江西专版七年级数学下册.第课时平行线性质与判定的综合运用
七年级数学下册《平行线的判定性质的综合运用》优秀教学案例

3.创设一个实际问题情境,如“在修建一个操场时,如何保证两条跑道是平行的?”引导学生意识到平行线判定在实际生活中的重要性。
(二)讲授新知
在讲授新知的环节,我将按照以下步骤进行:
七年级数学下册《平行线的判定性质的综合运用》优秀教学案例
一、案例背景
在七年级数学下册的教学过程中,学生已经掌握了平行线的基本概念,并学会了运用直观和基本的判定方法来识别平行线。然而,《平行线的判定性质的综合运用》这一章节要求学生不仅要在理论层面深化对平行线性质的理解,而且要能在实际问题中灵活运用,提高解决问题的能力。本教学案例旨在通过一系列实践性强的活动,让学生在探索中发现平行线判定性质的内在联系,培养他们的逻辑思维和解决实际问题的能力。通过引入生活实例,如铁路轨道、楼梯扶手等,将抽象的数学概念与生活实际相结合,让学生在具体的情境中感受数学的魅力,进而激发他们的学习兴趣和探究欲望。
3.组织小组间的交流和分享,让学生在倾听他人观点的过程中,丰富自己的认知,提高合作能力。
(四)反思与评价
反思与评价策略将帮助学生总结学习过程中的经验教训,提高自我认知:
1.鼓励学生在学习过程中进行自我反思,总结自己在平行线判定性质掌握方面的优点和不足,为后续学习制定合理计划。
2.教师及时给予学生反馈,肯定他们的进步,指出需要改进的地方,并提供具体的改进建议。
4.提高空间想象能力,通过观察和分析现实生活中的平行线现象,将抽象的数学概念具体化,形成直观的认识。
(二)过程与方法
在教学过程中,教师将:
1.创设情境,引导学生通过观察和操作,自主发现平行线的判定性质,培养他们的观察能力和动手能力。
七年级数学下册教学课件《平行线的判定与性质的综合运用》

(2)由(1)可知AB∥EF, ∴∠3=∠ADE(两直线平行,内错角相等). 又∠3=∠B(已知), ∴∠ADE=∠B(等量代换). ∴DE∥BC(同位角相等,两直线平行). ∴∠EDG=∠BGD=55°(两直线平行,内错角相等). ∵DE平分∠ADG(已知), ∴∠ADG=2∠EDG=110°(角平分线的定义). 又AB∥EF, ∴∠1=∠ADG=110°(两直线平行,同位角相等).
(2)∵DE∥BC,∴∠C = ∠AED = 40°(两直线平行,
同位角相等)
4.已知:如图,∠1+∠B=∠C.试说明BD∥CE.
解:如图,作射线AP,使AP∥BD, ∴∠PAB=∠B(两直线平行,内错角相等). P 又∠1+∠B=∠C(已知), ∴∠1+∠PAB=∠C(等量代换), 即∠PAC=∠C. ∴AP∥CE(内错角相等,两直线平行). 又AP∥BD, ∴BD∥CE(如果两条直线都与第三条直线平 行,那么这两条直线也互相平行).
解:∵∠1=∠2(已知),∠2=∠DHE(对顶角相等), ∴∠1=∠DHE(等量代换). ∴AB∥CD (同位角相等,两直线平行). ∴∠B+∠D =180°(两直线平行,同旁内角互补). ∵∠D=50°(已知), ∴∠B=180°-∠D=180°-50°=130°.
②如图,已知AB∥CD,DA平分∠CDE,∠A =∠AGB.
拓展提升
如图 , 点E在AB上 , 点F在CD上 , CE , BF分别交AD于 点G,H.已知∠A =∠AGE,∠D=∠DGC. (1)AB与CD平行吗? 请说明理由. ( 2 ) 若∠2+∠1=180° , 且∠BEC=2∠B+30° , 求∠C 的度数.
解:(1)AB∥CD.理由如下: ∵∠A=∠AGE,∠D=∠DGC,∠AGE=∠DGC(对 顶角相等),∴∠A=∠D (等量代换). ∴AB∥CD (内错角相等,两直线平行).
人教版七年级数学下册5.3.1.2《平行线的性质与判定的综合应用》教学设计

人教版七年级数学下册5.3.1.2《平行线的性质与判定的综合应用》教学设计一. 教材分析《平行线的性质与判定的综合应用》是人教版七年级数学下册第五章第三节的一个知识点。
本节课主要通过平行线的性质和判定来解决一些实际问题,进一步巩固学生对平行线的理解。
教材中提供了丰富的例题和练习题,有助于学生通过实践巩固所学知识。
二. 学情分析学生在之前的学习中已经掌握了平行线的概念、性质和判定方法,但应用这些知识解决实际问题的能力还不够强。
因此,在教学过程中,教师需要关注学生的认知水平,引导学生将理论知识与实际问题相结合,提高解决问题的能力。
三. 教学目标1.理解平行线的性质和判定方法。
2.能够运用平行线的性质和判定方法解决实际问题。
3.培养学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:平行线的性质和判定方法的运用。
2.难点:如何将平行线的性质和判定方法应用于解决实际问题。
五. 教学方法1.讲授法:讲解平行线的性质和判定方法。
2.案例分析法:分析实际问题,引导学生运用平行线的性质和判定方法解决问题。
3.讨论法:分组讨论,分享解题心得。
六. 教学准备1.课件:制作课件,展示平行线的性质和判定方法。
2.练习题:准备一些实际问题,供学生练习。
七. 教学过程1.导入(5分钟)利用课件展示一些生活中的平行线现象,如楼梯、轨道等,引导学生关注平行线。
提问:你们知道平行线有什么性质和判定方法吗?2.呈现(10分钟)讲解平行线的性质和判定方法,结合课件和实例进行说明。
强调平行线的性质和判定在解决实际问题中的应用。
3.操练(10分钟)让学生分组讨论,分享各自解题心得。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)出示一些实际问题,让学生独立解决。
问题难度可适当调整,以满足不同学生的需求。
5.拓展(5分钟)邀请学生上台展示自己的解题过程,让大家共同学习、探讨。
6.小结(5分钟)总结本节课所学内容,强调平行线的性质和判定方法在实际问题中的应用。
初中数学七年级下册(人教版)精品教案-5.3.1 第2课时 平行线的性质和判定及其综合运用 1.doc

第2课时 平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB .(1)CE 与DF 平行吗?为什么?(2)若∠DCE =130°,求∠DEF 的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =180°-130°=50°.∵DE平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°. 方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF ∥AC ,∠C =∠D ,CE 与BD 有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF =2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB ∥EG∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE +∠CDE=32∠BAF+32∠CDF=32(∠BAF+∠CDF)=32∠AFD,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补判定性质两直线平行本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质。
人教版七年级下册数学 第2课时 平行线的性质和判定及其综合运用.教案 优秀教案

第2课时 平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB.(1)CE 与DF 平行吗?为什么?(2)若∠DCE =130°,求∠DEF 的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =180°-130°=50°.∵DE 平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°. 方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF ∥AC ,∠C =∠D ,CE 与BD 有怎样的位置关系?说明理由.解析:由图可知∠ABD和∠ACE是同位角,只要证得同位角相等,则CE∥BD.由平行线的性质结合已知条件,稍作转化即可得到∠ABD=∠C.解:CE∥BD.理由如下:∵DF∥AC,∴∠D=∠ABD.∵∠C=∠D,∴∠ABD=∠C,∴CE∥BD.方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角.变式训练:见《学练优》本课时练习“课后巩固提升”第8题探究点三:平行线性质与判定中的探究型问题如图,AB∥CD,E,F分别是AB,CD之间的两点,且∠BAF=2∠EAF,∠CDF=2∠EDF.(1)判定∠BAE,∠CDE与∠AED之间的数量关系,并说明理由;(2)∠AFD与∠AED之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED=∠BAE+∠CDE.理由如下:如图,过点E作EG∥AB.∵AB∥CD,∴AB∥EG ∥CD,∴∠AEG=∠BAE,∠DEG=∠CDE.∵∠AED=∠AEG+∠DEG,∴∠AED=∠BAE+∠CDE;(2)同(1)可得∠AFD=∠BAF+∠CDF.∵∠BAF=2∠EAF,∠CDF=2∠EDF,∴∠BAE+∠CDE=32∠BAF+32∠CDF=32(∠BAF+∠CDF)=32∠AFD,∴∠AED=32∠AFD.方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.变式训练:见《学练优》本课时练习“课后巩固提升”第9题三、板书设计⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补判定性质两直线平行本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质。
《平行线的性质和判定及其综合运用》课件 (省一等奖)2022年新版

解: ∵ 1=3(〕,
1
a
3=2〔对顶角相等〕,
3
1=2.
2
a//b(同位角相等,两直线平行〕. b
总结归纳 判定方法2:两条直线被第三条直线所截 ,如果内 错角相等,那么这两条直线平行.
简单说成:内错角相等,两直线平行.
应用格式:
1
3
∵∠3=∠2()
∴a∥b〔内错角相等,两直线平行〕
a
2 b
问题3 上节课你学了平行线的哪些内容? 1.经过直线外一点,有且只有一条直线与直线平行. 2.如果两条直线都与第三条直线平行,那么这两条直线 互相平行.
思考 根据平行线的定义,如果同一平面内的两条 直线不相交,就可以判断这两条直线平行.但是, 由于直线无限延伸,检验它们是否相交有困难,所 以难以直接根据两条直线是否相交来判定是否平行, 那么有没有其他判定方法呢?
∴ DE∥BC
(同位角相等,两直线平行 ).
如图,三角形ABC中,D是AB上一点,E是AC上一点,
∠ADE=60°,∠B = 60°,∠AED=40°.
〔2〕∠C是多少度?为什么?
A
解:∠C =40°.理由如下: 由〔1〕得DE∥BC,
D
E
∴ ∠C=∠AED
B
C
(两直线平行,同位角相等〕
又∵∠AED=40°
的方法吗?
总结归纳
判定方法1:两条直线被第三条直线所截,如果同 位角相等,那么这两条直线平行.
简单说成:同位角相等,两直线平行.
应用格式:
A
∵∠1=∠2()
1
∴l1∥l2
〔同位角相等,两直线平行〕
l2
2
l1
B
实验验证
初中数学人教新版七年级下册5.3.1 第2课时 平行线的性质和判定及其综合运用 1优秀教案

初中数学人教新版七年级下册实用资料第2课时 平行线的性质和判定及其综合运用1.掌握平行线的性质与判定的综合运用;(重点、难点)2.体会平行线的性质与判定的区别与联系.一、复习引入问题:平行线的判定与平行线的性质的区别是什么?判定是已知角的关系得平行关系,性质是已知平行关系得角的关系.两者的条件和结论刚好相反,也就是说平行线的判定与性质是互逆的.二、合作探究探究点一:先用判定再用性质如图,C ,D 是直线AB 上两点,∠1+∠2=180°,DE 平分∠CDF ,EF ∥AB .(1)CE 与DF 平行吗?为什么?(2)若∠DCE =130°,求∠DEF 的度数.解析:(1)由∠1+∠DCE =180°,∠1+∠2=180°,可得∠2=∠DCE ,即可证明CE ∥DF ;(2)由平行线的性质,可得∠CDF =50°.由DE 平分∠CDF ,可得∠CDE =12∠CDF =25°.最后根据“两直线平行,内错角相等”,可得到∠DEF 的度数.解:(1)CE ∥DF .理由如下:∵∠1+∠2=180°,∠1+∠DCE =180°,∴∠2=∠DCE ,∴CE ∥DF ;(2)∵CE ∥DF ,∠DCE =130°,∴∠CDF =180°-∠DCE =180°-130°=50°.∵DE平分∠CDF ,∴∠CDE =12∠CDF =25°.∵EF ∥AB ,∴∠DEF =∠CDE =25°. 方法总结:根据题目中的数量找出各量之间的关系是解这类问题的关键.从角的关系得到直线平行用平行线的判定,从平行线得到角相等或互补的关系用平行线的性质,二者不要混淆.探究点二:先用性质再用判定如图,已知DF ∥AC ,∠C =∠D ,CE 与BD 有怎样的位置关系?说明理由.解析:由图可知∠ABD 和∠ACE 是同位角,只要证得同位角相等,则CE ∥BD .由平行线的性质结合已知条件,稍作转化即可得到∠ABD =∠C .解:CE ∥BD .理由如下:∵DF ∥AC ,∴∠D =∠ABD .∵∠C =∠D ,∴∠ABD =∠C ,∴CE ∥BD .方法总结:解答此类要判定两直线平行的题,可围绕截线找同位角、内错角和同旁内角. 探究点三:平行线性质与判定中的探究型问题如图,AB ∥CD ,E ,F 分别是AB ,CD 之间的两点,且∠BAF =2∠EAF ,∠CDF =2∠EDF .(1)判定∠BAE ,∠CDE 与∠AED 之间的数量关系,并说明理由;(2)∠AFD 与∠AED 之间有怎样的数量关系?解析:平行线中的拐点问题,通常需过拐点作平行线.解:(1)∠AED =∠BAE +∠CDE .理由如下:如图,过点E 作EG ∥AB .∵AB ∥CD ,∴AB ∥EG ∥CD ,∴∠AEG =∠BAE ,∠DEG =∠CDE .∵∠AED =∠AEG +∠DEG ,∴∠AED =∠BAE +∠CDE ;(2)同(1)可得∠AFD =∠BAF +∠CDF .∵∠BAF =2∠EAF ,∠CDF =2∠EDF ,∴∠BAE+∠CDE =32∠BAF +32∠CDF =32(∠BAF +∠CDF )=32∠AFD ,∴∠AED =32∠AFD . 方法总结:无论平行线中的何种问题,都可转化到基本模型中去解决,把复杂的问题分解到简单模型中,问题便迎刃而解.三、板书设计⎭⎪⎬⎪⎫同位角相等内错角相等同旁内角互补判定性质两直线平行 本节内容的重点是平行线的性质及判定的综合,直接运用了“∵”“∴”的推理形式,为学生创设了一个学习推理的环境,逐步培养学生的逻辑推理能力.因此,这一节课有着承上启下的作用,比较重要.本节内容的难点是理解平行线的性质和判定的区别,并在推理中正确地应用.由于学生还没有学习命题的概念和命题的组成,不知道判定和性质的本质区别和联系是什么,所以在教学中,应让学生通过应用和讨论,体会到如果已知角的关系,推出两直线平行,就是平行线的判定;反之,如果两直线平行,得出角的关系,就是平行线的性质。