【大师特稿】2018届高考数学理热点题型:概率与统计含答案

合集下载

2018年高考数学(理)—— 统计与概率

2018年高考数学(理)—— 统计与概率

5.概率的基本性质及常见概率的计算 (1)随机事件的概率:0≤P(A)≤1;必然事件的概率是1;不可能事件 的概率是0. (2)若事件A,B互斥,则P(A∪B)=P(A)+P(B). (3)若事件A,B对立,则P(A∪B)=P(A)+P(B)=1. (4)两种常见的概率模型 ①古典概型的特点:有限性,等可能性;
卷 设问特点 别
核心知识
考点精题
-7-
1.统计图表 (1)在频率分布直方图中:①各小矩形的面积表示相应各组的频率, 频率 各小矩形的高= 组距 ;②各小矩形面积之和等于1. (2)茎叶图:当数据是两位数时,用中间的数字表示十位数,两边的 数字表示个位数;当数据是三位数,前两位相对比较集中时,常以前 两位为茎,第三位(个位)为叶(其余类推).
3.变量间的相关关系 (1)如果散点图中的点从整体上看大致分布在一条直线的附近,那 么我们说变量x和y具有线性相关关系. (2)线性回归方程:若变量x与y具有线性相关关系,有n个样本数据
(xi,yi)(i=1,2,…,n),则回归方程为������ = b x+������,其中������ = ������ − ������ ������.
核心知识
考点精题
-3-
卷 设问特点 别 求平均数、方差, 全 求正态分布的概 国 率,求二项分布 Ⅰ 的 E( X) 2014 全 求线性回归方 国 程,并分析变化 , Ⅱ 求预报值 年份
涉及知识点
题目类型
解题思想 方法
频率分布直方图、样本的数据 分析、抽 平均数、 方差、 正 特征、正态 象,转换 态分布、二项分 分布、二项 思想 布、数学期望 分布 平均值、 回归方程 回归分析 分析、处 理数据
核心知识

2018届高考新课标数学理大一轮复习检测:热点专题六 概率与统计中的热点问题 含答案 精品

2018届高考新课标数学理大一轮复习检测:热点专题六 概率与统计中的热点问题 含答案 精品

1.为了防止塑化剂超标的产品影响我国民众的身体健康,要求产品在进入市场前必须进行两轮塑化剂含量检测,只有两轮都合格才能进行销售,否则不能销售.已知某产品第一轮检测不合格的概率为16,第二轮检测不合格的概率为110,两轮检测是否合格相互没有影响.(1)求该产品不能销售的概率;(2)如果产品可以销售,则每件产品可获利40元;如果产品不能销售,则每件产品亏损80元(即获利-80元).已知一箱中有产品4件,记一箱产品获利X 元,求X 的分布列及均值E (X ).【解析】 (1)记“该产品不能销售”为事件A , 则P (A )=1-⎝ ⎛⎭⎪⎫1-16×⎝ ⎛⎭⎪⎫1-110=14,故该产品不能销售的概率为14.(2)由已知,可知X 的所有可能取值为-320,-200,-80,40,160. P (X =-320)=⎝ ⎛⎭⎪⎫144=1256,P (X =-200)=C 14×⎝ ⎛⎭⎪⎫143×34=364,P (X =-80)=C 24×⎝ ⎛⎭⎪⎫142×⎝ ⎛⎭⎪⎫342=27128,P (X =40)=C 34×14×⎝ ⎛⎭⎪⎫343=2764,P (X =160)=⎝ ⎛⎭⎪⎫344=81256.所以X 的分布列为E (X )=-320×1256-200×364-80×27128+40×2764+160×81256=40.2.(2017·山东师大附中模拟)为增强市民的节能环保意识,某市面向全市征召义务宣传志愿者.从符合条件的500名志愿者中随机抽取100名志愿者,其年龄频率分布直方图如图所示,其中年龄分组区间是.(1)求图中x 的值并根据频率分布直方图估计这500名志愿者中年龄在[35,40)岁的人数;(2)在抽出的100名志愿者中按年龄采用分层抽样的方法抽取20名参加中心广场的宣传活动,再从这20名中采用简单随机抽样方法选取3名志愿者担任主要负责人.记这3名志愿者中“年龄低于35岁”的人数为X ,求X 的分布列及均值.【解析】 (1)∵小矩形的面积等于频率,∴除[35,40)外的频率和为0.70,∴x =1-0.705=0.06.故500名志愿者中,年龄在[35,40)岁的人数为0.06×5×500=150(人).(2)用分层抽样的方法,从中选取20名,则其中年龄“低于35岁”的人有12名,“年龄不低于35岁”的人有8名.故X 的可能取值为0,1,2,3,P (X =0)=C 38C 320=14285,P (X =1)=C 112C 28C 320=2895,P (X =2)=C 212C 18C 320=4495,P (X =3)=C 312C 320=1157,故X 的分布列为∴E (X )=0×14285+1×2895+2×4495+3×1157=17195.3.(2017·日照模拟)某娱乐节目将4名队员平均分成甲、乙两个组,进行一对一的独立闯关比赛,已知甲组中2名队员A ,B 过关的概率分别为13,23,乙组中2名队员C ,D 过关的概率都为12,最后根据两组过关人数的多少来决定胜负,若过关人数相同,则认为两组平局.(1)求A ,B ,C ,D 4名队员至多1人过关的概率;(2)将甲组过关的人数记作x ,乙组过关的人数记作y ,设X =|x -y |,求X 的分布列和均值.【解析】 (1)设“A ,B ,C ,D 4名队员至多1人过关”为事件A ,“4名队员都不过关”为事件A 0,“4名队员恰有1人过关”为事件A 1,则A =A 0∪A 1.又P (A 0)=23×13×12×12=118,P (A 1)=13×13×12×12+23×23×12×12+23×13×12×12×2=14,故P (A )=118+14=1136.(2)X 的所有可能取值为0,1,2.P (X =0)=23×13×12×12+⎝ ⎛⎭⎪⎫13×13+23×23×12×12×2+13×23×12×12=718,P (X =2)=13×23×12×12+23×13×12×12=19,故P (X =1)=1-P (X =0)-P (X =2)=1-718-19=12.故X 的分布列为E (X )=0×718+1×12+2×19=1318.4.将四个不同颜色的乒乓球随机放入编号分别为1,2,3,4的四个盒子中(每个盒子足够大).(1)求编号为1的盒子为空盒的概率; (2)求空盒的个数ξ的分布列和均值E (ξ).【解析】 (1)将四个不同颜色的乒乓球随机放入编号分别为1,2,3,4的四个盒子中,由分步乘法计数原理知共有44=256种放法,设事件A 表示“编号为1的盒子为空盒”,则四个乒乓球可以随机放入编号为2,3,4的三个盒子中,共有34=81种放法,故所求概率为P (A )=81256.(2)空盒的个数ξ的所有可能取值为0,1,2,3, 则P (ξ=0)=A 44256=24256=332,P (ξ=1)=C 24C 34A 33256=144256=916,P (ξ=3)=C 14256=4256=164,P (ξ=2)=C 14C 24A 22+C 24C 22A 22C 24A 22256=84256=2164⎝ ⎛⎭⎪⎫或P (ξ=2)=1-P (ξ=0)-P (ξ=1)-P (ξ=3)=2164, 所以ξ的分布列为ξ的均值为E (ξ)=0×332+1×916+2×2164+3×164=8164.5.(2017·九江模拟)心理学家分析发现视觉和空间能力与性别有关,某数学兴趣小组为了验证这个结论,从兴趣小组中按分层抽样的方法抽取50名同学(男30女20),给所有同学几何题和代数题各一题,让各位同学自由选择一道题进行解答.选题情况如下表:(单位:人)(1)能否据此判断有97.5%的把握认为视觉和空间能力与性别有关?(2)经过多次测试后,甲每次解答一道几何题所用的时间在5~7分钟,乙每次解答一道几何题所用的时间在6~8分钟,现甲、乙各解同一道几何题,求乙比甲先解答完的概率;(3)现从选择做几何题的8名女同学中任意抽取2人对她们的答题情况进行全程研究,记丙、丁2名女同学被抽到的人数为X ,求X 的分布列及均值E (X ).下面临界值表仅供参考:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d )【解析】 (1)由表中数据得K 2=50×(22×12-8×8)230×20×30×20=509≈5.556>5.024,根据统计有97.5%的把握认为视觉和空间能力与性别有关.(2)设甲、乙解答一道几何题的时间分别为x ,y 分钟,则基本事件满足的区域为⎩⎪⎨⎪⎧5≤x ≤76≤y ≤8(如图所示),设事件A 为“乙比甲先解答完此道题”则满足的区域为x >y ,∴由几何概型的概率计算公式得P (A )=12×1×12×2=18,即乙比甲先解答完的概率为18.(3)X 的可能取值为0,1,2,由题可知在选择做几何题的8名女同学中任意抽取2人,抽取方法有C 28=28种,其中丙、丁2人没有一个人被抽到有C 26=15种;恰有一人被抽到有C 12·C 16=12种;2人都被抽到有C 22=1种,∴P (X =0)=1528,P (X =1)=1228=37,P (X =2)=128,X 的分布列为∴E (X )=0×1528+1×37+2×128=12.6.某高中为了推进新课程改革,以满足不同层次的学生的需求,决定从高一年级开始,在每周的周一、周三、周五的课外活动期间同时开设数学、语文、物理、化学、生物这5个学科的辅导讲座,每位有兴趣的学生可以在期间的任何一天参加任何学科的辅导讲座,也可以放弃任何一个学科的辅导讲座.规定:各学科达到预先设定的人数时称为满座,否则称为不满座.统计数据表明,各学科辅导讲座满座的概率如下表(每天各个学科的辅导讲座是否满座互不影响):(1)求数学辅导讲座在周一、周三、周五都不满座的概率;(2)设周三各学科辅导讲座满座的科目数为ξ,求随机变量ξ的分布列和均值. 【解析】 (1)设数学辅导讲座在周一、周三、周五都不满座为事件A , 则P (A )=⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-23=118. (2)ξ的可能取值为0,1,2,3,4,5,P (ξ=0)=⎝ ⎛⎭⎪⎫1-124×⎝ ⎛⎭⎪⎫1-23=148,P (ξ=1)=C 14×12×⎝ ⎛⎭⎪⎫1-123×⎝ ⎛⎭⎪⎫1-23+⎝ ⎛⎭⎪⎫1-124×23=18,P (ξ=2)=C 24×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-122×⎝ ⎛⎭⎪⎫1-23+C 14×12×⎝ ⎛⎭⎪⎫1-123×23=724, P (ξ=3)=C 34×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-12×⎝ ⎛⎭⎪⎫1-23+C 24×⎝ ⎛⎭⎪⎫122×⎝ ⎛⎭⎪⎫1-122×23=13,P (ξ=4)=⎝ ⎛⎭⎪⎫124×⎝ ⎛⎭⎪⎫1-23+C 34×⎝ ⎛⎭⎪⎫123×⎝ ⎛⎭⎪⎫1-12×23=316,P (ξ=5)=⎝ ⎛⎭⎪⎫124×23=124,所以随机变量ξ的分布列为故E (ξ)=0×148+1×18+2×724+3×13+4×316+5×124=83.7.(2017·广东六校联考)某市调研考试后,某校对甲、乙两个文科班的数学考试成绩进行分析,规定:大于或等于120分为优秀,120分以下为非优秀.统计成绩后,得到如下的列联表,且已知在甲、乙两个文科班全部110人中随机抽取1人成绩为优秀的概率为311.(1)请完成上面的列联表;(2)根据列联表中的数据,若按99.9%的可靠性要求,能否认为“成绩是否优秀与班级有关系”;(3)若按下面的方法从甲班优秀的学生中抽取1人:把甲班优秀的10名学生从2到11进行编号,先后两次抛掷一枚均匀的骰子,出现的点数之和为被抽取人的序号.试求抽到9号或10号的概率.参考公式与临界值表:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ).【解析】 (1)(2)根据列联表中的数据,得到K 2=110×(10×30-20×50)260×50×30×80≈7.486<10.828.因此按99.9%的可靠性要求,不能认为“成绩是否优秀与班级有关系”.(3)设“抽到9或10号”为事件A ,先后两次抛掷一枚均匀的骰子,出现的点数为(x ,y ),所有的基本事件有(1,1),(1,2),(1,3),…,(6,6),共36个.事件A 包含的基本事件有(3,6),(4,5),(5,4),(6,3),(5,5),(4,6),(6,4),共7个.∴P (A )=736,即抽到9号或10号的概率为736.8.(2017·安徽安庆六校联考)前不久,省社科院发布了2014年度“安徽城市居民幸福排行榜”,芜湖市成为本年度安徽最“幸福城市”.随后,师大附中学生会组织部分同学,用“10分制”随机调查“阳光”社区人们的幸福度.现从调查人群中随机抽取16名,如图所示的茎叶图记录了他们的幸福度分数(以小数点前的一位数字为茎,小数点后的一位数字为叶):(1)指出这组数据的众数和中位数;(2)若幸福度不低于9.5分,则称该人的幸福度为“极幸福”,求从这16人中随机选取3人,至多有1人是“极幸福”的概率;(3)以这16人的样本数据来估计整个社区的总体数据,若从该社区(人数很多)任选3人,记ξ表示选到“极幸福”的人数,求ξ的分布列及数学期望.【解析】 (1)众数:8.6;中位数:8.75.(2)设A i 表示所选取的3人中有i 人是“极幸福”,至多有1人是“极幸福”记为事件A ,则P (A )=P (A 0)+P (A 1)=C 312C 316+C 14C 212C 316=121140.(3)由题意,知ξ~B ⎝⎛⎭⎪⎫3,14.ξ的所有可能取值为0,1,2,3.P (ξ=0)=⎝ ⎛⎭⎪⎫343=2764,P (ξ=1)=C 13×14×⎝ ⎛⎭⎪⎫342=2764,P (ξ=2)=C 23×⎝ ⎛⎭⎪⎫142×34=964,P (ξ=3)=⎝ ⎛⎭⎪⎫143=164.则ξ的分布列为所以E (ξ)=0×2764+1×2764+2×964+3×164=0.75.9.(2017·抚州联考)如图所示,一圆形靶分成A ,B ,C 三部分,其面积之比为1∶1∶2.某同学向该靶投掷3枚飞镖,每次1枚.假设他每次投掷必定会中靶,且投中靶内各点是随机的.(1)求该同学在一次投掷中投中A 区域的概率;(2)设X 表示该同学在3次投掷中投中A 区域的次数,求X 的分布列;(3)若该同学投中A ,B ,C 三个区域分别可得3分,2分,1分,求他投掷3次恰好得4分的概率.【解析】 (1)设该同学在一次投掷中投中A 区域的概率为P (A ),依题意得P (A )=14.(2)依题意知,X ~B ⎛⎪⎫3,14,从而X 的分布列为(3)设B i 表示事件“第i 次击中目标时,击中B 区域”,C i 表示事件“第i 次击中目标时,击中C 区域”,i =1,2,3.依题意知P =P (B 1C 2C 3)+P (C 1B 2C 3)+P (C 1C 2B 3)=3×14×12×12=316.10.(2016·课标全国Ⅱ)某险种的基本保费为a (单位:元),继续购买该险种的投保人称为续保人,续保人本年度的保费与其上年度出险次数的关联如下:设该险种一续保人一年内出险次数与相应概率如下:(1)求一续保人本年度的保费高于基本保费的概率;(2)若一续保人本年度的保费高于基本保费,求其保费比基本保费高出60%的概率; (3)求续保人本年度的平均保费与基本保费的比值.【解析】 (1)设A 表示事件:“一续保人本年度的保费高于基本保费”,则事件A 发生当且仅当一年内出险次数大于1,故P (A )=0.2+0.2+0.1+0.05=0.55.(2)设B 表示事件:“一续保人本年度的保费比基本保费高出60%”,则事件B 发生当且仅当一年内出险次数大于3,故P (B )=0.1+0.05=0.15.又P (AB )=P (B ),故P (B |A )=P (AB )P (A )=P (B )P (A )=0.150.55=311.。

2018年高考数学—概率统计(选择+填空+答案)

2018年高考数学—概率统计(选择+填空+答案)

A.p1=p2
B.p1=p3
C.p2=p3
D.p1=p2+p3
9.(18 江苏 3)已知 5 位裁判给某运动员打出的分数的茎叶图如图所示,那么这 5 位裁判打出
的分数的平均数为 ▲ .
2
10.(18 江苏 6)某兴趣小组有 2 名男生和 3 名女生,现从中任选 2 名学生去参加活动,则恰 好选中 2 名女生的概率为 ▲ .
13.(18 全国三文 14)某公司有大量客户,且不同龄段客户对其服务的评价有较大差异.为了 解客户的评价,该公司准备进行抽样调查,可供选择的抽样方法有简单随机抽样、分层 抽样和系统抽样,则最合适的抽样方法是________.
参考答案:
1.D
2.C
9.90
10. 3
10
3.B 4.A 11.16
5.D 6.D 7.B 8. A 12.1260 13.分层抽样
2018 高考数学——概率统计选填
1.(18 北京理(4))“十二平均律”是通用的音律体系,明代朱载堉最早用数学方法计算出 半音比例,为这个理论的发展做出了重要贡献.十二平均律将一个纯八度音程分成十二份, 依次得到十三个单音,从第二个单音起,每一个单音的频率与它的前一个单音的频率的比都 等于 12 2 .若第一个单音的频率为 f,则第八个单音的频率为
A. 1 12
B. 1 14
C. 1 15
D. 1 18
3.(18 全国三理 8)某群体中的每位成员使用移动支付的概率都为 p ,各成员的支付方式相互
独 立 , 设 X 为 该 群 体 的 10 位 成 员 中 使 用 移 动 支 付 的 人 数 , DX 2.4 ,
P X 4 P X 6 ,则 p
建设后经济收入构成比例

2018年高考数学理科考点过关习题第八章概率与统计58和答案

2018年高考数学理科考点过关习题第八章概率与统计58和答案

考点测试58 二项式定理一、基础小题1.⎝ ⎛⎭⎪⎫2x -1x 4的展开式中的常数项为( )A .-24B .-6C .6D .24 答案 D解析 二项展开式的通项T r +1=C r4(2x )4-r⎝ ⎛⎭⎪⎫-1x r =C r 424-r(-1)r ·x 4-2r , 令4-2r =0,即r =2,故常数项为C 2422(-1)2=24.2.若二项式⎝ ⎛⎭⎪⎫x -2x n 的展开式中第5项是常数项,则自然数n 的值可能为( )A .6B .10C .12D .15 答案 C解析 二项式⎝⎛⎭⎪⎫x -2x n 的展开式的第5项为T 5=C 4n (x )n -4·⎝ ⎛⎭⎪⎫-2x 4,故n -42-4=0,即n =12. 3.若多项式x 3+x 10=a 0+a 1(x +1)+…+a 9(x +1)9+a 10(x +1)10,则a 9=( )A .9B .10C .-9D .-10 答案 D解析 x 3+x 10=x 3+10,题中a 9只是10的展开式中(x +1)9的系数,故a 9=C 110(-1)1=-10.4.(1+2x )3(1-3x )5的展开式中x 的系数是( ) A .-4 B .-2 C .2 D .4 答案 C解析 (1+2x )3的展开式中常数项是1,含x 的项是C 23(2x )2=12x ;(1-3x )5的展开式中常数项是1,含x 的项是C 35(-3x )3=-10x ,故(1+23x )3(1-3x )5的展开式中含x 项的系数为1×(-10)+1×12=2.5.⎝⎛⎭⎪⎫ax +1x (2x -1)5的展开式中各项系数的和为2,则该展开式中常数项为( )A .-20B .-10C .10D .20 答案 C解析 令x =1,可得a +1=2,所以a =1,所以⎝⎛⎭⎪⎫ax +1x (2x -1)5=⎝⎛⎭⎪⎫x +1x (2x -1)5,则展开式中常数项为2C 45(-1)4=10.6.若⎝⎛⎭⎪⎫x +2x 2n 的展开式中只有第六项的二项式系数最大,则展开式中的常数项是( )A .180B .120C .90D .45 答案 A解析 由于展开式中只有第六项的二项式系数最大,故第六项为中间项,共有11项,所以n =10,T r +1=C r 10⎝ ⎛⎭⎪⎫2x 2r ·(x )10-r =C r 102rx10-5r2,令10-5r2=0,得r =2,故常数项是C 21022=180.7.若(x +1)5=a 5(x -1)5+…+a 1(x -1)+a 0,则a 0和a 1的值分别为( ) A .32,80 B .32,40 C .16,20 D .16,10 答案 A解析 由于x +1=x -1+2,因此(x +1)5=5,故展开式中(x -1)的系数为a 1=C 4524=80.令x =1,得a 0=32,故选A.8.已知⎝ ⎛⎭⎪⎫x 2+12x n (n ∈N *)的展开式中,前三项的二项式系数和是56,则展开式中的常数项为( )A.45256B.47256C.49256D.51256 答案 A解析 由题意知C 0n +C 1n +C 2n =56,∴n =10,∴T r +1=C r 10(x 2)10-r·⎝ ⎛⎭⎪⎫12x r =C r 10⎝ ⎛⎭⎪⎫12rx 20-5r 2,令20-5r 2=0,得r =8,∴常数项为C 810×⎝ ⎛⎭⎪⎫128=45256,故选A. 9.⎝⎛⎭⎪⎪⎫x +33x n 的展开式中,各项系数的和与二项式系数的和之比为64,则(1-x )n 的展开式中系数最小的项的系数等于________.答案 -20解析 展开式中,各项系数的和为4n ,二项式系数的和为2n ,由题知2n =64,所以n =6,(1-x )6的展开式中,第四项的系数最小,为-C 36=-20.10.1+3C 1n +9C 2n +…+3n C nn =________.答案 4n解析 在二项展开式(1+x )n =C 0n +C 1n x +…+C n n x n 中,令x =3,得(1+3)n =C 0n +C 1n 3+C 2n 32+…+C n n 3n ,即1+3C 1n +9C 2n +…+3n C n n =4n.11.⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为________(用数字作答). 答案 -160解析 ∵⎝ ⎛⎭⎪⎫2x -1x 6=⎝ ⎛⎭⎪⎫2x -1x 6= 2x -1 6x 3,又∵(2x -1)6的展开式的通项公式为T r +1=C r 6(2x )6-r(-1)r ,令6-r =3,得r =3. ∴T 3+1=-C 36(2x )3=-20×23·x 3=-160x 3,∴⎝ ⎛⎭⎪⎫2x -1x 6的二项展开式中的常数项为-160.12.(x 2-x +1)10的展开式中x 3的系数为________. 答案 -210解析 (x 2-x +1)10=10=C 010(x 2)10-C 110(x 2)9(x -1)+…-C 910(x 2)(x -1)9+C 1010(x -1)10,所以x 3的系数为-C 910C 89+C 1010(-C 710)=-210.二、高考小题13.(x 2+x +y )5的展开式中,x 5y 2的系数为( ) A .10 B .20 C .30 D .60 答案 C解析 由于(x 2+x +y )5=5,其展开式的通项为T r +1=C r 5(x 2+x )5-r y r(r =0,1,2,…,5),因此只有当r =2,即T 3=C 25(x 2+x )3y 2中才能含有x 5y 2项.设(x 2+x )3的展开式的通项为S i +1=C i 3(x 2)3-i ·x i =C i 3x6-i (i =0,1,2,3),令6-i =5,得i =1,则(x 2+x )3的展开式中x 5项的系数是C 13=3,故(x 2+x +y )5的展开式中,x 5y 2的系数是C 25·3=10×3=30.14.已知⎝ ⎛⎭⎪⎫x -a x 5的展开式中含x 32的项的系数为30,则a =( )A. 3 B .- 3 C .6 D .-6 答案 D解析 展开式的通项为T r +1=C r 5·(x )5-r·⎝ ⎛⎭⎪⎫-a x r=(-1)r C r 5a r·x 52-r (r=0,1,2,…,5).令52-r =32,得r =1,所以展开式中含x32项的系数为(-1)C 15·a ,于是-5a =30,解得a =-6.15.在(1+x )6(1+y )4的展开式中,记x m y n 项的系数为f (m ,n ),则f (3,0)+f (2,1)+f (1,2)+f (0,3)=( )A .45B .60C .120D .210 答案 C解析 在(1+x )6的展开式中,x m 的系数为C m 6,在(1+y )4的展开式中,y n的系数为C n 4,故f (m ,n )=C m 6·C n 4.从而f (3,0)=C 36=20,f (2,1)=C 26·C 14=60,f (1,2)=C 16·C 24=36,f (0,3)=C 34=4,故选C.16.(2x +x )5的展开式中,x 3的系数是________(用数字填写答案). 答案 10解析 T r +1=C r 5(2x )5-r·(x )r =25-r C r 5·x5-r 2,令5-r2=3,得r =4,∴T 5=10x 3,∴x 3的系数为10.17.若⎝ ⎛⎭⎪⎫ax 2+1x 5的展开式中x 5的系数是-80,则实数a =________.答案 -2解析 T r +1=a 5-r C r 5x10-52r,令10-52r =5,解之得r =2,所以a 3C 25=-80,a =-2.18.(a +x )(1+x )4的展开式中x 的奇数次幂项的系数之和为32,则a =________.答案 3解析 解法一:∵(1+x )4=x 4+C 34x 3+C 24x 2+C 14x +C 04x 0=x 4+4x 3+6x 2+4x +1,∴(a +x )(1+x )4的奇数次幂项的系数为4a +4a +1+6+1=32,∴a =3. 解法二:设(a +x )(1+x )4=b 0+b 1x +b 2x 2+b 3x 3+b 4x 4+b 5x 5. 令x =1,得16(a +1)=b 0+b 1+b 2+b 3+b 4+b 5,① 令x =-1,得0=b 0-b 1+b 2-b 3+b 4-b 5,② 由①-②,得16(a +1)=2(b 1+b 3+b 5), 即8(a +1)=32,解得a =3. 三、模拟小题19.(x +1)(x -2)6的展开式中x 4的系数为( ) A .-100 B .-15 C .35 D .220 答案 A解析 由二项式定理可得(x -2)6展开式的通项T r +1=C r 6(-2)r x 6-r,∴x 3的系数为C 36(-2)3=-160,x 4的系数为C 26(-2)2=60,∴(x +1)(x -2)6的展开式中x 4的系数为-160+60=-100.20.⎝ ⎛⎭⎪⎫x 2-12x 6的展开式中,常数项是( )A .-54 B.54 C .-1516 D.1516答案 D解析 T r +1=C r 6(x 2)6-r ⎝ ⎛⎭⎪⎫-12x r =⎝ ⎛⎭⎪⎫-12r C r 6x 12-3r ,令12-3r =0,解得r =4.∴常数项为⎝ ⎛⎭⎪⎫-124C 46=1516.故选D.答案 B 解析22.若⎝ ⎛⎭⎪⎫x +1x n 的展开式中第3项与第7项的二项式系数相等,则该展开式中1x 2的系数为________________________________________________________________________.答案 56解析 因为展开式中的第3项和第7项的二项式系数相等,即C 2n =C 6n ,所以n =8,所以展开式的通项为T k +1=C k 8x 8-k ⎝ ⎛⎭⎪⎫1x k =C k 8x 8-2k,令8-2k =-2,解得k =5,所以T 6=C 58⎝ ⎛⎭⎪⎫1x 2,所以1x 2的系数为C 58=56.23.已知(2x -1)10=a 0+a 1x +a 2x 2+…+a 9x 9+a 10x 10,则a 2+a 3+…+a 9+a 10的值为( )A .-20B .0C .1D .20 答案 D解析 令x =1,得a 0+a 1+a 2+…+a 9+a 10=1,再令x =0,得a 0=1,所以a 1+a 2+…+a 9+a 10=0,又易知a 1=C 910×21×(-1)9=-20,所以a 2+a 3+…+a 9+a 10=20.24.1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010除以88的余数是( )A .-1B .1C .-87D .87 答案 B解析 1-90C 110+902C 210-903C 310+…+(-1)k 90k C k 10+…+9010C 1010=(1-90)10=8910=(88+1)10=8810+C 110889+…+C 91088+1.∵前10项均能被88整除,∴余数是1.25.从重量分别为1,2,3,4,…,10,11克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为9克的方法总数为m ,下列各式的展开式中x 9的系数为m 的选项是( )A .(1+x)(1+x 2)(1+x 3)…(1+x 11)B .(1+x)(1+2x)(1+3x)…(1+11x)C .(1+x)(1+2x 2)(1+3x 3)…(1+11x 11)D .(1+x)(1+x +x 2)(1+x +x 2+x 3)…(1+x +x 2+…+x 11) 答案 A解析 x 9是由x ,x 2,x 3,x 4,x 5,…,x 11中的指数和等于9的那些项的乘积构成,有多少个这样的乘积就有多少个这样的x 9,这与从重量分别为1,2,3,4,…,10,11克的砝码(每种砝码各一个)中选出若干个,使其总重量恰为9克的方法的意义一样,所以就是(1+x)(1+x 2)(1+x 3)…(1+x 11)的展开式中x 9的系数,选A .26.在⎝⎛⎭⎪⎫1+x +1x 201510的展开式中,含x 2项的系数为( )A .10B .30C .45D .120 答案 C解析 因为⎝ ⎛⎭⎪⎫1+x +1x 201510=⎣⎢⎡⎦⎥⎤ 1+x +1x 201510=(1+x)10+C 110(1+x)91x 2015+…+C 1010⎝ ⎛⎭⎪⎫1x 201510,所以x 2项只能在(1+x)10的展开式中,所以含x 2的项为C 210x 2,系数为C 210=45.故选C .27.(x +2y)7的展开式中,系数最大的项是( )A .68y 7B .112x 3y 4C .672x 2y 5D .1344x 2y 5 答案 C解析 设第r +1项系数最大,则有⎩⎨⎧C r 7·2r ≥C r -17·2r -1,C r7·2r ≥C r +17·2r +1,即⎩⎪⎨⎪⎧7!r ! 7-r !·2r ≥7!r-1 ! 7-r +1 !·2r -1,7!r ! 7-r !·2r≥7!r+1 ! 7-r -1 !·2r +1,即⎩⎪⎨⎪⎧2r ≥18-r ,17-r ≥2r +1,解得⎩⎪⎨⎪⎧r≤163,r≥133.又∵r ∈Z ,∴r =5,∴系数最大的项为T 6=C 57x 2·25y 5=672x 2y 5.故选C.28.若⎝⎛⎭⎪⎫x -3x n 展开式的各项系数的绝对值之和为1024,则展开式中x 的一次项的系数为________.答案 -15解析 T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎫-3x r =(-3)r ·C r n xn -3r2,因为展开式的各项系数绝对值之和为C 0n +|(-3)1C 1n |+(-3)2C 2n +|(-3)3C 3n |+…+|(-3)n C nn |=1024,所以(1+3)n =1024,解得n =5,令5-3r 2=1,解得r =1,所以展开式中x 的一次项的系数为(-3)1C 15=-15.29.将⎝ ⎛⎭⎪⎫x +4x -43展开后,常数项是________.答案 -160解析 ⎝ ⎛⎭⎪⎫x +4x -43=⎝ ⎛⎭⎪⎫x -2x 6展开后的通项是C k 6(x )6-k·⎝ ⎛⎭⎪⎫-2x k =(-2)k ·C k 6(x )6-2k . 令6-2k =0,得k =3.所以常数项是C 36(-2)3=-160.30.若二项式⎝⎛⎭⎪⎪⎫x +23x n 的展开式中的常数项是80,则该展开式中的二项式系数之和等于________.答案 32解析 对于T r +1=C r n (x )n -r ⎝ ⎛⎭⎪⎪⎫23x r =C r n 2r x n -r 2-r3 ,当r =35n 时展开式为常数项,因此n 为5的倍数,不妨设n =5m ,则有r =3m ,则23m C 3m 5m =8m C 3m5m =80,因此m =1,则该展开式中的二项式系数之和等于2n =25=32.本考点在近三年高考中未涉及此题型.。

最新-2018高考数学点 概率与统计 选择题专项 精品

最新-2018高考数学点 概率与统计 选择题专项 精品

【命中考心】2018高考数学必考点之概率与统计 选择题专项一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.要从已编号(1·50)的50枚最新研制的某型号导弹中随机抽取5枚来进行发射试验,用每部分选取的号码间隔一样的系统抽样方法确定所选取的5枚导弹的编号可能是( )A .5,10,15,20,25B .3,13,23,33,43C .1,2,3,4,5D .2,4,8,16,32【解析】B 根据系统抽样的规则,1到10一段,11到20一段,如此类推,那么每一段上都应该有号码.2. ①教育局督学组到学校检查工作,需在高三年级的学号为001·800的学生中抽调20人参加关于学校管理的综合座谈;②该校高三年级这800名学生期中考试的数学成绩有160在120分以上(包括120分),480人在120以下90分以上(包括90分),其余的在90分以下,现欲从中抽出20人研讨进一步改进数学教和学的座谈;③该校高三年级这800名学生参加2018年元旦聚会,要产生20名“幸运之星”. 以上三件事,合适的抽样方法依次为 ( )A .系统抽样,分层抽样,系统抽样B .系统抽样,系统抽样,简单随机抽样C .分层抽样,简单随机抽样,简单随机抽样D .系统抽样,分层抽样,简单随机抽样【解析】D 参加学校管理的综合座谈采用系统抽样较好,具有代表性;研究数学教与学的问题采用分层抽样较为合适,这样可以使研究更能反映不同层次的学生;“幸运之星”就不能在用系统抽样,那样就不具有“幸运”之意了,合适的抽样方法就是用简单随机抽样,以体现“幸运”之意.3.在100个零件中,有一级品20个,二级品30个,三级品50个,从中抽取20个作为样本,有以下三种抽样方法:①采用随机抽样法,将零件编号为00,01,,99,抽签取出20个;②采用系统抽样法,将所有零件分成20组,每组5个,然后每组随机抽取1个;③采用分层抽样法,从一级品中随机抽取4个,从二级品中随机抽取6个,从三级品中随机抽取10个.则下述判断中正确的是 ( )A .不论采用何种抽样方法,这100个零件中每个被抽到的可能性均为51B .①、②两种抽样方法,这100个零件中每个被抽到的可能性均为51;③并非如此C .①、③两种抽样方法,这100个零件中每个被抽到的可能性均为51;②并非如此D .采用不同的抽样方法,这100个零件中每个被抽到的可能性是各不相同的【解析】A 三种抽样方法的特点就是保证了每个个体从总体中抽到的可能性都相同,保证了公平性。

(完整版)2018年高考统计与概率专题

(完整版)2018年高考统计与概率专题

2018年高考统计与概率专题(全国卷1文)2.为评估一种农作物的种植效果,选了n 块地作试验田.这n 块地的亩产量(单位:kg )分别为x 1,x 2,…,x n ,下面给出的指标中可以用来评估这种农作物亩产量稳定程度的是 A .x 1,x 2,…,x n 的平均数 B .x 1,x 2,…,x n 的标准差 C .x 1,x 2,…,x n 的最大值D .x 1,x 2,…,x n 的中位数【答案】B【解析】刻画评估这种农作物亩产量稳定程度的指标是标准差,故选B(全国卷1理)2.如图,正方形ABCD 内的图形来自中国古代的太极图。

正方形内切圆中的黑色部分和白色部分关于正方形的中心成中心对称.在正方形内随机取一点,则此点取自黑色部分的概率是A .14B .π8C .12D .π4【考点】:几何概型【思路】:几何概型的面积问题,=P 基本事件所包含的面积总面积.【解析】:()21212=82r S P S r ππ==,故而选B 。

(全国卷2理)6.安排3名志愿者完成4项工作,每人至少完成1项,每项工作由1人完成,则不同的安排方式共有( )A .12种B .18种C .24种D .36种(全国卷2文)6。

如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A.90πB 。

63πC 。

42π D.36π【答案】B【解析】由题意,该几何体是由高为6的圆柱截取一半后的图形加上高为4的圆柱,故其体积为2213634632V πππ=⋅⋅⋅+⋅⋅=,故选B 。

(天津卷)文(3)有5支彩笔(除颜色外无差别),颜色分别为红、黄、蓝、绿、紫。

从这5支彩笔中任取2支不同颜色的彩笔,则取出的2支彩笔中含有红色彩笔的概率为(A)45(B)35(C)25(D)15(全国卷2文)11.从分别写有1,2,3,4,5的5张卡片中随机抽取1张,放回后再随机抽取1张,则抽得的第一张卡片上的数大于第二张卡片上的数的概率为A.110B.15C。

2018版高考数学(理)一轮复习文档:第十一章统计与概率11.2含解析

2018版高考数学(理)一轮复习文档:第十一章统计与概率11.2含解析

1.作频率分布直方图的步骤(1)求极差(即一组数据中最大值与最小值的差).(2)决定组距与组数.(3)将数据分组.(4)列频率分布表.(5)画频率分布直方图.2.频率分布折线图和总体密度曲线(1)频率分布折线图:连接频率分布直方图中各小长方形上端的中点,就得到频率分布折线图.(2)总体密度曲线:随着样本容量的增加,作图时所分的组数增加,组距减小,相应的频率折线图会越来越接近于一条光滑曲线,统计中称这条光滑曲线为总体密度曲线.3.茎叶图统计中还有一种被用来表示数据的图叫做茎叶图,茎是指中间的一列数,叶就是从茎的旁边生长出来的数.4.标准差和方差(1)标准差是样本数据到平均数的一种平均距离.(2)标准差:s=错误!。

(3)方差:s2=错误![(x1-错误!)2+(x2-错误!)2+…+(x n-错误!)2](x n是样本数据,n是样本容量,错误!是样本平均数).【知识拓展】1.频率分布直方图的特点(1)频率分布直方图中相邻两横坐标之差表示组距,纵坐标表示错误!,频率=组距×频率组距。

(2)频率分布直方图中各小长方形的面积之和为1,因为在频率分布直方图中组距是一个固定值,所以各小长方形高的比也就是频率比.(3)频率分布表和频率分布直方图是一组数据频率分布的两种形式,前者准确,后者直观.2.平均数、方差的公式推广(1)若数据x1,x2,…,x n的平均数为错误!,那么mx1+a,mx2+a,mx3+a,…,mx n+a的平均数是m错误!+a.(2)数据x1,x2,…,x n的方差为s2。

①数据x1+a,x2+a,…,x n+a的方差也为s2;②数据ax1,ax2,…,ax n的方差为a2s2.【思考辨析】判断下列结论是否正确(请在括号中打“√”或“×”)(1)平均数、众数与中位数从不同的角度描述了一组数据的集中趋势.( √)(2)一组数据的众数可以是一个或几个,那么中位数也具有相同的结论.( ×)(3)从频率分布直方图得不出原始的数据内容,把数据表示成直方图后,原有的具体数据信息就被抹掉了.(√)(4)茎叶图一般左侧的叶按从大到小的顺序写,右侧的叶按从小到大的顺序写,相同的数据可以只记一次.(×)(5)在频率分布直方图中,最高的小长方形底边中点的横坐标是众数.( √)(6)在频率分布直方图中,众数左边和右边的小长方形的面积和是相等的.(×)1。

高考数学(理):专题07 概率与统计(含解析)

高考数学(理):专题07 概率与统计(含解析)

7.概率与统计1.【2018年浙江卷】设0<p<1,随机变量ξ分布列是ξ0 1 2P则当p在(0,1)内增大时,A. D(ξ)减小B. D(ξ)增大C. D(ξ)先减小后增大D. D(ξ)先增大后减小【答案】D点睛:2.【2018年理新课标I卷】下图来自古希腊数学家希波克拉底所研究几何图形.此图由三个半圆构成,三个半圆直径分别为直角三角形ABC斜边BC,直角边AB,AC.△ABC三边所围成区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III概率分别记为p1,p2,p3,则A. p1=p2B. p1=p3C. p2=p3D. p1=p2+p3【答案】A【解析】分析:首先设出直角三角形三条边长度,根据其为直角三角形,从而得到三边关系,之后应用相应面积公式求得各个区域面积,根据其数值大小,确定其关系,再利用面积型几何概型概率公式确定出p1,p2,p3关系,从而求得结果.详解:设,则有,从而可以求得面积为,黑色部分面积为,其余部分面积为,所以有,根据面积型几何概型概率公式,可以得到,故选A.点睛:该题考查是面积型几何概型有关问题,题中需要解决是概率大小,根据面积型几何概型概率公式,将比较概率大小问题转化为比较区域面积大小,利用相关图形面积公式求得结果.【2018年理新课标I卷】某地区经过一年新农村建设,农村经济收入增加了一倍.实现翻番.为3.更好地了解该地区农村经济收入变化情况,统计了该地区新农村建设前后农村经济收入构成比例.得到如下饼图:则下面结论中不正确是A. 新农村建设后,种植收入减少B. 新农村建设后,其他收入增加了一倍以上C. 新农村建设后,养殖收入增加了一倍D. 新农村建设后,养殖收入与第三产业收入总和超过了经济收入一半【答案】A详解:设新农村建设前收入为M,而新农村建设后收入为2M,则新农村建设前种植收入为0.6M,而新农村建设后种植收入为0.74M,所以种植收入增加了,所以A项不正确;新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;新农村建设后,养殖收入与第三产业收入综合占经济收入,所以超过了经济收入一半,所以D正确;故选A.点睛:该题考查是有关新农村建设前后经济收入构成比例饼形图,要会从图中读出相应信息即可得结果.4.【2018年全国卷Ⅲ理】某群体中每位成员使用移动支付概率都为,各成员支付方式相互独立,设为该群体10位成员中使用移动支付人数,,,则A. 0.7B. 0.6C. 0.4D. 0.3【答案】B点睛:本题主要考查二项分布相关知识,属于中档题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

概率与统计
热点一 常见概率模型的概率
几何概型、古典概型、相互独立事件与互斥事件的概率、条件概率是高考的热点,几何概型主要以客观题考查,求解的关键在于找准测度(面积,体积或长度);相互独立事件,互斥事件常作为解答题的一问考查,也是进一步求分布列,期望与方差的基础,求解该类问题要正确理解题意,准确判定概率模型,恰当选择概率公式.
【例1】现有4个人去参加某娱乐活动,该活动有甲、乙两个游戏可供参加者选择.为增加趣味性,约定:每个人通过掷一枚质地均匀的骰子决定自己去参加哪个游戏,掷出点数为1或2的人去参加甲游戏,掷出点数大于2的人去参加乙游戏.
(1)求这4个人中恰有2人去参加甲游戏的概率;
(2)求这4个人中去参加甲游戏的人数大于去参加乙游戏的人数的概率;
(3)用X ,Y 分别表示这4个人中去参加甲、乙游戏的人数,记ξ=|X -Y |,求随机变量ξ的分布列.
解 依题意,这4个人中,每个人去参加甲游戏的概率为13,去参加乙游戏的概率为23.
设“这4个人中恰有i 人去参加甲游戏”为事件A i (i =0,1,2,3,4).
则P (A i )=C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭
⎪⎫234-i . (1)这4个人中恰有2人去参加甲游戏的概率
P (A 2)=C 24⎝ ⎛⎭⎪⎫132⎝ ⎛⎭
⎪⎫232=827. (2)设“这4个人中去参加甲游戏的人数大于去参加乙游戏的人数”为事件B ,则B =A 3+A 4,且A 3与A 4互斥,
∴P (B )=P (A 3+A 4)=P (A 3)+P (A 4)=C 34⎝ ⎛⎭⎪⎫133
×23+C 44⎝ ⎛⎭⎪⎫134=19. (3)依题设,ξ的所有可能取值为0,2,4.
且A 1与A 3互斥,A 0与A 4互斥.
则P (ξ=0)=P (A 2)=827,
P (ξ=2)=P (A 1+A 3)=P (A 1)+P (A 3)
=C 14⎝ ⎛⎭⎪⎫131·⎝ ⎛⎭⎪⎫233+C 34⎝ ⎛⎭
⎪⎫133×23=4081, P (ξ=4)=P (A 0+A 4)=P (A 0)+P (A 4)
=C 04⎝ ⎛⎭⎪⎫234
+C 44⎝ ⎛⎭⎪⎫134
=1781.
所以ξ的分布列是
【类题通法】(1)本题44人中恰有i 人参加甲游戏的概率P =C i 4⎝ ⎛⎭⎪⎫13i ⎝ ⎛⎭
⎪⎫234-i ,这是本题求解的关键. (2)解题中常见的错误是不能分清事件间的关系,选错概率模型,特别是在第(3)问中,不能把ξ=0,2,4的事件转化为相应的互斥事件A i 的概率和.
【对点训练】甲、乙两班进行消防安全知识竞赛,每班出3人组成甲乙两支代表队,首轮比赛每人一道必答题,答对则为本队得1分,答错或不答都得0分,已知甲队3人每人答
对的概率分别为34,23,12,乙队每人答对的概率都是23,设每人回答正确与否相互之间没有
影响,用ξ表示甲队总得分.
(1)求ξ=2的概率;
(2)求在甲队和乙队得分之和为4的条件下,甲队比乙队得分高的概率.
解 (1)ξ=2,则甲队有两人答对,一人答错,
故P (ξ=2)=34×23×⎝ ⎛⎭⎪⎫1-12+34×⎝ ⎛⎭⎪⎫1-23×12+⎝ ⎛⎭
⎪⎫1-34×23×12=1124; (2)设甲队和乙队得分之和为4为事件A ,甲队比乙队得分高为事件B .设乙队得分为η,则η~B ⎝ ⎛⎭
⎪⎫3,23. P (ξ=1)=34×⎝ ⎛⎭⎪⎫1-23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×23×⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫1-34×⎝ ⎛⎭
⎪⎫1-23×12=14, P (ξ=3)=34×23×12=14,
P (η=1)=C 13·23·⎝ ⎛⎭⎪⎫132=29,。

相关文档
最新文档