抗匹配概念阻抗匹配是指负载阻抗与激励源内部阻抗互相适配,得到最大功率输出的一种工作状态。

对于不同特性的电路,匹配条件是不一样的。

在纯电阻电路中,当负载电阻等于激励源内阻时,则输出功率为最大,这种工作状态称为匹配,否则称为失配。

当激励源内阻抗和负载阻抗含有电抗成份时,为使负载得到最大功率,负载阻抗与内阻必须满足共扼关系,即电阻成份相等,电抗成份只数值相等而符号相反。

这种匹配条件称为共扼匹配。

阻抗匹配(Impedance matching)是微波电子学里的一部分,主要用于上,来达至所有高频的微波信号皆能传至负载点的目的,不会有信号反射回来源点,从而提升能源效益。

RF Matching

RF Matching

RF MatchingEdit by songshu E-Mail:pineyf@ QQ:120166808半导体设备中,Dry Etch ,CVD ,PVD 等设备都有射频匹配。

本人把找到的资料与自己的知识进行汇总写了这个RF 匹配的文章,与大家分享。

欢迎大家讨论。

如果有不对的地方请指教。

1.射频匹配原理:通过计算说明,当电阻R=r时,负载R吸收的能量最大,如图:R--负载电阻(阻抗) r--电源的内阻(阻抗)射频电源的输出阻抗通常与输出电缆的特征阻抗相同,即50欧姆。

设备负载的阻抗可表示为Z=R+jX。

式中,R为负载阻抗的实数部分,通常为几欧姆;X为负载阻抗的虚数部分,以负数较多,即容性负载较多。

要使负载与电缆的特性阻抗相匹配,就需要加匹配网络,使得电源的输出功率全部加到负载上,而无反射功率或反射功率很小。

如图所示:电路模型:U r ed2.匹配方法通过电机的转动调节可变电容,实现匹配控制。

原理图:自动阻抗匹配系统框图:在该系统中,将反射系数检测器检测到的入射电压和反射电压作为主控芯片的输入,该输入可换算成反射系数的模值;主控芯片将采集到的反射系数信息引入自动阻抗匹配算法后,得到C1和C2的改变值,然后将PWM控制信号送到电机驱动桥来控制电机转动,调节Cl和C2的值,实现阻抗自动匹配的目的。

(1)电容调节模块的驱动设计选用的可调电容由动片和定片组成,电容值和这两片极板之间的接触面积成正比。

利用PWM波驱动电机改变可调电容器两极板之间的相对位置,进而改变电容器的电容值。

同时MCU通过检测电路得到动片转动位置。

其机械部分结构如图所示:Un Re gi st er ed(2)电容位置的检测和标定在调节时将电容位置作为输入量,将位置检测值作为反馈量,可得到电容调节模块的闭环控制系统框图如下:电容的动片通过齿轮带动旋转电位器。

通过采集电位器上的电压即可得到电容的转动位置,电路如下所示:其中R1为旋转电位器,其上的电压值经运放调理后变为POS信号,送入A/D进行检测。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Function Generator VOFF = VAMPL = FREQ = Vs1
Rs Vout 50 RL
0
0
理論推導
DC:
Rs * RL 1k Vs1 * Vs1 * 1Vdc Rs RL Rs 1k
Rs * RL 150 Vs1 * Vs1 * 0.26Vdc Rs RL Rs 150
V
0
3.0V
0
2.0V
1.0V
0V 0s V(RL:2)
1ms
2ms
3ms
4ms
5ms Time
6ms
7ms
8ms
9ms
10ms
交流-示波器圖形&Pspice模擬
0.5vp
(內阻50歐姆 負載50歐姆)
Rs 50 V1 VOFF = 2VDC VA MP L = 1V pp FREQ = 1khz RL 50
V
0.75vp
0
3.0V
0
2.0V
1.0V
0V 0s V(RL:2)
1ms
2ms
3ms
4ms
5ms Time
6ms
7ms
8ms
9ms
10ms
步驟6:
重複步驟一至步驟五,但步驟一 將AFG3000輸出阻 抗調成1kOhm;步驟二 信號產生器輸出端請用BNC 轉鱷魚夾電纜線接上負載電阻RL=1kOhm;步驟三 信號產生器輸出端請用BNC轉鱷魚夾電纜線接上自選 負載電阻RL= 200~5kOhm,每位同學選取之電阻值 不可雷同;步驟五 戴維寧等效輸出電阻Rs=1kOhm。 請分別製作成投影片,並加註結果比較說明。
V
0
1.5V
0
1.0V
0.5V 0s V(RL:2)
1ms
2ms
3ms
4ms
5ms Time
6ms
7ms
8ms
9ms
10ms
直流-示波器圖形&Pspice模擬
(內阻50歐姆 負載150歐姆)
Rs 50 V1 VOFF = 2VDC VA MP L = 1V pp FREQ = 1khz RL 150
V
0
1.5V
0
1.0V
0.5V 0s V(RL:2)
1ms
2ms
3ms
4ms
5ms Time
6ms
7ms
8ms
9ms
10ms
交流-示波器圖形&Pspice模擬
(內阻50歐姆 負載150歐姆)
Rs 50 V1 VOFF = 2VDC VA MP L = 1V pp FREQ = 1khz RL 150
Vs1
Vs1
0.5Rs 500 1k
0.13 Rs 19.5 150
370 Rs 0.37 Rs
Rs 1k 代回方程式得 Vs1
Vs1 2V
直流-示波器圖形&Pspice模擬
(內阻50歐姆 負載50歐姆)
Rs 50 V1 VOFF = 2VDC VA MP L = 1V pp FREQ = 1khz RL 50
電子學實驗戴維寧等效電路
通訊三甲 B09622022 湯智瑋
學習目標
本實驗訓練同學熟悉常用之信號產 生器、示波器的戴維寧等效電路。
實驗零件需求
電阻板一套 紅單心線(Voltage source and current source) 黑單心線(Ground)、他色單心線(其他連接 線) 麵包板 BNC轉鱷魚夾電纜線三~四條。
Rs 1k 0.26 Rs 39 1k 150
Rs 1k 1.74 Rs 260 1k 1k
1k *Vs1 Rs 1k
1kVs 1 1Vdc Rs 1k
Rs 1k 0.26 Rs 39 Vs1 1k 150
150Vs1 0.26Vdc Rs 150
Rs Vout 50 RL
0
0
實驗步驟1~5



(1)量測負載電阻的跨壓,擷取測量波形,並利用Cursor功能量測直 流成分=?VDC以及交流成分=?Vpp。 (RL=50 Ohm) (2)用數位示波器(MSO6012A)量測負載電阻RL的跨壓,擷取測量波形, 並利用Cursor功能量測(1)直流成分=?VDC以及(2)交流成分=?Vpp。 (RL= 10~250 Ohm,我們用150 Ohm) (3)用量測出之兩組電壓及兩個設定電阻值,聯立推導出(1) 戴維寧等 效電壓源Vs1之交流及直流電壓。(2) 交流及直流戴維寧等效輸出電阻 Rs。 (4)開啟PSPICE,利用Transient Analysis分別驗證(1) RL=50 Ohm時, 負載電阻跨壓波形與步驟二所測得波形是否符合? (2) RL=步驟三設 定之電阻值,負載電阻跨壓波形與步驟二所測得波形是否符合?
0.5 Rs 500 0.86 Rs 130 1k 1k
Hale Waihona Puke Rs * RL 150 Vs1 * Vs1 * 0.13Vac Rs RL Rs 150
0.5Rs 500 0.13 Rs 19.5 1k 150
1kVs 1 0.5Rs 500
150 Vs1 0.13( Rs 150)
電路測量實驗

如圖2-1所示,AFG3000信號產生器之等效電路為一戴維寧等效電壓 源Vs1串聯一戴維寧等效輸出電阻Rs。請按照實驗步驟測試出 AFG3000信號產生器之等效電路,並充分了解標準信號產生器的按 鍵所設定的輸出電壓與其等效電路中的戴維寧等效電壓源的關聯性。 此實驗一並訓練同學將信號產生器之等效電路建置於PSPICE中,驗 證實作與模擬的一致性。
理論推導
DC:
Rs * RL 1k Vs1 * Vs1 * 1Vdc Rs RL Rs 1k
Rs * RL 150 Vs1 * Vs1 * 0.26Vdc Rs RL Rs 150
150 Vs1 0.26( Rs 150)
Rs 1k 代回方程式得 Vs1
740 74 Rs
Vs1 2V
理論推導
AC:
Rs * RL 1k Vs1* Vs1* 0.5Vac Rs RL Rs 1k
1kVs 1 0.5Vac Rs 1k
150Vs1 0.13Vac Rs 150

實驗項目
信號產生器等效電路量測實驗
OrCad電路圖
輸 出 阻 抗 調 成 50 Ohm , 設 定 輸 出 Sine wave , Frequency=1 kHz,Amplitude=1Vpp,Voffset=1VDC。
Function Generator VOFF = VAMPL = FREQ = Vs1
相关文档
最新文档