生物化学必考大题——简答题38道
生物化学简答题及答案

1.说明动物体内氨的来源、转运和去路。
答:(一)体内氨的来源1.氨基酸脱氨氨基酸脱氨基作用产生的氨是体内氨的主要来源。
2.肠道吸收的氨一是肠道细菌通过腐败作用分解蛋白质和氨基酸产生氨,二是血中尿素扩散入肠道后经细菌尿素酶作用下水解产生氨。
3.肾小管上皮细胞分泌氨在肾小管上皮细胞内,谷氨酰胺酶催化谷氨酰胺水解生成谷氨酸和氨。
肠道和原尿中的pH对氨的来源有一定的影响,NH3易吸收入血,NH+4不易透过生物膜,在碱性环境中,NH+4易转变为NH3,所以肠道pH 偏碱时,氨的吸收增加。
(二)氨的转运1.丙氨酸一葡萄糖循环肌肉中的氨基酸经转氨基作用将氨基转给丙酮酸生成丙氨酸,丙氨酸经血液运到肝。
在肝中,丙氨酸通过联合脱氨基作用,释放出氨,用于合成尿素。
转氨基后生成的丙酮酸可经糖异生途径生成葡萄糖,葡萄糖由血液输送到肌组织,沿糖分解途径转变成丙酮酸,后者再接受氨基而生成丙氨酸。
这一途径称为丙氨酸一葡萄糖循环。
通过这个循环,即使肌肉中的氨以无毒的丙氨酸形式运输到肝。
2.谷氨酰胺的生成作用在脑、心脏及肌肉等组织中,谷氨酸与氨由谷氨酰胺合成酶催化生成谷氨酰胺。
谷氨酰胺生成后可及时经血液运向肾、小肠及肝等组织,以便利用。
在肾由谷氨酰胺酶水解为谷氨酸与氨,氨被释放到肾小管腔中和肾小管腔的H’以增进机体排泄多余的酸。
所以,谷氨酰胺是氨的解毒产物,也是氨的储存及运输的形式。
(三)氨的去路1.尿素合成这是氨的主要代谢去路。
肝是合成尿素最主要的器官,通过鸟氨酸循环过程完成的。
首先NH3和CO2在ATP、Mg2+及N\|乙酰谷氨酸存在时,合成氨基甲酰磷酸,氨基甲酰磷酸在线粒体中与鸟氨酸氨在鸟氨酸氨基甲酰基转移酶催化下,生成瓜氨酸,然后瓜氨酸与另一分子的氨结合生成精氨酸,最后在精氨酸酶的作用下,水解生成尿素和鸟氨酸。
鸟氨酸再重复上述反应。
尿素合成是一个耗能过程,每生成一分子尿素需要4个高能键,尿素中的两个氮原子,一个来自氨基酸脱氨基生成的氨,另一个则来自天冬氨酸。
生物化学简答题

生物化学简答题1. 产生ATP的途径有哪些,试举例说明。
答:产生ATP的途径主要有氧化磷酸化和底物水平磷酸化两条途径。
氧化磷酸化是需氧生物ATP生成的主要途径,是指与氢和电子沿呼吸链传递相偶联的ADP磷酸化过程。
例如三羧酸循环第4步,α-酮戊二酸在α-酮戊二酸脱氢酶系的催化下氧化脱羧生成琥珀酰CoA的反应,脱下来的氢给了NAD+而生成NADH+H+,1分子NADH+H+进入呼吸链,经过呼吸链递氢和递电子,可有2.5个ADP 磷酸化生成ATP的偶联部位,这就是通过氧化磷酸化产生了ATP。
底物水平磷酸化是指直接与代谢底物高能键水解相偶联使ADP磷酸化的过程。
例如葡萄糖无氧氧化第7步,1,3-二磷酸-甘油酸在磷酸甘油酸激酶的催化下生成3-磷酸甘油酸,在该反应中由于底物1,3-二磷酸-甘油酸分子中的高能磷酸键水解断裂能释放出大量能量,可偶联推动 ADP磷酸化生成ATP,这就是通过底物水平磷酸化产生了ATP。
2( 简述酶作为生物催化剂与一般化学催化剂的共性及其特性。
(1) 共性:用量少而催化效率高;仅能改变化学放映速度,不能改变化学反应的平衡点,酶本身在化学反应前后也不改变;可降低化学反应的活化能。
(2) 特性:酶作为生物催化剂的特点是催化效率更高,具有高度专一性,容易失活,活力受条件的调节控制,活力与辅助因子有关。
3( 什么是乙醛酸循环,有何生物学意义,乙醛酸循环是一个有机酸代谢环,它存在于植物和微生物中,在动物组织中尚未发现。
乙醛酸循环反应分为五步(略)。
总反应说明,循环每转1圈需要消耗两分子乙酰辅酶A,同时产生一份子琥珀酸。
琥珀酸产生后,可进入三羧酸循环代谢,或者变为葡萄糖乙醛酸循环的意义分为以下几点:(1)乙酰辅酶A经乙醛酸循环可生成琥珀酸等有机酸,这些有机酸可作为三羧酸循环中的基质。
(2)乙醛酸循环是微生物利用乙酸作为碳源建造自身机体的途径之一。
(3)乙醛酸循环是油料植物将脂肪酸转变为糖的途径。
生化简答题大全及答案

1.脂类的消化与吸收:脂类的消化部位主要在小肠,小肠内的胰脂酶、磷脂酶、胆固醇酯酶及辅脂酶等可以催化脂类水解;肠内PH值有利于这些酶的催化反应,又有胆汁酸盐的作用,最后将脂类水解后主要经肠粘膜细胞转化生成乳糜微粒被吸收。
2.何谓酮体?酮体是如何生成及氧化利用的:酮体包括乙酰乙酸、β-羟丁酸和丙酮。
酮体是在肝细胞内由乙酰CoA经HMG-CoA转化而来,但肝脏不利用酮体。
在肝外组织酮体经乙酰乙酸硫激酶或琥珀酰CoA转硫酶催化后,转变成乙酰CoA并进入三羧酯循环而被氧化利用。
3.为什么吃糖多了人体会发胖(写出主要反应过程)?脂肪能转变成葡萄糖吗?为什么?人吃过多的糖造成体内能量物质过剩,进而合成脂肪储存故可以发胖,基本过程如下:葡萄糖→丙酮酸→乙酰CoA →合成脂肪酸→酯酰CoA葡萄糖→磷酸二羧丙酮→3-磷酸甘油脂酰CoA+3-磷酸甘油→脂肪(储存)脂肪分解产生脂肪酸和甘油,脂肪酸不能转变成葡萄糖,因为脂肪酸氧化产生的乙酰CoA不能逆转为丙酮酸,但脂肪分解产生的甘油可以通过糖异生而生成葡萄糖。
4.简述脂肪肝的成因。
肝脏是合成脂肪的主要器官,由于磷脂合成的原料不足等原因,造成肝脏脂蛋白合成障碍,使肝内脂肪不能及时转移出肝脏而造成堆积,形成脂肪肝。
5.写出胆固醇合成的基本原料及关键酶?胆固醇在体内可的转变成哪些物质?胆固醇合成的基本原料是乙酰CoA.NADPH和ATP等,限速酶是HMG-CoA还原酶,胆固醇在体内可以转变为胆计酸、类固醇激素和维生素D3。
7.写出甘油的代谢途径?甘油→3-磷酸甘油→(氧化供能,异生为糖,合成脂肪再利用)8.简述饥饿或糖尿病患者,出现酮症的原因?在正常生理条件下,肝外组织氧化利用酮体的能力大大超过肝内生成酮体的能力,血中仅含少量的酮体,在饥饿、糖尿病等糖代谢障碍时,脂肪动员加强,脂肪酸的氧化也加强,肝脏生成酮体大大增加,当酮体的生成超过肝外组织的氧化利用能力时,血酮体升高,可导致酮血症、酮尿症及酮症酸中毒9.试比较生物氧化与体外物质氧化的异同。
化学生物学简答题汇总

1.蛋白质的结构分为四级,请简述这四级结构的基本定义。
答:蛋白质的一级结构包括组成蛋白质的多肽链数目,多肽链的氨基酸顺序,以及多肽链内或链间二硫键的数目和位置。
其中最重要的是多肽链的氨基酸顺序。
蛋白质的二级结构是指肽链主链折叠产生的有规则的几何走向,它只涉及肽链主链的构象及链内或链间形成的氢键。
蛋白质的三级结构是指在二级结构基础上,肽链在空间进一步盘绕、折叠形成的包括主链和侧链构象在内的特征三维结构。
蛋白质的四级结构(Quaternary Structure)是指由多条各自具有一、二、三级结构的肽链通过非共价键连接起来的结构形式;各个亚基在这些蛋白质中的空间排列方式及亚基之间的相互作用关系。
2.酶作为生物催化剂的特点有哪些?答:1)高效性酶的催化作用可使反应速度提高107~1016倍。
比普通化学催化剂效率至少高几倍以上。
(2)选择性酶是具有高度选择性的催化剂,酶往往只能催化一种或一类反应,作用一种或一类极为相似的物质。
(3)反应条件温和酶促反应一般在pH 5-8 水溶液中进行,反应温度范围为20-40°C。
由于反应条件温和,使某些不希望的副反应,如分解反应、异构化反应和消旋化反应等可以尽量减少。
(4)酶活力可调节控制如抑制剂调节、共价修饰调节、反馈调节、酶原激活及激素控制等。
3.如何判断两种抑制剂的抑制类型?答:通过酶抑制作用的动力学研究,计算无抑制剂和有抑制剂时的Km与Vmax,当Vmax值不变,而Km变大时,该抑制剂属于竞争性抑制剂;当Vmax变小,Km不变时,该抑制剂属于非竞争性抑制剂;当Vmax值减小,Km变小时,该抑制剂属于反竞争性抑制剂。
4.酶作为催化剂的重要特点是催化效率高,请举出3种以上解释酶催化高效率的理论学说。
答:(1)邻基效应和定向效应在酶促反应中,底物分子结合到酶的活性中心,一方面底物在酶活性中心的有效浓度大大增加,有利于提高反应速度;另一方面,由于活性中心的立体结构和相关基团的诱导和定向作用,使底物分子中参与反应的基团相互接近,并被严格定向定位,使酶促反应具有高效率和专一性特点。
生物化学(简答题、问答题)

简答题、问答题1.组成蛋白质的氨基酸有多少种?其结构特点是什么?答:组成蛋白质的氨基酸有20种。
结构特点:(1)除脯氨酸是α-亚氨基酸外,所有氨基酸均为α-氨基酸;(2)除甘氨酸外,其它氨基酸的α-碳原子(分子中第二个碳,Cα)均为不对称碳原子,D-型和L-型两种立体异构体,但天然蛋白质中的氨基酸都是L-型氨基酸;(3)氨基酸之间的不同,主要在于侧链R 的不同。
2.蛋白质分子结构可分为几级?维持各级结构的化学键是什么?答:蛋白质分子结构分为一、二、三、四级;维持各级结构的化学键分别是肽键、二硫键,氢键,次级键(疏水键),次级键(疏水键)。
3、酶作为一种生物催化剂有何特点?答:酶具有高效性、专一性、活性可调性。
4、解释酶的活性部位、必需基团二者之间的关系。
答:必需基团5、说明米氏常数的意义及应用。
答:米氏常数等于酶促反应速度为最大反应速度一半时的底物浓度。
应用:(1)米氏常数是酶的特征性常数,每一种酶都有它的Km 值,与酶的性质、催化的底物和酶促反应条件(如温度、pH 、有无抑制剂等)有关,而与酶浓度无关。
(2)K m 值可用于表示酶和底物亲和力的大小。
(3)当使用酶制剂时,可以根据K m 值判断使酶发挥一定反应速度时需要多大的底物浓度;在已规定底物浓度时,也可根据K m 值估算出酶能够获得多大的反应速度。
6、什么是竞争性和非竞争性抑制?试用一两种药物举例说明不可逆抑制剂和可逆抑制剂对酶的抑制作用?答:竞争性抑制:抑制剂结构与底物的结构相似,它和底物同时竞争酶的活性中心,因而妨碍了底物与酶的结合,减少了酶分子的作用机会,从而降低了酶的活性。
非竞争性抑制:抑制剂和底物不在酶的同一部位结合,抑制剂与底物之间无竞争性,酶与底物结合后,还可与抑制剂结合,或者酶和抑制剂结合后,也可再同底物结合,其结果是形成了三元复合物(ESI)。
可逆抑制剂:增效联磺的杀菌作用:增效联磺抑制细菌的二氢叶酸合成酶、二氢叶酸还原酶德活性,使细菌体内四氢叶酸的合成受到双重抑制,使细菌因核酸的合成受阻而死亡。
生物化学复习题(简答题+答案)

⽣物化学复习题(简答题+答案)⽣物化学复习题第⼀章绪论1.简述⽣物化学的定义及⽣物化学的研究范围。
(P1)答:定义:⽣物化学就是从分⼦⽔平上阐明⽣命有机体化学本质的⼀门学科。
研究范围:第⼀⽅⾯是关于⽣命有机体的化学组成、⽣物分⼦,特别的⽣物⼤分⼦的结构、相互关系及其功能。
第⼆⽅⾯是细胞中的物质代谢与能量代谢,或称中间代谢,也就是细胞中进⾏的化学过程。
第三⽅⾯是组织和器官机能的⽣物化学。
2.简述⽣物化学的发展概况(了解)答:⽣物化学经历了静态⽣化—动态⽣化—机能⽣化这⼏个历程。
⽣物化学的发展经历了真理与谬误⽃争的曲折道路,同时也是化学、微⽣物学、遗传学、细胞学和其他技术科学互相交融的结果。
展望未来,以⽣物⼤分⼦为中⼼的结构⽣物学、基因组学和蛋⽩质组学、⽣物信息学、细胞信号传导等研究显⽰出⽆⽐⼴阔的前景。
现代⽣物化学从各个⽅⾯融⼊⽣命科学发展的主流当中,同时也为动物⽣产实践和动物疫病防治提供了必不可缺的基本理论和研究技术。
3、简述⽣物化学与其他学科的关系。
(了解)答:⽣物化学的每个进步与其他学科,如物理学、化学等的发展紧密联系,先进的技术和研究⼿段,如电⼦显微镜,超离⼼、⾊谱、同位素⽰踪、X-射线衍射、质谱以及核磁共振等技术为⽣物化学的发展提供了强有⼒的⼯具。
4.简述动物⽣物化学与动物健康和动物⽣产的关系。
答:1)在饲养中,了解畜禽机体内物质代谢和能量代谢状况,掌握体内营养物质间相互转变和相互影响的规律,是提⾼饲料营养作⽤的基础。
2)在兽医中可有效防治疾病,如:代谢的紊乱可导致疾病,所以了解紊乱的环节并纠正之,是有效治疗疾病的依据;通过⽣化的检查,可帮助疾病的诊断。
第⼆章蛋⽩质1.蛋⽩质在⽣命活动中的作⽤有哪些?(了解)答:1.催化功能。
2.贮存于运输功能。
3.调节功能.。
4.运动功能。
5.防御功能。
6.营养功能。
7.作为结构成分。
8.作为膜的组成成分。
9.参与遗传活动2.何谓简单蛋⽩和结合蛋⽩?(P23-24)答:简单蛋⽩:(⼜称单纯蛋⽩质)经过⽔解之后,只产⽣各种氨基酸。
生物化学常用简答题

1、简述血氨的来源和去路。
(1)血氨来源:①氨基酸脱氨基作用,是血氨的主要来源;②肠道产氨,由腐败作用产生的氨或肠道尿素经肠道细菌尿素酶水解产生的氨;③肾脏产氨,主要来自谷氨酰胺的水解;④胺类、嘌呤、嘧啶等含氮物质的分解产生氨。
(2)血氨去路①在肝脏经鸟氨酸循环合成尿素,随尿液排出体外;②合成谷氨酰胺③参与合成非必需氨基酸;④合成其它含氮物质2、磷酸戊糖途径分哪两个阶段,此代谢途径的生理意义是什么?磷酸戊糖途径分为氧化反应和非氧化反应两个阶段(1)是机体生成NADPH的主要代谢途径:NADPH在体内可用于:,参与体内代谢:如参与合成脂肪酸、胆固醇等。
②参与羟化反应:作为加单氧酶的辅酶,参与对代谢物的羟化。
③维持谷胱甘肽的还原状态,还原型谷胱甘肽可保护含-SH的蛋白质或酶免遭氧化,维持红细胞膜的完整性,由于6-磷酸葡萄糖脱氢酶遗传性缺陷可导致蚕豆病,表现为溶血性贫血。
(2)是体内生成5-磷酸核糖的主要途径:体内合成核苷酸和核酸所需的核糖或脱氧核糖均以5-磷酸葡萄糖的形式提供,其生成方式可以由G-6-P脱氢脱羧生成,也可以由3-磷酸甘油醛和F-6-P经基团转移的逆反应生成。
3、试述成熟红细胞糖代谢特点及其生理意义。
成熟红细胞不仅无细胞核,而且也无线粒体、核蛋白体等细胞器,不能进行核酸和蛋白质的生物合成,也不能进行有氧氧化,不能利用脂肪酸。
血糖是其唯一的能源。
红细胞摄取葡萄糖属于易化扩散,不依赖胰岛素。
成熟红细胞保留的代谢通路主要是葡萄糖的酵解和磷酸戊糖通路以及2.3一二磷酸甘油酸支路。
通过这些代谢提供能量和还原力(NADH,NADPH)以及一些重要的代谢物,对维持成熟红细胞在循环中约120的生命过程及正常生理功能均有重要作用。
4、血糖正常值是多少,机体是如何进行调节的。
3.89~6.11mmol/L7、在糖代谢过程中生成的丙酮酸可进入哪些代谢途径?答:(1)在供氧不足时,丙酮酸在乳酸脱氢酶的催化下,有还原型的辅酶Ⅰ供氢,还原成乳酸。
生物化学复习题(简答题答案)

生物化学复习题第一章绪论1.简述生物化学的定义及生物化学的研究范围。
(P1)答:定义:生物化学就是从分子水平上阐明生命有机体化学本质的一门学科。
研究范围:第一方面是关于生命有机体的化学组成、生物分子,特别的生物大分子的结构、相互关系及其功能。
第二方面是细胞中的物质代谢与能量代谢,或称中间代谢,也就是细胞中进行的化学过程。
第三方面是组织和器官机能的生物化学。
2.简述生物化学的发展概况(了解)答:生物化学经历了静态生化—动态生化—机能生化这几个历程。
生物化学的发展经历了真理与谬误斗争的曲折道路,同时也是化学、微生物学、遗传学、细胞学和其他技术科学互相交融的结果。
展望未来,以生物大分子为中心的结构生物学、基因组学和蛋白质组学、生物信息学、细胞信号传导等研究显示出无比广阔的前景。
现代生物化学从各个方面融入生命科学发展的主流当中,同时也为动物生产实践和动物疫病防治提供了必不可缺的基本理论和研究技术。
3、简述生物化学与其他学科的关系。
(了解)答:生物化学的每个进步与其他学科,如物理学、化学等的发展紧密联系,先进的技术和研究手段,如电子显微镜,超离心、色谱、同位素示踪、X-射线衍射、质谱以及核磁共振等技术为生物化学的发展提供了强有力的工具。
4.简述动物生物化学与动物健康和动物生产的关系。
答:1)在饲养中,了解畜禽机体内物质代谢和能量代谢状况,掌握体内营养物质间相互转变和相互影响的规律,是提高饲料营养作用的基础。
2)在兽医中可有效防治疾病,如:代谢的紊乱可导致疾病,所以了解紊乱的环节并纠正之,是有效治疗疾病的依据;通过生化的检查,可帮助疾病的诊断。
第二章蛋白质1.蛋白质在生命活动中的作用有哪些?(了解)答:1.催化功能。
2.贮存于运输功能。
3.调节功能.。
4.运动功能。
5.防御功能。
6.营养功能。
7.作为结构成分。
8.作为膜的组成成分。
9.参与遗传活动2.何谓简单蛋白和结合蛋白?(P23-24)答:简单蛋白:(又称单纯蛋白质)经过水解之后,只产生各种氨基酸。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1酮体生成和利用的生理意义。
(1) 酮体是脂酸在肝内正常的中间代谢产物,是甘输出能源的一种形式;(2)酮体是肌肉尤其是脑的重要能源。
酮体分子小,易溶于水,容易透过血脑屏障。
体内糖供应不足(血糖降低)时,大脑不能氧化脂肪酸,这时酮体是脑的主要能源物质。
2试述乙酰CoA在脂质代谢中的作用.在机体脂质代谢中,乙酰CoA主要来自脂肪酸的β氧化,也可来自甘油的氧化分解;乙酰CoA在肝中可被转化为酮体向肝外运送,也可作为脂肪酸生物合成及细胞胆固醇合成的基本原料。
3试述人体胆固醇的来源与去路?来源:⑴从食物中摄取⑵机体细胞自身合成去路:⑴在肝脏可转换成胆汁酸⑵在性腺,肾上腺皮质可以转化为类固醇激素⑶在欺负可以转化为维生素D3⑷用于构成细胞膜⑸酯化成胆固醇酯,储存在细胞液中⑹经胆汁直接排除肠腔,随粪便排除体外。
4酶的催化作用有何特点?①具有极高的催化效率,如酶的催化效率可比一般的催化剂高108~1020 倍;②具有高度特异性:即酶对其所催化的底物具有严格的选择性,包括:绝对特异性、相对特异性、立体异构特异性;③酶促反应的可调节性:酶促反应受多种因素的调控,以适应机体不断变化的内外环境和生命活动的需要。
5距离说明酶的三种特异性(定义、分类、举例)。
一种酶仅作用于一种或一种化合物,或一定化学键,催化一定的化学反应,产生一定的产物,这种现象称为酶作用的特异性或专一性。
根据其选择底物严格程度不同,分为三类:①绝对特异性:一种酶只能作用于一种专一的化学反应,生成一种特定结构的产物,称为绝对特异性.如:脲酶仅能催化尿素水解产生CO2 和NH3,对其它底物不起作用;②相对特异性:一种酶作用于一类化合物或一种化学键,催化一类化学反应,对底物不太严格的选择性,称为相对特异性。
如各种水解酶类属于相对特异性;举例:磷酸酶对一般的磷酸酯键都有水解作用,既可水解甘油与磷酸形成的酯键,也可水解酚与磷酸形成的酯键;③立体异构特异性:对底物的立体构型有要求,是一种严格的特异性。
作用于不对称碳原子产生的立体异构体;或只作用于某种旋光异构体(D-型或L-型其中一种),如乳酸脱氢酶仅催化L-型乳酸脱氢,不作用于D-乳酸等。
6简述Km与Vm的意义。
⑴Km等于当V=Vm/2时的[S]。
⑵Km的意义:①Km值是酶的特征性常数——代表酶对底物的催化效率。
当[S]相同时,Km 小——V大;②Km值可近似表示酶与底物的亲和力:1/Km大,亲和力大;1/Km小,亲和力小;③可用以判断酶的天然底物:Km最小者为该酶的天然底物。
⑶Vm的意义:Vm是酶完全被底物饱和时的反应速率,与酶浓度成正比。
7温度对酶促反应有何影响。
(1) 温度升高对V的双重影响:①与一般化学反应一样,温度升高可增加反应分子的碰撞机会,使V增大;②温度升高可加速酶变性失活,使酶促反应V变小(2)温度对V影响的表现:①温度较低时,V随温度升高而增大(低温时由于活化分子数目减少,反应速度降低,但温度升高时,酶活性又可恢复)②达到某一温度时,V最大。
使酶促反应V达到最大时的反应温度称为酶的最适反应温度(酶的最适温度不是酶的特征性常数)③反应温度达到或超过最适温度后,随着反应温度的升高,酶蛋白变性,V下降。
8竞争性抑制作用的特点是什么?(1) 竞争性抑制剂与酶的底物结构相似(2)抑制剂与底物相互竞争与酶的活性中心结合(3)抑制剂浓度越大,则抑制作用越大,但增加底物浓度可使抑制程度减小甚至消除(4)动力学参数:Km值增大,Vm值不变。
9说明酶原与酶原激活的意义。
(1)有些酶(绝大多数蛋白酶)在细胞内合成或初分泌时没有活性,这些无活性的酶的前身物称为酶原。
酶原激活是指酶原在一定条件下转化为有活性的酶的过程。
酶原激活的机制:酶原分子内肽链一处或多处断裂,弃去多余的肽段,构象变化,活性中心形成,从而使酶原激活。
(2)酶原激活的意义:①消化道内蛋白酶以酶原形式分泌,保护消化器官自身不受酶的水解(如胰蛋白酶),保证酶在特定部位或环境发挥催化作用;②酶原可以视为酶的贮存形式(如凝血酶和纤维蛋白溶解酶),一旦需要转化为有活性的酶,发挥其对机体的保护作用。
10什么叫同工酶?有何临床意义?(1)同工酶是指催化的化学反应相同,而酶蛋白的分子结构、理化性质及免疫学性质不同的一组酶下称为同工酶。
(2)其临床意义:①属同工酶的几种酶由于催化活性有差异及体内分布不同,有利于体内代谢的协调。
②同工酶的检测有助于对某些疾病的诊断及鉴别诊断.当某组织病变时,可能有特殊的同工酶释放出来,使该同工酶活性升高。
如:冠心病等引起的心肌受损患者血清中LDH1 和LDH2 增高,LDH1 大于LDH2 ;肝细胞受损患者血清中LDH5含量增高。
11简述糖酵解的生理意义(1) 在无氧和缺氧条件下,作为糖分解功能的补充途径(2)在有氧条件下,作为某些组织细胞主要的供能途径:①成熟红细胞(没有线粒体,不能进行有氧氧化②神经、白细胞、骨髓、视网膜、皮肤等在氧供应充足时仍主要靠糖酵解供能。
12简述糖异生的生理意义(1) 在饥饿情况下维持血糖浓度的相对恒定。
(2)补充和恢复肝糖原。
(3)维持酸碱平衡:肾的糖异生有利于酸性物质的排泄。
(4)回收乳酸分子中的能量(乳酸循环)。
13简述血糖的来源和去路血糖的来源:(1)食物糖类物质的消化吸收;(2)肝糖原的分解;(3)非糖物质异生而成。
血糖的去路:(1)氧化分解功能;(2)合成糖原;(3)合成其它糖类物质;(4)合成脂肪或氨基酸等。
14糖酵解与有氧氧化的比较糖酵解:反应条件:供氧不足或不需氧;进行部位:胞液;关键酶:己糖激酶(或葡萄糖激酶)、磷酸果糖-1、丙酮酸激酶;产物:乳酸、ATP;能量:1mol葡萄糖净得2molATP;生理意义:迅速供能,某些组织依赖糖酵解供能。
有氧氧化:反应条件:有氧情况;进行部位:胞液和线粒体;关键酶:己糖激酶等三个酶及丙酮酸脱氢酶系、异柠檬酸脱氢酶、柠檬酸合酶、α-酮戊二酸脱氢酶系;产物:H2O、CO2 、ATP;能量:1mol葡萄糖净得36mol或38molATP;生理意义:是机体获取能量主要方式15在糖代谢过程中生成的丙酮酸可进入哪些代谢途径(1) 在供氧不足时,丙酮酸在LDH催化下,接受NADH+H的氢还原生成乳酸。
(2)在供氧充足时,丙酮酸进入线粒体,在丙酮酸脱氢酶系的催化下,氧化脱羧生成乙酰CoA,再经三羧酸循环和氧化磷酸化,彻底氧化生成CO2 、H2O和ATP。
(3)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者经磷酸烯醇式丙酮酸羧激酶催化生成磷酸烯醇式丙酮酸,再异生成糖。
(4)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合生成柠檬酸,可促进乙酰CoA进入三羧酸循环彻底氧化。
(5)丙酮酸进入线粒体在丙酮酸羧化酶催化下生成草酰乙酸,后者与乙酰CoA缩合生成柠檬酸,柠檬酸出线粒体在细胞液中经柠檬酸裂解催化生成乙酰CoA,后者可作为脂肪酸、胆固醇等的合成原料。
(6)丙酮酸可经还原性氨基化生成丙氨酸等非必需氨基酸。
决定丙酮酸代谢的方向是各条代谢途径中关键酶的活性,这些酶受到别构效应剂与激素的调节。
16简述三羧酸循环的要点及生理意义要点:(1)TAC中有4次脱氢,2次脱羧,1次底物水平磷酸化(2)TAC中有3个不可逆反应,3个关键酶;(3)TAC的中间产物包括草酰乙酸在内起着催化剂作用,草酰乙酸的回补反应释丙酮酸的直接羧化或者经苹果酸生成;(4)三羧酸循环一周共产生12ATP。
生理意义:(1)TAC是三大营养素彻底氧化的最终代谢通路;(2)是三大营养素代谢联系的枢纽;(3)可为其他合成代谢提供小分子前体(4)可为氧化磷酸化提供还原能量。
17重组DNA技术常包括以下几个步骤:分离制备目的基因-“分”,切割目的基因和载体-“切”,目的基因与载体的连接-“接”,将重组DNA导入宿主细胞-“转”,筛选并鉴定含重组DNA分子的受体细胞克隆-“筛”,克隆基因在受体细胞内进行复制或表达-“表”。
18蛋白质的元素组成特点是什么?怎样计算生物样品中蛋白质的含量?蛋白质的元素组成特点是含N,平均含量为16%,可用于推算未知样品中蛋白质的含量:100克样品中的蛋白质含量=每克样品含氮克数×6.25×100.19何谓蛋白质的二级结构?二级结构主要有哪些形式?各有何特征?蛋白质的二级结构是指蛋白质分子中某一段肽键的局部结构,也就是该段肽链主链骨架原子的相对空间位置,并不涉及氨基酸残基侧链的构象。
二级结构的主要形式有:α-螺旋,β-折叠、β-转角、无规则卷曲。
特征:(1)α-螺旋:①主链骨架围绕中心轴盘绕形成右手螺旋;②螺旋每上升一圈是3.6个氨基酸残基,螺距为0.54nm;③相邻螺旋圈之间形成许多氢键;④侧链基团位于螺旋的外侧。
(2)β-折叠:①若干条肽链或肽段平行或反平行排列成片;②所有肽键的C=O和N-H形成链间氢键;③侧链基团分别交替位于片层的上、下方。
(3)β-转角:多肽链180o 回折部分,通常由四个氨基酸残基构成,借1、4残基之间形成氢键维系。
(4)无规则卷曲:主链骨架无规律盘绕的部分。
20何谓蛋白质的变性作用?引起蛋白质变性的因素有哪些?蛋白质变性的本质是什么?变性后有何特性?(1) 蛋白质的变性作用是指蛋白质分子在某些理化因素作用下,其特定的空间结构被破坏而导致理化性质改变及生物学活性丧失的现象。
(2)引起蛋白质变性的因素:物理因素有加热、紫外线、X射线、高压、超声波等;化学因素有极端pH 值(强酸、强碱)、重金属盐、丙酮等有机溶剂。
(3)蛋白质变性的本质是:次级键断链,空间结构破坏,一级结构不受影响。
(4)变性后的特性:①活性丧失:空间结构破坏使Pr的活性部位解体②易发生沉淀:疏水基团外露,亲水性下降;③易被蛋白酶水解:肽键暴露出来④扩散常数降低,溶液的粘度增加。
21比较DNA和RNA分子组成的异同?组成成分DNA RNA磷酸磷酸P 磷酸P戊糖2- 脱氧核糖(dR)核糖(R)碱基腺嘌呤A、鸟嘌呤G、胞嘧啶C、胸腺嘧啶T腺嘌呤A、鸟嘌呤G、胞嘧啶C、尿嘧啶U22细胞内有哪几类主要的RNA?其主要功能是什么?RNA 功能核糖体RNA(rRNA)核糖体组成成分信使RNA(mRNA) 蛋白质合成模板转运RNA(tRNA) 转运氨基酸不均一核RNA(hnRNA) 成熟mRNA的前提小核RNA(SnRNA)参与hnRNA的剪接、转运核仁小RNA(SnoRNA)Rrnade 加工和修饰胞质小RNA(scRNA/7SL-RNA)蛋白质内质网定位合成的信号识别体的组成成分23简述DNA双螺旋结构模型的要点.①反向平行,右双螺旋;②碱基在螺旋内侧,磷酸核糖的骨架在外侧;③碱基配对A=T,G=C;④螺旋的稳定因素为氢键和碱基堆砌力⑤10bp/螺旋,螺旋的螺距为3.4nm,直径为2nm;⑥有大沟,小沟。