数列的极限
数列极限知识点归纳总结

数列极限知识点归纳总结数列极限是高等数学中非常重要的一部分内容,它在微积分、数学分析和实数理论等领域有着广泛的应用。
数列极限可以用来描述数列中的数值趋于无穷大或趋于某个确定值的性质。
本文将对数列极限的概念、性质及相关定理进行归纳总结。
一、数列极限的概念数列极限是指当数列的项趋于无穷大或趋于某个确定值时,数列中的数值会有怎样的变化规律。
数列极限可以分为两种情况:当数列的项趋于无穷大时,称为正无穷大极限;当数列的项趋于某个确定值时,称为有限极限。
二、正无穷大极限正无穷大极限是指当数列的项趋于正无穷大时,数列中的数值也趋于正无穷大。
对于正无穷大极限的数列,常常使用符号∞表示。
正无穷大极限的数列具有以下特点:1. 当数列的项趋于正无穷大时,数列中的每一项都大于任意给定的正数。
2. 正无穷大极限的数列不存在有限极限,即数列中的数值不会趋于某个确定值。
三、有限极限有限极限是指当数列的项趋于某个确定值时,数列中的数值也趋于该确定值。
有限极限的数列具有以下特点:1. 当数列的项趋于某个确定值时,数列中的每一项都无限接近于该确定值。
2. 有限极限的数列不一定是递增或递减的,它可以在趋近确定值的过程中有往复波动的情况。
四、数列极限的性质数列极限具有一些重要的性质,这些性质对于研究数列的收敛性和发散性非常有帮助。
下面列举了一些常见的数列极限性质:1. 数列极限的唯一性:如果数列的极限存在,那么它是唯一的,也就是说数列的极限值不会有多个。
2. 数列极限的保序性:如果一个数列的所有项都大于(或小于)另一个数列的所有项,并且这两个数列都有极限,那么它们的极限值也满足同样的大小关系。
3. 数列极限的有界性:如果一个数列的极限存在,那么该数列是有界的,即存在一个正数M,使得数列的所有项的绝对值都不大于M。
4. 数列极限与四则运算的关系:如果两个数列都有极限,那么它们的和、差、积和商(除数不为零)也都有极限,并且极限值满足相应的运算规律。
求数列极限的十五种解法

1
;
0
0 n1
n1
1 x
1 x (1 x)2
而 S(x) x f (x) x ;因此,原式= S(a1) a1 .
(1 x)2
(1 a1 )2
9.利用级数收敛性判断极限存在 由于级数与数列在形式上可以相互转化,使得级数与数列的性质有了内在的密切联系,因此
数列极限的存在性及极限值问题,可转化为研究级数收敛性问题.
求数列极限的十五种方法
求数列极限的十五种方法
1.定义法
N 定义:设{an} 为数列, a 为定数,若对任给的正数 ,总存在正数 N ,使得当 n N 时,
有
an
a
,则称数列
{an
பைடு நூலகம்
}
收敛于
a
;记作:
lim
n
an
a
,否则称{an} 为发散数列.
1
例 1.求证: lim an 1,其中 a 0 . n
列以外的数 a ,只需根据数列本身的特征就可鉴别其敛散性.
3.运用单调有界定理
单调有界定理:在实数系中,有界的单调数列必有极限.
例 5.证明:数列 xn a a a ( n 个根式, a 0 , n 1, 2,
证:由假设知 xn a xn1 ;① 用数学归纳法可证: xn1 xn , k N ;② 此即证 {xn} 是单调递增的.
n0
n0
n
令 Sn
xk1 xk
xn1
x0
,∵
lim
n
Sn
存在,∴
lim
n
xn1
x0
lim
n
Sn
l
(存在);
k 0
对式子:
高等数学 第二节 数列的极限

lim
n
xn
a 的"
N" 定义 :
lim
n
xn
a
0, N N ,当n N 时, 有
| xn a | .
注意: (1) 0 的任意性; a xn a
(2) N 的存在性:N N ( ).
(3) 几何解释 当 x = n, 则 xn f (n)
第n 项 xn 叫 做 数 列 的 一 般 项.
例如:
1 , 2 , 3 ,, n ,: 2 3 4 n1
n n
1
;
2,
1 2
,
4 3
,,
n
(1)n1 n
,:
n
(1)n1 n
;
2,4,8,,2n ,:
{2n };
1,1,1,,(1)n1,: {(1)n1}.
注意: 1. 数列的每一项都是数.
n
2
2 n2
n n2
)
1 .
2
1. 证明lim( n2 1 n) 0. n
证 0,
n2 1 n 0 ( n2 1 n)( n2 1 n) n2 1 n
n2
1 1
n
1 2n
,
欲使 1 , 只须n 1 ,
2n
2
取
N
1
2
,
则当n N时,
n2 1 n 0 ,
lim
n
xn
a
f(n)
a
x1
a的邻域
x2
a
自然数 N
xn
对一切 n > N a
数列的极限

数列的极限1.数列极限的定义:一般地,如果当项数n 无限增大时,无穷数列{a n }的项a n 无限地趋近于某个常数a (即|a n -a |无限地接近于0),那么就说数列{a n }以a 为极限.注:a 不一定是{a n }中的项.2.几个常用的极限:①∞→n lim C =C (C 为常数);②∞→n limn1=0;③∞→n lim q n =0(|q |<1).3.数列极限的四则运算法则:设数列{a n }、{b n }, 当∞→n lim a n =a , ∞→n lim b n =b 时,∞→n lim (a n ±b n )=a ±b ;∞→n lim(a n ·b n )=a ·b ; ∞→n limnnb a =ba (b ≠0).●点击双基1.下列极限正确的个数是 ①∞→n lim αn 1=0(α>0) ②∞→n lim q n =0③∞→n limnnn n 3232+-=-1 ④∞→n lim C =C (C 为常数)D.都不正确 解析:①③④正确. 答案:B2. ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]等于 解析: ∞→n lim [n (1-31)(1-41)(1-51) (1)21+n )]=∞→n lim [n ×32×43×54×…×21++n n ]=∞→n lim22+n n=2. 答案:C ●典例剖析【例1】 求下列极限: (1)∞→n lim757222+++n n n ;(2) ∞→n lim (nn +2-n );(3)∞→n lim (22n +24n +…+22nn ). 剖析:(1)因为分子分母都无极限,故不能直接运用商的极限运算法则,可通过变形分子分母同除以n 2后再求极限;(2)因nn +2与n 都没有极限,可先分子有理化再求极限;(3)因为极限的运算法则只适用于有限个数列,需先求和再求极限.解:(1)∞→n lim757222+++n n n =∞→n lim 2275712nn n +++=52.(2)∞→n lim (nn +2-n )= ∞→n limnn n n ++2=∞→n lim1111++n=21.(3)原式=∞→n lim22642n n++++ =∞→n lim2)1(n n n +=∞→n lim (1+n 1)=1. 评述:对于(1)要避免下面两种错误:①原式=)75(lim )72(lim 22+++∞→∞→n n n n n =∞∞=1,②∵∞→n lim (2n 2+n +7), ∞→n lim (5n 2+7)不存在,∴原式无极限.对于(2)要避免出现下面两种错误: ①∞→n lim (nn +2-n )=∞→n limnn +2-∞→n lim n =∞-∞=0;②原式=∞→n limnn +2-∞→n lim n =∞-∞不存在.对于(3)要避免出现原式=∞→n lim 22n +∞→n lim24n +…+∞→n lim22n n =0+0+…+0=0这样的错误.【例2】 已知数列{a n }是由正数构成的数列,a 1=3,且满足lg a n =lg a n -1+lg c ,其中n 是大于1的整数,c 是正数.(1)求数列{a n }的通项公式及前n 和S n ; (2)求∞→n lim1122+-+-n n n n a a 的值.解:(1)由已知得a n =c·a n -1,∴{a n }是以a 1=3,公比为c 的等比数列,则a n =3·cn -1.∴S n =⎪⎩⎪⎨⎧≠>--=).10(1)1(3)1(3c c cc c nn 且(2) ∞→n lim1122+-+-n n n n a a =∞→n lim nnn n c c 323211+---.①当c =2时,原式=-41;②当c>2时,原式=∞→n lim ccc n n 3)2(23)2(11+⋅---=-c 1;③当0<c<2时,原式=∞→n lim11)2(32)2(31--⋅+-n n cc c =21.评述:求数列极限时要注意分类讨论思想的应用.【例3】 已知直线l :x -ny =0(n ∈N *),圆M :(x +1)2+(y +1)2=1,抛物线ϕ:y =(x -1)2,又l 与M 交于点A 、B ,l 与ϕ交于点C 、D ,求∞→n lim22||||CD AB .剖析:要求∞→n lim22||||CD AB 的值,必须先求它与n 的关系.解:设圆心M (-1,-1)到直线l 的距离为d ,则d 2=1)1(22+-n n .又r =1,∴|AB |2=4(1-d 2)=218n n +.设点C (x 1,y 1), D (x 2,y 2),由⎩⎨⎧-==-2)1(0x y ny x ⇒nx 2-(2n +1)x +n =0, ∴x 1+x 2=nn 12+, x 1·x 2=1.∵(x 1-x 2)2=(x 1+x 2)2-4x 1x 2=214n n +,(y 1-y 2)2=(n x 1-nx 2)2=414nn +,∴|CD |2=(x 1-x 2)2+(y 1-y 2)2 =41n (4n +1)(n 2+1).∴∞→n lim22||||CD AB =∞→n lim225)1)(14(8++n n n =∞→n lim2)11)(14(8nn ++=2.评述:本题属于解析几何与数列极限的综合题.要求极限,需先求22||||CD AB ,这就要求掌握求弦长的方法.【例4】 若数列{a n }的首项为a 1=1,且对任意n ∈N *,a n 与a n +1恰为方程x 2-b n x +c n =0的两根,其中0<|c |<1,当∞→n lim (b 1+b 2+…+b n )≤3,求c 的取值范围.解:首先,由题意对任意n ∈N *,a n ·a n +1=c n 恒成立.∴121+++⋅⋅n n n n a a a a =nn a a 2+=nn cc 1+=c .又a 1·a 2=a 2=c .∴a 1,a 3,a 5,…,a 2n -1,…是首项为1,公比为c 的等比数列,a 2,a 4,a 6,…,a 2n ,…是首项为c ,公比为c 的等比数列.其次,由于对任意n ∈N *,a n +a n +1=b n 恒成立.∴nn b b 2+=132+++++n n n n a a a a =c .又b 1=a 1+a 2=1+c ,b 2=a 2+a 3=2c ,∴b 1,b 3,b 5,…,b 2n -1,…是首项为1+c ,公比为c 的等比数列,b 2,b 4,b 6,…,b 2n ,…是首项为2c ,公比为c 的等比数列,∴∞→n lim (b 1+b 2+b 3+…+b n )= ∞→n lim (b 1+b 3+b 5+…)+ ∞→n lim (b 2+b 4+…)=c c -+11+cc-12≤3.解得c ≤31或c >1.∵0<|c |<1,∴0<c ≤31或-1<c <0.故c 的取值范围是(-1,0)∪(0,31].评述:本题的关键在于将题设中的极限不等式转化为关于c 的不等式,即将{b n }的各项和表示为关于c 的解析式,显然“桥梁”应是一元二次方程根与系数的关系,故以根与系数的关系为突破口.●闯关训练 夯实基础 1.已知a 、b 、c是实常数,且∞→n lim cbn can ++=2, ∞→n lim bcn cbn --22=3,则∞→n limacn can ++22的值是 C.21解析:由∞→n limcbn c an ++=2,得a =2b .由∞→n lim bcn cbn --22=3,得b =3c ,∴c =31b .∴ca =6.∴∞→n lim a cn c an ++22=∞→n lim 22nac n ca ++=ca =6.答案:D 2.(2003年北京)若数列{a n }的通项公式是a n =2)23()1(23n n n n n ------++,n =1,2,…,则∞→n lim (a 1+a 2+…+a n )等于A.2411B.2417C.2419D.2425 解析:a n =⎪⎪⎩⎪⎪⎨⎧-++--+--------),(22323),(2)23(23为偶数为奇数n n n n nn n n n n 即a n =⎪⎩⎪⎨⎧--).3),(2(为偶数为奇数n n nn∴a 1+a 2+…+a n =(2-1+2-3+2-5+…)+(3-2+3-4+3-6+…). ∴∞→n lim (a 1+a 2+…+a n )=411213132122221-=-+-----+91191-=.2419答案:C3.(2004年春季上海)在数列{a n }中,a 1=3,且对任意大于1的正整数n ,点(na ,1-n a )在直线x -y -3=0上,则∞→n lim2)1(+n a n =__________________.解析:由题意得na -1-n a =3 (n ≥2).∴{n a }是公差为3的等差数列,1a =3.∴na =3+(n -1)·3=3n .∴a n =3n 2.∴∞→n lim 2)1(+n a n=∞→n lim 12322++n n n =∞→n lim21213nn ++=3.答案:34.(2004年 上海,4)设等比数列{a n }(n ∈N )的公比q =-21,且∞→n lim (a 1+a 3+a 5+…+a 2n -1)=38,则a 1=_________________.解析:∵q =-21,∴∞→n lim (a 1+a 3+a 5+…+a 2n -1)=4111-a =38.∴a 1=2.答案:25.(2004年湖南,理8)数列{a n }中,a 1=51,a n +a n +1=156+n ,n ∈N *,则∞→n lim(a 1+a 2+…+a n )等于 A.52 B.72 C.41D.254 解析:2(a 1+a 2+…+a n )=a 1+[(a 1+a 2)+(a 2+a 3)+(a 3+a 4)+…+(a n -1+a n )]+a n =51+[256+356+…+n56]+a n . ∴原式=21[51+511256-+∞→n lim a n ]=21(51+103+∞→n lim a n ).∵a n +a n +1=156+n ,∴∞→n lim a n +∞→n lim a n +1=0.∴∞→n lim a n =0. 答案:C6.已知数列{a n }满足(n -1)a n +1=(n +1)(a n -1)且a 2=6,设b n =a n +n (n ∈N *).(1)求{b n }的通项公式; (2)求∞→n lim (212-b +213-b +214-b +…+21-n b )的值.解:(1)n =1时,由(n -1)a n +1=(n +1)(a n -1),得a 1=1.n =2时,a 2=6代入得a 3=15.同理a 4=28,再代入b n =a n +n ,有b 1=2,b 2=8,b 3=18,b 4=32,由此猜想b n =2n 2.要证b n =2n 2,只需证a n =2n 2-n . ①当n =1时,a 1=2×12-1=1成立. ②假设当n =k 时,a k =2k 2-k 成立.那么当n =k +1时,由(k -1)a k +1=(k +1)(a k -1),得a k +1=11-+k k (a k -1)=11-+k k (2k 2-k -1)=11-+k k (2k +1)(k -1)=(k +1)(2k +1)=2(k +1)2-(k +1).∴当n =k +1时,a n =2n 2-n 正确,从而b n =2n 2. (2)∞→n lim (212-b +213-b +…+21-n b )=∞→n lim (61+161+…+2212-n )=21∞→n lim[311⨯+421⨯+…+)1)(1(1+-n n ]=41∞→n lim[1-31+21-41+…+11-n -11+n ]=41∞→n lim [1+21-n 1-11+n ]=83. 培养能力7.已知数列{a n }、{b n }都是无穷等差数列,其中a 1=3,b 1=2,b 2是a 2与a 3的等差中项,且∞→n limnn b a =21,求极限∞→n lim (111b a +221b a +…+nn b a 1)的值.解:{a n }、{b n }的公差分别为d 1、d 2.∵2b 2=a 2+a 3,即2(2+d 2)=(3+d 1)+(3+2d 1), ∴2d 2-3d 1=2. 又∞→n limnn b a =∞→n lim21)1(2)1(3d n d n -+-+=21d d =21,即d 2=2d 1,∴d 1=2,d 2=4.∴a n =a 1+(n -1)d 1=2n +1,b n =b 1+(n -1)d 2=4n -2. ∴nn b a 1=)24()12(1-⋅+n n =41(121-n -121+n ). ∴原式=∞→n lim41(1-121+n )=41. 8.已知数列{a n }、{b n }都是由正数组成的等比数列,公比分别为p 、q ,其中p >q 且p ≠1,q ≠1,设c n =a n +b n ,S n 为数列{c n }的前n 项和,求∞→n lim1-n nS S .解:S n =p p a n --1)1(1+qq b n --1)1(1,.1)1(1)1(1)1(1)1(1111111qq b p p a q q b p p a S S n n n n n n--+----+--=--- 当p >1时,p >q >0,得0<pq <1,上式分子、分母同除以p n -1,得.1])(1[1)11(1)1(1)1(11111111111qp q pb p p a q pq p b p p p a S S n n n n nn n n n --+----+--=-------∴∞→n lim1-n n S S =p .当p <1时,0<q <p <1, ∞→n lim 1-n n S S =qbp a q bp a -+--+-11111111=1.探究创新9.已知数列{a n }满足a 1=0,a 2=1,a n =221--+n n a a ,求∞→n lim a n .解:由a n =221--+n n a a ,得2a n +a n -1=2a n -1+a n -2,∴{2a n +a n -1}是常数列. ∵2a 2+a 1=2,∴2a n +a n -1=2. ∴a n -32=-21(a n -1-32).∴{a n -32}是公比为-21,首项为-32的等比数列.∴a n -32=-32×(-21)n -1.∴a n =32-32×(-21)n -1.∴∞→n lim a n =32. ●思悟小结1.运用数列极限的运算法则求一些数列的极限时必须注意以下几点:(1)各数列的极限必须存在;(2)四则运算只限于有限个数列极限的运算.2.熟练掌握如下几个常用极限:(1) ∞→n lim C =C (C 为常数); (2) ∞→n lim (n1)p =0(p >0); (3) ∞→n lim dcn b an k k ++=c a (k ∈N *,a 、b 、c 、d ∈R 且c ≠0); (4) ∞→n lim q n =0(|q |<1).●教师下载中心教学点睛1.数列极限的几种类型:∞-∞,∞∞,0-0,00等形式,必须先化简成可求极限的类型再用四则运算求极限,另外还有先求和,约分后再求极限,对含参数的题目一定要控制好难度,不要太难了.2.重视在日常学习过程中化归思想、分类讨论思想和极限思想的运用.拓展题例【例题】 已知等比数列{a n }的首项为a 1,公比为q ,且有∞→n lim (q a +11-q n )=21,求首项a 1的取值范围. 解: ∞→n lim (q a +11-q n )=21, ∴∞→n lim q n 一定存在.∴0<|q |<1或q =1. 当q =1时,21a -1=21,∴a 1=3. 当0<|q |<1时,由∞→n lim (q a +11-q n )=21得q a +11=21,∴2a 1-1=q . ∴0<|2a 1-1|<1.∴0<a 1<1且a 1≠21. 综上,得0<a 1<1且a 1≠21或a 1=3.。
数列的极限

因为极限定义并不要求找到最小的N,而只要存在
一个N就可以了。
3)数列极限定义,并没有直接提供求数列极限的
方法,只能根据极限定义,验证给定的数列 {xn}
是否以A为极限。
3.数列以为极限的几何解释
从几何上看,数列{xn} 是数轴上的一串点
数学
数列的极限
1.1 数列的概念
定义1 按正整数编号,依次列起来的一系
数
x1, x2 , x3 ,叫, x做n ,数列,记作
{xn }
数列中的每一个数叫做数列的项,第n项叫
做数列的一般项或通项。
例如:
1 , 2 , 3 , n ,; 2, 4, 8, 2n , 2 3 4 n 1
1 2
,1 4
,1 8
,
1 2n
, ;
0,1,0,1,1 (1)n , 2
1.2 数列的极限
对于给定的数列 {xn},我们所要研的
是,当 n 时,{xn} 数列的变化趋势, 即当 n 时,xn 是否无限趋近某一个确
定的数值。
1.数列极限的定义
定义2 设 是一{x个n}数列,A是一个定数。
果对于任意给定的正数 (不管它多么小),总存在正整
2
0
1.3 收敛数列的有界性
1. 数列的有界性 定义3 对于数列 {xn} ,如果存在正数M,使得一
切 xn 都满足不等式 xn M ,则称数列{xn} 是有界的,否则称 {xn} 是无界的。
2. 收敛数列的有界性
定理1 如果数列{xn} 收敛,则数列{xn} 一定有
界。(证明从略)
数学
数列的极限

数列的极限
一,数列极限定义
简单来讲就是:一个数列随着序数的增加最终会趋于或等于一个数,这个数就是数列的极限。
证明题要结合书上的公式
二,收敛数列的性质
1唯一性:收敛数列只有一个极限
2有界性:收敛数列一定有界。
(收敛数列最终都会趋于或等于一个数,所以有界)但有界数列不一定就是收敛数列,如-1,1,-1,1……,这个数列就是发散的,因为它同时趋于-1和1。
(有界是因为它的绝对值小于等于1,可参考上节所讲如何判定数列有界)这个数列同时说明了发散数列不一定无界。
3保号性:就是有一个数列,当其中一个数从它开始大于零,那么它之后的数都大于零。
推论:当一个数列存在某一个数大于零,那么这个数列的极限也大于零
4收敛数列与其子数列间的关系:如果一个数列收敛于A,那么它的任意子数列也收敛于A,但子数列收敛,原数列不一定收敛;子数列收敛于A,原数列不一定收敛于A,有可能原数列不收敛,可参考我在有界性中提到的例子,同时这个例子也说明一个发散的数列也可能有收敛的子数列。
高等数学12数列的极限

数列极限的保序性〔保号性〕
定理 设
3
〔保序性〕假
lni m xna,lni m ynb,且
a b,那 N N , nN ,有 xn yn .
么
证明:
lni m xna,lni m ynb,且 a b.
取 a b , 由极限定义知:
2
a b a b N 1 N , n N 1 ,|x n a |2 x n2
lim 1 1
y n n
b
证明略。
数列收敛的判别准那么
准那么 I. (夹逼定理/两边夹定理) 有三个数列,假
设 (1) yn xn zn ( n 1, 2, L)
(2)
lim
n
yn
lim
n
zn
a
lim
n
xn
a
证: 由条件 (2) , 0, N1 0, N2 0,
当 n N1 时, yn a ; 当 nn NN22 时, zznnaa ; .
定理6 也称为连续性公理。
单调数列
定义 4 如果数列{ x n } 的项满足
x 1 x 2 x 3 x n x n 1
那么称这个数列为单调递增数列。 如果数列 { x n } 的项满足
x 1 x 2 x 3 x n x n 1
那么称这个数列为单调递减数列。 这两种数列统称单调数列。
令 N max N1 , N2, 那么当n N 时, 有
a yn a , a zn a , 由条件 (1) a yn xn zn a
即
xn a ,
故
lim
n
xn
a
.
例: 证明 lim ( 1 1 1 )存在,
n n2 1 n22
数列极限的精确定义

例1 证明 lim C C, (C为常数) x x0
证 0, d 0, 当 0 x x0 d 时,
f ( x) A C C 0 成立,
lim C C. x x0
例2
证明
lim
x x0
x
x0 .
证 f ( x) A x x0 , 0, 取d ,
ba 2
,
因此同时有
xn
b 2
a
及
xn
ba 2
,
这是不可能的. 所以只能有a=b. 11
例4. 证明数列
是发散的.
证明: 用反证法.
假设数列 xn 收敛 , 则有唯一极限 a 存在 .
取
1 2
, 则存在 N ,
使当 n
>N
时,有
a
1 2
xn
a
1 2
但因 xn交替取值 1 与-1 , 而此二数不可能同时落在
x0 x0 d x 20
注
1) d 语言表述
当 时, 有 2) 0 x x0 表示 x x0 , x x0时 f ( x) 有 无极限 与 f ( x0 )有无定义没有关系.
3) 任意给定后,才能找到d , d 依赖于 ,一般的 越小,d 越小.
4) d 不唯一,也不必找最大的,只要存在即可.
n1
| xn a | ,
或 n 1 1,
只要
9
例3 设|q|<1, 证明等比数列 1, q , q2, , qn-1,
的极限是0.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
二、数列的定义
定义: 按自然数1,2,3, 编号依次排列的一列数
x1 , x 2 , , x n ,
(1)
称为无穷数列,简称数列.其中的每个数称为数列的 项, x n 称为通项(一般项).数列(1)记为 { x n }.
例如
2,4,8,,2 n ,;
n 1
} 当 n 时的变化趋势.
播放
机动
目录
上页
下页
返回
结束
问题: 当 n 无限增大时, x n 是否无限接近于某 一确定的数值?如果是,如何确定? 通过上面演示实验的观察: ( 1)n1 当 n 无限增大时, xn 1 无限接近于1. n ( 1)n1 我们就称当n 时, xn 1 的极限为1. n 问题: “无限接近”意味着什么?如何用数学语言 刻划它.
推论: 数列{ xn } 收敛于 a 的充要条
-邻域U (a , ) , 件是对a 的任意 只有有限
项 xn U ( a , ) 。
机动
目录
上页
下页
返回
结束
注意:
数列极限的定义未给出求极限的方法.
例1
证
n ( 1)n1 证明 lim 1. n n
1 n ( 1) n 1 1 xn 1 n n
n
则当n N时,
就有 q n 0 ,
lim q n 0.
机动
目录
上页
下页
返回
结束
例4
设xn 0, 且 lim xn a 0,
1 有 xn 1 , 10000
1 给定 0, 总存在正整数N , 只要 n N ( [ ]) 时,
有 xn 1 成立.
机动
目录
上页
下页
返回
结束
定义
如果对于任意给定的正数 ( 不论
它多么小 ), 总存在正整数 N , 使得对于 n N 时的一切 x n , 不等式 x n a 都成立, 那么 就称常数 a 是数列 x n 的极限,或者称数列 x n 收敛于 a ,记为
1 1 1 1 , , ,, n ,; 2 4 8 2
{2 n }
1 { n} 2
机动 目录 上页 下页 返回 结束
1,1,1, , ( 1) n 1 ,;
{( 1) n 1 }
n ( 1) n 1 { } n
1 4 n ( 1) 2, , , , 2 3 n
n 1
lim x n a , 或 x n a ( n ).
n
如果数列没有极限,就说数列是发散的.
机动
目录
上页
下页
返回
结束
注意:
1.不等式 xn a 刻划了xn与a的无限接近 ;
2. N仅与任意给定的正数 有关.
3. N不 a 0, N 0,当 n N时 ,
证明 lim q n 0, 其中 q 1.
n
n 则 lim q lim 0 0; 若 q 0 , 任给 0 , 证 n n
若0 q 1,
ln n , ln q
xn 0 q n , n ln q ln ,
ln 取N [ ], ln q
xn 1 ( 1)
n 1
1 1 n n
机动 目录 上页 下页 返回 结束
给定
1 1 1 1 , 由 , 只要 n 100 时, 有 xn 1 , 100 n 100 100
只要 n 1000 时,
1 给定 , 1000
有 xn 1
1 , 1000
1 给定 , 只要 n 10000时, 10000
n
恒有
xn a .
; 其中: : 每一个或任意给定的
: 至少有一个或存在.
机动 目录 上页 下页 返回 结束
几何解释:
a
x2 x1
2
a
x N 2 x3
x N 1 a
x
当n N时, 所有的点 xn都落在(a , a )内, 只有有限个(至多只有N个 ) 落在其外.
A1 , A2 , A3 ,, An ,
S (圆的面积)
机动
目录
上页
下页
返回
结束
2、截丈问题:
“一尺之棰,日截其半,万世不竭”
1 第一天截下的杖长为 X 1 ; 2
1 1 第二天截下的杖长总和 为 X2 2 ; 2 2
1 1 1 第n天截下的杖长总和为 X n 2 n ; 2 2 2 1 Xn 1 n 1 2
1 1 任给 0, 要 xn 1 , 只要 , 或n , n 所以, 取 N [ 1 ], 则当n N时,
n ( 1) 就有 n
n1
1
n ( 1)n1 即 lim 1. n n
机动 目录 上页 下页 返回 结束
例2
设xn C (C为常数) , 证明 lim xn C .
第二节
第一章
数列的极限
一、数列极限的定义
二、收敛数列的性质
机动
目录
上页
下页
返回
结束
一、概念的引入
1、割圆术:
“割之弥细,所 失弥少,割之又 割,以至于不可 割,则与圆周合 体而无所失矣” ——刘徽
播放
机动
目录
上页
下页
返回
结束
圆的面积
正六边形的面积 A1 正十二边形的面积 A2
R
正 6 2 n 1形的面积 An
,;
3, 3 3 ,, 3 3 3 ,
注意: 1、数列对应着数轴上一个点列.可看作 一动点在数轴上依次取 x1 , x2 ,, xn ,.
x3
x1
x 2 x4
xn
2、数列是整标函数 x n f ( n).
机动 目录 上页 下页 返回 结束
三、数列的极限
( 1) 观察数列{1 n
n
证 任给 0 , 对于一切自然数 n ,
xn C C C 0 成立,
xn C . 所以, lim n
说明: 常数列的极限等于同一常数. 小结: 用定义证数列极限存在时,关键是任意给 定 0, 寻找N,但不必要求最小的N.
机动
目录
上页
下页
返回
结束
例3